
We thank reviewers for their insightful comments and are happy that they find the problem significant (R1) and1

challenging (R2), the proposed decomposition novel (R2) and the results compelling (R1). In the following, we address2

concerns and provide new experimental evidence. Fig. 1-8 and Tab. 1-2 are in the main paper and Fig. 9-15 can be3

found in the appendix. We kindly ask the reviewers and the AC zoom into the figures.4

Figure 16: Average attention visualization
over time with (top) and without (bottom) condi-
tioning on the start position. Please enlarge Fig.

R1: Suggested papers and Video. Thank you for pointers to additional papers; we will5

include a discussion. Note that a video is available in the supplementary materials.6

R2: Stochasticity of task. Our task shares similarities to NLP problems such as text7

auto-completion in gmail. In text prediction, localization hints are provided by8

positional encoding, and the “starting position” is the last token; the attention model9

in transformers allows the model to determine the relevant local context to predict10

the next token. In drawings, on the other hand, the starting position is not fixed and11

an important degree of freedom. Hence the attention model in CoSE-Rθ allows the12

prediction to focus on a local context by conditioning on the starting position. This allows our model to perform13

effectively. To show the importance of the initial stroke positions, we trained a model without conditioning on them14

and see the CD nearly double from 0.0442 (Tab. 2) to 0.0790 (new). Fig. 16 also shows that conditioning on the start15

position helps to attend to the nearby strokes, which is increasingly important as the number of strokes gets larger.16

Table 4: Ablation on Rθ
Eθ/Dθ Rθ CD↓

CoSE-Eθ/Dθ CoSE-Rθ 0.0442
CoSE-Eθ/Dθ RNN 0.0713

Sketch-RNN 0.0679

R2: Relational model ablation. Note that predicting starting positions alone is not enough. A17

crucial component in capturing pairwise dependencies is the proposed relational model CoSE-18

Rθ. Performance degrades substantially if we replace CoSE-Rθ with an LSTM, receiving19

stroke embeddings in drawing order (Tab. 4). Sketch-RNN models the data as a sequence20

of points in contrast to our compositional approach.21

Figure 17: Pred. CD vs. # GMM.

R2: Diversity of the predictions. Given an initial position, the GMM contains a diverse set22

of predictions (Fig. 4). In Fig. 17, we ablate wrt the number of components as requested.23

The ability of our model to generate similar diversity to the test set is also visible in Sec. 9:24

mode collapse would incur a visible difference in the distribution of ground-truth (blue) vs.25

predicted (yellow) embeddings (cf, Fig.11-left). We quantify this effect by calculating the26

Earth-Mover distance (EMD) between the two embedding distributions. Fig.11, left-to-right:27

EMDs of 1797, 251 and 155 (ours). The EMD decreases as the GT and predicted distributions become more similar.28

R2: Stroke discontinuity. Note that this is emergent behavior from the dataset which contains many such examples.29

R2: Experimental design. The results summarized in Fig. 16 & Tab. 4 show that modeling of pairwise dependencies and30

predicting the next embedding are crucial. Our experiments assess different models under that assumption and we focus31

on the task of predicting the next stroke giving a partial drawing. To control high variability in the predictions across32

different generative models, we feed ground-truth starting positions in our quantitative analysis (note that the qualitative33

results rely only on the predicted starting positions). We furthermore use a stochastic metric (Eq. 5) to ensure fairness.34

Moreover, our final metric, the chamfer distance (CD) of the strokes, allows us to compare models trained with different35

objectives (e.g., next point prediction as in SketchRNN) and different representations (e.g., velocity).36

R3: Gradients. We aim to decouple the local stroke from the global drawing structure. We train via the reconstruction37

loss only, and do not back-propagate the relational model’s gradients. Doing so would force the encoder to use some38

capacity to capture global semantics. Training our best model with all gradients flowing to the encoder, the error (Recon.39

CD) increases from 0.0136 to 0.0162 and the prediction error (Pred. CD) from 0.0442 to 0.0470.40

Table 5: Ablation on embedding sizeD
Eθ/Dθ D Recon. CD ↓ Pred. CD↓ SC ↑
CoSE-Eθ/Dθ 8 0.0136 0.0442 0.361
CoSE-Eθ/Dθ 16 0.0091 0.0481 0.335
CoSE-Eθ/Dθ 32 0.0081 0.0511 0.314

seq2seq 8 0.0138 0.0540 0.276
seq2seq 16 0.0076 0.0783 0.253
seq2seq 32 0.0047 0.0848 0.261

R3: Embedding size. We compare CoSE-Eθ/Dθ and the baseline seq2seq with41

varying embedding size; see Tab. 5. We use CoSE-Rθ to evaluate the predictive42

power of the corresponding embeddings. For both models, the reconstruction43

performance improves with increasing embedding size. However, it also results in44

a less compact representation space, making the prediction task more challenging.45

R4: Novelty. We respectfully disagree with R4 on the limited novelty. We don’t46

simply replace RNNs with transformers but propose a novel task decomposition that we show to be important and47

propose a novel architecture to capture stroke dependencies in an unordered fashion. Further, we quote from the48

official reviewing guidelines that “excuse authors for not knowing all non-refereed work (e.g, ArXiv)”. Both49

references were recently published (2/3 months) on ArXiv at submission time (see below for differences).50

Figure 18: Given the first and second strokes, uncon-
ditional handwriting samples generated by our model.

R4: Baselines. Sketchformer learns sketch representations for image re-51

trieval (SBIR) using full supervision whereas our task is fully unsupervised.52

The suggested mAP% metric requires labels for evaluation. We emphasize that53

our goal is to learn the compositions of strokes into drawings, rather than the54

entire sketch, to allow for scalability wrt to sketch complexity.55

Our approach can generalize to different domains, we provide qualitative results56

on QuickDraw sketch (Fig. 5) and IamOnDB handwriting datasets (Fig. 18)57


