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Abstract

Learning depends on changes in synaptic connections deep inside the brain. In
multilayer networks, these changes are triggered by error signals fed back from the
output, generally through a stepwise inversion of the feedforward processing steps.
The gold standard for this process — backpropagation — works well in artificial
neural networks, but is biologically implausible. Several recent proposals have
emerged to address this problem, but many of these biologically-plausible schemes
are based on learning an independent set of feedback connections. This complicates
the assignment of errors to each synapse by making it dependent upon a second
learning problem, and by fitting inversions rather than guaranteeing them. Here, we
show that feedforward network transformations can be effectively inverted through
dynamics. We derive this dynamic inversion from the perspective of feedback
control, where the forward transformation is reused and dynamically interacts
with fixed or random feedback to propagate error signals during the backward
pass. Importantly, this scheme does not rely upon a second learning problem for
feedback because accurate inversion is guaranteed through the network dynamics.
We map these dynamics onto generic feedforward networks, and show that the
resulting algorithm performs well on several supervised and unsupervised datasets.
Finally, we discuss potential links between dynamic inversion and second-order
optimization. Overall, our work introduces an alternative perspective on credit
assignment in the brain, and proposes a special role for temporal dynamics and
feedback control during learning.

1 Introduction

Synaptic credit assignment refers to the difficult task of relating a motor or behavioral output of
the brain to the many neurons and synapses that produced it (Roelfsema and Holtmaat, 2018) — a
problem which must be solved in order for effective learning to occur. While credit is assigned in
artificial neural networks through the backpropagation of error gradients (Rumelhart et al., 1986;
LeCun et al., 2015), a direct mapping of this algorithm to biology leads to several characteristics
that are either in conflict with what is currently known about neural circuits, or that violate harder
physical constraints, such as the local nature of synaptic plasticity (Grossberg, 1987; Crick, 1989).

Many biologically-plausible modifications to backpropagation have been proposed over the years
(Whittington and Bogacz, 2019), with several recent studies focusing on one issue in particular,
the fact that error is fed back using an exact copy of the forward weights (the “weight transport”
or “weight symmetry” problem, Lillicrap et al. (2020)). Recently, it was discovered that random
feedback weights are sufficient to train deep networks on modest supervised learning problems
(Lillicrap et al., 2016). However, this method appears to have shortcomings in scaled-up tasks, as
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well as in convolutional and bottleneck architectures (Bartunov et al., 2018; Moskovitz et al., 2018).
Several studies have therefore aimed to identify the necessary precision of feedback (Nøkland, 2016;
Xiao et al., 2018), and others have proposed to learn separate feedback connections (Kolen and
Pollack, 1994; Bengio, 2014; Lee et al., 2015; Akrout et al., 2019; Lansdell et al., 2019). While it is
indeed plausible that feedback weights are updated alongside forward ones, these schemes complicate
credit assignment by making error backpropagation dependent upon an additional learning problem
(with uncertain accuracy), and by potentially introducing more learning phases.

One important characteristic of biological neural circuits is their dynamic nature, which has been
harnessed in many previous learning models (Hinton et al., 1995; O’Reilly, 1996; Rao and Ballard,
1999). Here, we take inspiration from this dynamical perspective, and propose a model of error
backpropagation as a feedback control problem — during the backward pass, feedback connections
are used in concert with forward connections to dynamically invert the forward transformation,
thereby enabling errors to flow backward. Importantly, this inversion works with arbitrary fixed
feedback weights, and avoids introducing a second learning problem for the feedback. In the
following, we derive this dynamic inversion, map it onto deep feedforward networks, and demonstrate
its performance on several supervised tasks, as well as an autoencoder task. Then, we discuss the
biological implications of this perspective, possible links to second-order learning, and its relation to
previous dynamic algorithms for credit assignment.

2 Deep learning in feedforward networks

2.1 Notation and forward transformation

We consider nonlinear feedforward networks withL layers. The forward pass (forward transformation;
Fig. 1a) from one layer to the next is

hl = g(al) = g(Wlhl−1), (1)

where hl ∈ Rdl is the activity of layer l, g(·) is an arbitrary element-wise nonlinearity, al ∈ Rdl is
the “pre-activation” activity of layer l, and Wl ∈ Rdl×dl−1 denotes the weight matrix from layers
l − 1 to l (including bias). The input data, network output, and supervised target are denoted x = h0,
y = hL, and t, respectively. The error is denoted e = y − t, and the loss function is L(x, t).

2.2 Error backpropagation and inversion of the forward transformation

For such networks, each layer’s weights are commonly optimized using gradient descent:

∆Wl ∝ −
∂L
∂Wl

= − ∂L
∂al

∂al
∂Wl

= −δlhT
l−1, (2)

with the backpropagated error δl = ∂L/∂al ∈ Rdl . We write δl in a generalized recursive form

δl−1 =
∂al
∂al−1

δl = Mlδl ◦ g′(al−1) = Dl−1Mlδl, (3)

where ◦ is the Hadamard (element-wise) product, Dl = diag(g′(al)), and Ml = WT
l ∈ Rdl−1×dl is

the feedback weight matrix (the source of the weight transport problem).

As mentioned above, learning can sometimes be achieved with a fixed random feedback matrix,
a strategy termed feedback alignment (FA), in part due to the observed alignment between the
forward weights and the pseudoinverse of the feedback weights during training (Lillicrap et al., 2016).
The authors of this study also describe a biologically-implausible idealization of this algorithm,
pseudobackprop (PBP), which propagates errors through the pseudoinverse of the current feedforward
weights. These results, as well as other studies proposing to learn feedback as an inverted forward
transformation (e.g., target prop, Bengio (2014); Lee et al. (2015)), motivate the perspective that the
goal of credit assignment is to invert the feedforward transformation of the network.

We summarize these variants of backpropagation as different choices for Ml in Eq. (3):

Ml =


WT

l for backpropagation (BP)
Bl for feedback alignment (FA)
W+

l for pseudobackprop (PBP)
(4)

where Bl is a fixed random matrix and W+
l is the Moore-Penrose pseudoinverse of Wl.
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Figure 1: Schematic of forward and backward passes. a: Standard forward pass from Eq. (1). b:
error propagation formulated as a feedback control problem — the difference between the forward
transformation (δ̃l) and the target error value (δl) is integrated and fed back to produce a new target
error δl−1. c: Dynamic inversion during the backward pass implements this control problem.

3 Dynamic inversion as feedback control

We now introduce a simple recurrent architecture (Fig. 1b,c) which dynamically and implicitly
performs inversions similar to those explicitly performed by pseudobackprop and target prop as
outlined above. Considering the backward pass of a linear feedforward network (Eq. (1), with
g(x) = x), the error from the l-th layer, δl, should be transformed into an error for the (l − 1)-th
layer, δl−1. From a linear feedback control perspective, we can let the l-th layer feed a control signal,
u(t) ∈ Rdl , into the (l − 1)-th layer, such that the state of this layer, δl−1, when propagated through
the feedforward transformation of the network, reproduces, as close as possible, the target error
vector, δl, of layer l. We define this as a linear control problem of the following form:

δ̇l−1(t) = −δl−1(t) + Blul(t) (5)

δ̃l(t) = Wlδl−1(t), (6)

where δl−1(t) ∈ Rdl−1 is the system state of layer l − 1, δ̃l(t) ∈ Rdl is the readout or forward
transformation of this system, ul(t) ∈ Rdl is the control signal fed back from layer l, and Bl ∈
Rdl−1×dl is a matrix of arbitrary feedback weights. We define a fixed, target error value for the
readout, δl, and a separate controller error, el(t) = δ̃l(t)− δl.

3.1 Leaky integral control

A standard approach in designing a controller is to use a proportional-integral-derivative (PID)
formulation (Åström and Murray, 2010) that acts on the controller error el(t), with dynamics

u̇l(t) = Kpėl(t) + Kiel(t) + Kdël(t) + Kuul(t), (7)

where Kp, Ki, and Kd are coefficient matrices for the proportional, integral, and derivative compo-
nents, respectively, along with an additional leak component with coefficients Ku. For mathematical
simplicity and biological plausibility, we only consider the integral and leak components (see Discus-
sion for interpretation of other terms), setting their coefficients to Ki = Il, and Ku = −αIl, where
Il is the identity matrix of size dl. These components have a direct interpretation in rate networks
(Dayan and Abbott, 2001), and have been used in other neuroscience and biological contexts (Miller
and Wang, 2006; Somvanshi et al., 2015). We thus obtain the leaky integral-only controller

u̇l(t) = −αul(t) + el(t) = −αul(t) + Wlδl−1(t)− δl, (8)

which acts on Eq. (5). For a fixed target δl, this controller has the steady-state equality

Wlδl−1 = δl + αul, (9)

which suggests that the steady state of δl−1 approximates the target δl through the forward transfor-
mation (for small α). For α > 0, we use Eq. (5) in the steady-state to write δl−1 as

δl−1 = Bl(WlBl − αIl)−1δl = (BlWl − αIl−1)−1Blδl. (10)

When α = 0, only one of these equalities will hold, depending on the dimensionalities dl and dl−1.
For expository purposes, we also write the solution as a function of the control signal ul:

δl−1 = MDI
l (δl + αul), (11)
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where

MDI
l =


Bl(WlBl)

−1 for dl < dl−1
W+

l for dl > dl−1, α > 0

W−1
l for dl = dl−1,

(12)

and W+
l is the Moore-Penrose pseudoinverse of the forward matrix Wl. We thus see that this

system dynamically inverts the forward transformation of the network (for small α; see Suppl. Fig. 1
for plot of accuracy as a function of α), implicitly solving the linear system Wlδl−1 = δl. For
dl ≥ dl−1 (expanding layer), Wl has a well-defined left pseudoinverse (or inverse, for dl = dl−1),
and so the inversion follows directly from Eq. (9). In contrast, for dl < dl−1 (contracting layer),
the system may have infinite solutions. The dynamics instead solves the fully-determined system
(WlBl − αI)ul = δl, which is then projected through Bl to obtain δl−1 (i.e., one solution to the
desired linear system, constrained by Bl).

3.2 Linear stability and and initialization

Dynamic inversion will only be useful if it is stable and fast. Integral-only control may exhibit
substantial transient oscillations, which can be mitigated if the system dynamics are fast compared to
the controller. Assuming this separation of timescales, we can study the controller dynamics from Eq.
(8) when the system is at its steady state (δl−1 = Blul from Eq. (5)):

u̇l(t) = (WlBl − αIl)ul(t)− δl. (13)
Linear stability thus depends on the eigenvalues of (WlBl−αI). Generally, the stability of interacting
neural populations (and the eigenvalues of arbitrary matrix products), is an open question and we
do not aim to solve it here. We instead propose that clever initialization of Bl will provide stability
throughout training (in addition to a non-zero leak, α). One easy way to ensure this is to initialize
Bl = −WT

l (0), which makes the matrix product negative semi-definite (zero index indicates the
start of training). From Eq. (12), this also means that for dl < dl−1, dynamic inversion will use the
Moore-Penrose pseudoinverse at the start of training. Note that this initialization does not imply a
correspondence between the forward and backward weights throughout training, as they may become
unaligned when the forward weights are updated. In the case where dl > dl−1, the matrix product is
singular and requires α > 0 (but see Supplementary Materials for an alternative architecture).

3.3 Nonlinearities

We now return to the general nonlinear case. Both nonlinear control and nonlinear inverse problems
are active areas of research with solutions tailored to particular applications (Slotine et al., 1991;
Mueller and Siltanen, 2012), and several approaches may be suitable here. We discuss two possibili-
ties. First, nonlinearities may be directly incorporated into the control problem through the readout
δ̃(t) in Eq. (6), leading to a nonlinear controller with dynamics

u̇l(t) = −αul(t) + Wlg(δl−1(t))− δl, (14)
where g(·) is an arbitrary nonlinearity. We keep the feedback in Eq. (5) linear for simplicity. Compared
to Eq. (1), the order of the matrix product and nonlinearity in (14) is reversed to obtain an error with
respect to the pre-activation variables as in backpropagation. The steady-state for the controller is

Wlg(δl−1) = δl + αul. (15)
Deriving an explicit relationship between δl−1 and δl is tricky here, especially with common transfer
functions like tanh and ReLU, which do not have well-defined inverses (at least numerically). Again
for expository purposes, we use somewhat sloppy notation and write an implicit, non-unique inverse
g−1(·), for which g−1(g(δl−1)) ≈ δl−1 and g(g−1(δl)) ≈ δl. We can then write δl−1 recursively as

δl−1 = g−1(MDI
l (δl + αul)), (16)

with MDI
l from Eq. (12). Stability is no longer guaranteed, but in practice we find that linear stability

analysis still provides a decent indication of stability in the general case.

An alternative approach for handling nonlinearities is to keep dynamic inversion linear, and then
apply an element-wise multiplication by g′(al−1) either during or after convergence (following BP,
Eq. (3)). From Eqs. (10) and (11), this makes the full dynamic inversion error per layer

δl−1 = Bl(WlBl − αIl)−1δl ◦ g′(al−1) = (BlWl − αIl−1)−1Blδl ◦ g′(al−1), (17)
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Figure 2: Schematic of forward (left) and backward (right) passes for chained dynamic inversion. a:
Sequential dynamic inversion (right), in which the error is inverted through one layer at a time, with
each layer first receiving control signals from the layer above, and then acting as the controller for the
layer below. B: Repeat layer dynamic inversion, enabling each layer to both give and receive control,
so that the full backward pass converges at once. C: Single loop dynamic inversion (SLDI) features
feedback from the output layer to the first hidden layer, which effectively inverts each hidden layer.

or equivalently

δl−1 = MDI
l (δl + αul) ◦ g′(al−1). (18)

In practice we found this second option to have better performance, so we primarily use this method
for the experiments presented below (except for SLDI, see next section).

4 Dynamic inversion of deep feedforward networks

Backpropagation in feedforward networks is a recursive, layer-wise process. However, when chaining
together multiple dynamic inversions, each hidden layer must simultaneously serve as the recipient
of control from the layer above, as well as the controller for the layer below. We propose three
architectures which solve this problem in different ways, illustrated in Fig. 2.

4.1 Architectures for chained dynamic inversion

The most direct way of mapping multiple dynamic inversions onto a feedforward network is to
prescribe that each inversion happens sequentially — from the output to the first hidden layer — with
only one pair of layers dynamically interacting at a time (sequential dynamic inversion, Fig. 2a). Such
a scheme begins by feeding the output error, δL, into the output layer, which provides control to the
last hidden layer until convergence to the target δL−1. Next, this target is held fixed and is re-passed
as input back into layer L− 1, which now acts as a controller for layer L− 2, to obtain the target
δL−2. This is repeated until the first hidden layer converges to its target, δ1. This scheme requires a
backward pass with multiple steps for networks with more than one hidden layer (L− 1 steps).

The fact that each hidden layer functions as both a recipient of control, and a controller itself,
motivates the second architecture, in which the hidden layers have two separate populations, each
serving one of these roles (repeat layer dynamic inversion, Fig. 2b). For the forward pass to remain
unchanged, these populations (hA

l and hB
l ) have an identity transformation between them. During

the backward pass, each controller receives the target value δl as it settles, speeding up convergence.
The steady state errors will be equivalent to the sequential case, but only a single backward pass is
needed. Due to the equivalence of this scheme to the first, we do not explicitly simulate it here.

An alternative approach to chaining multiple dynamic inversion control problems together is to turn
them into a single problem (single loop dynamic inversion, SLDI, Fig. 2c). In this scheme, the output
layer acts as the controller for the activity of the first hidden layer, and the forward transformation
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encompasses all layers in between (see Supplementary Materials for a detailed description). While in
some special cases this scheme is equivalent to the ones above, in general the dynamics will converge
to a different solution. We test the single loop backward pass on one experiment below (nonlinear
regression), but mainly focus on the sequential method.

4.2 Update rules

We define the backpropagated error signal δl for dynamic inversion (DI) as the steady state of the
linearized feedback control dynamics from Eq. (17), and weight updates as in Eq. (2). Biases are
not included in the dynamics of the backward pass, but are updated with the layer-wise error signals
similar to standard backprop. As a point of comparison, we also implement a non-dynamic inversion
(NDI), in which the exact steady state from Eq. (17) is used in lieu of simulating temporal dynamics.
Therefore, correspondence between DI and NDI updates is indicative of successful convergence of
the dynamics. In contrast, single-loop dynamic inversion (SLDI) utilizes a nonlinear controller as in
Eq. (14), then weight updates as in Eq. (2) (Supplementary Materials).

4.3 Relation to second-order learning

The inversion of the forward weights in DI suggests a resemblance to second-order learning (Martens,
2014; Lillicrap et al., 2016). Though a full theoretical study is out of the scope of this paper, in
the Supplementary Materials, we postulate a link to layer-wise Gauss-Newton optimization (Botev
et al., 2017), and describe a simple example. Interestingly, recent work linking target propagation
to Gauss-Newton optimization shows that the dynamic inversion of targets rather than errors may
produce a more coherent connection to second-order learning (Meulemans et al., 2020; Bengio, 2020).
Specifically, Meulemans et al. (2020) propose that a direct feedback approach similar to a single-loop
architecture applied to each hidden layer (Fig. 2c) may be most effective (see Discussion).

5 Experiments

We tested dynamic inversion (DI) and non-dynamic inversion (NDI) against backpropagation (BP),
feedback alignment (FA), and pseudobackprop (PBP) on four modest supervised and unsupervised
learning tasks — linear regression, nonlinear regression, MNIST classification, and MNIST au-
toencoding. We varied the leak values (α) for DI and NDI, as well as the feedback initializations
(“Tr-Init”, Bl = −WT

l ; “R-Init”, random stable Bl) for DI, NDI, and FA. To impose stability for
random initialization, we optimized the feedback matrix Bl using smoothed spectral abscissa (SSA)
optimization (Vanbiervliet et al., 2009; Hennequin et al., 2014) at the start of training (Supplementary
Materials). We note that DI remained stable throughout training for all experiments, suggesting that
initialization is sufficient to ensure stability. DI was simulated numerically using 1000 Euler steps
with dt = 0.5.

5.1 Linear and nonlinear function approximation

Following Lillicrap et al. (2016), we tested the algorithms on a simple linear regression task with a
two-layer network (dim. 30-20-10). Training was done with a fixed learning rate (Fig. 3a), or with
fixed norm weight updates (Fig. 3b) in order to probe the update directions that each algorithm finds.
All algorithms were able to solve this simple task with ease, with DI, NDI, and PBP converging
faster than BP and FA in the fixed norm case, suggesting they find better update directions. Dynamic
inversion remained stable throughout training for all examples shown, with updates well-aligned
to the non-dynamic version (Fig. 3c,d). Furthermore, the alignment between the feedback and the
negative transpose of the forward weights settled to around 45 degrees for all DI and NDI models,
which also produced alignment with the PBP updates (Fig. 3e,f).

Next, we tested performance on a small nonlinear regression task with a three-layer network (dim.
30-20-10-10, tanh nonlinearities) also following Lillicrap et al. (2016). All inversion algorithms
finished with equal or better performance compared to BP and FA (Fig. 3g), but often with slower
convergence, which was unexpected considering the potential link to second-order optimization
(see Discussion). DI dynamics were stable throughout training, remaining nearly constant (Fig. 3h).
Furthermore, DI again closely followed NDI updates (Fig. 3i), though error curves between the two
drifted apart during learning (Fig. 3g), indicating that a small amount of variability in convergence can
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Figure 3: Results for linear (30-20-10) and nonlinear (30-20-10-10) regression tasks for BP, FA, PBP,
and three realizations of DI, NDI, and SLDI (only for nonlinear) with different weight initialization
and leak values. Legend below panel g. Learning rate =10−2 for all algorithms. a: Normalized mean
squared error (NMSE) for linear regression. b: NMSE for linear regression with fixed-norm weight
updates. c: Stability of DI as measured by the maximum real eigenvalues of the system dynamics. d:
Angle between the backpropagated error vectors to the hidden layer (δ1) for NDI vs DI. e: Angle
between feedback weights and negative transpose of forward weights (shown for DI and NDI). f:
Angle between backpropagated error vectors for DI and PBP. g-j: Same as a,c,d, e but for nonlinear
regression. f: Angle between the backpropagated error vectors to the hidden layer for NDI vs SLDI.
Dashed lines refer to output layer, and solid linear refer to middle layer in h-k.

lead to different learning trajectories. Alignment of feedback B varied with the layer and algorithm
(Fig. 3j) — some layers settled to ~45 degrees, but others remained close to zero — this is intriguing,
but may be due to the simplicity of the problem. Finally, we also simulated single-loop dynamic
inversion (SLDI). The alignment between SLDI and NDI was small (~45 degrees or less), but larger
than DI, supporting the claim that it converges to similar, but not necessarily equivalent steady states
(Fig. 3k).

5.2 MNIST classification and autoencoder

We next tested dynamic inversion on the MNIST handwritten digit dataset, where we use the standard
training and test datasets (LeCun et al., 1998), with a two-layer architecture (dim. 784-1000-10 as
in Lillicrap et al. (2016)). All algorithms showed decent performance after 10 epochs (Fig. 4a), but
with DI flattening out at a higher test error (BP, 2.2%; FA, 1.8%; PBP, all NDI, DI ~2.8%), again
suggesting slower convergence (Discussion). We speculate that a more thorough exploration of
hyperparameters, such as changing the architecture or using mini-batches may help here.

Finally, we trained a bottleneck autoencoder network on the MNIST dataset (dim. 784-500-250-
30-250-500-784; nonlinearities tanh-tanh-linear-tanh-tanh-linear, a reduced version of Hinton and
Salakhutdinov (2006)) with mini-batch training (100 examples per batch). Notably, first-order
optimization algorithms have trouble dealing with the “pathological curvature” of such problems and
often have very slow learning (Martens, 2010) (especially FA, Lansdell et al. (2019)). We trained the
algorithms with random uniform weight initializations, similar to the previous experiments, as well
as with random orthogonal initializations, which has been shown to speed up learning (Saxe et al.,
2013). We found that BP only learns successfully with orthogonal weight initialization, whereas PBP,
NDI, and DI perform decently in either case, further suggesting they use second-order information.
Notably, PBP, NDI, and DI performance is slower with orthogonal initialization, where second-order
information is not useful (but this might be mitigated by having non-orthogonal feedback weights).
Furthermore, FA performed poorly in both cases, and regardless of the type of feedback initialization.
This provides evidence that dynamic inversion can be superior to random feedback in some tasks, and

7



a

No. Examples (x103)
0 300 600

Te
st

 E
rro

r (
%

)

1

10

BP FA R-Init
FA Tr-Init

NDI Tr-Init, α=0
R-Init, α=10-2NDI

c

d

input

output

BP, orthogonal init. DI, uniform init.

0
1
2
3
4

5
6
7
8
9

PBP

DI
DI

Tr
ai

ni
ng

 E
rro

r

0.04

0.06

0.08

0.10

0.12

No. Examples (x103)
0 500 1000 1500

NDI Tr-Init, α=10-3

Tr-Init, α=10-2NDI

uniform init.
orthogonal init.

DI
DI

b
100

Figure 4: Results for MNIST classification (784-1000-10 architecture) and autoencoding (784-500-
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Training error of MNIST autoencoding over 25 epochs of mini-batch training (learning rate = 10−6

for all algorithms). c,d: Examples of input and output digits and a 2D t-SNE representation of the
30-dim. latent space for BP (orthogonal init.) and DI (uniform init.).

that weight initialization alone is not responsible for this benefit. BP with orthogonal initialization
and DI with random initialization result in similar performance (Fig. 4c,d).

6 Discussion

6.1 Related work

Several previous studies have proposed biologically-plausible solutions to credit assignment involving
dynamics of some kind, but most are conceptually distinct from our framework — e.g., learning
using differences in activity over time or phase (contrastive Hebbian learning, O’Reilly (1996);
Scellier and Bengio (2017)), using explicit error-encoding neurons (Whittington and Bogacz, 2017),
or incorporating dendritic compartments (Guerguiev et al., 2017; Sacramento et al., 2018; Payeur
et al., 2020). Furthermore, the aim of most of these models is to approximate error gradients, whereas
dynamic inversion may relate more to second-order optimization. Most relevant to our work is a
recent paper which also proposes to re-use forward weights in order to propagate errors through a
feedback loop (Kohan et al., 2018). However, the authors do not formulate this as an inversion of the
forward pass, and use a contrastive learning scheme that differs substantially from what we do here.

Dynamic inversion offers a novel solution to the weight transport problem, of which other solutions
exist, such as using learned feedback weights (Kolen and Pollack, 1994; Akrout et al., 2019; Lansdell
et al., 2019). However, in contrast to previous approaches, we frame credit assignment as a control
problem. From this perspective, dynamic inversion can be seen as feedback control, whereas
backpropagation and learned feedback are examples of feed-forward or predictive control (Jordan,
1996). We do not claim that dynamic inversion is superior or more plausible than learning feedback
(though each may have advantages), and a thorough comparison of these different solutions would be
merited. Furthermore, dynamic inversion does not address other implausibilities of backpropagation,
such as the use of separate learning phases and signed errors (Lillicrap et al., 2020). In principle,
dynamic inversion may be combined with insights from other models to address these other problems.
For example, target propagation also aims to learn (non-dynamic) inversions (Bengio, 2014; Lee
et al., 2015), making it conceptually similar — in principle dynamic inversion can also be used to
propagate targets, which may afford additional biological plausibility or, as mentioned above, a more
direct relationship to second-order optimization (Meulemans et al., 2020; Bengio, 2020).

6.2 Biological implications

Unlike many other biologically-plausible algorithms for credit assignment, dynamic inversion does
not require precise feedback weights. This may be an important distinction, as it not only relaxes
the assumptions on feedback wiring, but could also allow for feedback to be used concurrently for
other roles, such as attention and prediction (Gilbert and Li, 2013), though we do not verify this here.
The proposed architectures for chained dynamic inversion (Fig. 2) suggest different ways of using
feedback for learning, and even leaves the possibility for direct feedback to much lower areas which
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is known to exist in the brain (Felleman and Van Essen, 1991). Additionally, our work depends upon
the stability and control of recurrent dynamics between interacting populations (or brain areas), which
has received recent interest in neuroscience (Joglekar et al., 2018). Stability and fast convergence
of dynamic inversion requires slow control (Eq. (13)), implying that higher-order areas should be
slower than the lower areas they control. Indeed, activity is known to slow down as it moves up the
processing hierarchy (Murray et al., 2014), which fits with this picture.

6.3 Limitations and future work

We see two main limitations of dynamic inversion as a model for credit assignment in the brain.
First, DI requires stable dynamics and time to converge. Both the maintenance of stability during
learning (Keck et al., 2017) and “initialization” of weights during brain development (Zador, 2019) are
hypothesized to be important in biological networks, but many open questions remain. Furthermore,
fast convergence would be easier to achieve with full PID control, as in Eq. (7) (Åström and Murray,
2010). Spike-based representations could help here since they effectively add a derivative component
to the signal (Eliasmith and Anderson, 2004; Boerlin et al., 2013; Abbott et al., 2016).

Second, due to the relationship of our scheme with second-order learning, dynamic inversion could
share some of the same problems (Martens, 2014; Kunstner et al., 2019). This may include overly
small, “conservative” updates (Martens, 2014) or attraction to saddle points (Dauphin et al., 2014),
thus helping to explain the slow convergence observed here. Furthermore, as shown in Meulemans
et al. (2020), utilizing approximate inversions may lead to update directions that are primarily in the
null space of the network output, which could be a problem in using DI for contracting layers. While
our method avoids the cost of explicitly calculating and inverting a Hessian or Gauss-Newton matrix,
in common with standard second-order methods (Pearlmutter, 1994; Schraudolph, 2002; Martens,
2010), its performance will be enhanced if the control dynamics can be designed to better condition
the inverse computations.

The true test of dynamic inversion will be whether or not it can be successfully scaled up to larger
tasks (Bartunov et al., 2018; Xiao et al., 2018). Even so, it may be useful in other contexts where it
is necessary to invert a computation, such as motor control (Kawato, 1990) and sensory perception
(Pizlo, 2001). As an example, it was pointed out in a recent paper (Vértes and Sahani, 2019) that
the successor representation — used in reinforcement learning and requiring an inverse to calculate
explicitly — can be achieved dynamically in a similar way to what we propose here.

Broader Impact

The broader impacts of this work can be divided into two parts. First, there is the impact of the
dynamic inversion algorithm on applications in machine learning and biological learning. Due to the
costly nature of simulating such an inversion, we do not foresee its widespread use in training large-
scale deep networks for applications. However, this study could have an impact on our understanding
of learning in the brain at a very basic level, one day leading to implications for neurological disease,
and also more neuroscience-related applications such as brain-machine interfaces. We foresee such
results in the neuroscience and medical fields as primarily beneficial — any new insights into how
the brain learns have the possibility to help those with disabilities or disorders.

Second, there is the broader impact of dynamic inversion as a general algorithm for inverting
computations. Due to the widespread use of inverse computations in many domains and applications, it
may be the case that the insights provided in this paper have an effect. For example, the development of
better inverse models in robots could lead to substantial improvement for robotic applications, which
would have a tremendous effect on society, likely both for better and worse. Overall, however, the
work presented here is at the “basic research” level, and very far removed from specific applications.
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