A Learning Multi-Agent Communication through Structured Attentive
Reasoning: Appendix

A.1 Policy Gradient Algorithms

Policy gradient (PG) methods are the popular choice for a variety of reinforcement learning (RL)
tasks. In the PG framework, the parameters 6 of the policy are directly adjusted to maximize the
objective J(0) = Espr o, [R], by taking steps in the direction of VyJ(§), where p™, is the state
distribution, s is the sampled state and a is the action sampled from the stochastic policy. Through
learning a value function for the state-action pair, Q™ (s, a), which estimates how good an optimal
action a is for an agent in state s, the policy gradient is then written as, [13]:

VoJ(0) = Esnpr anmy [Vo logma(als)Q" (s, a)], ©)

Several variations of PG have been developed, primarily focused on techniques for estimating Q™. For
example, the REINFORCE algorithm [29] uses a rather simplistic method of sample return calculated
as a cumulative expected reward for an episode with a discount factor y, Rt = Z?:t vi~tr;. When
temporal-difference learning [30] is used, the learned function Q™ (s, a) is described as the critic,
which leads to several different actor-critic algorithms [30], [31], where the actor could be a stochastic
Ty or deterministic policy pg for predicting actions.

A.1.1 Partially Observable Markov Decision Processes

We consider a team of N agents and model it as a cooperative multi-agent extension of a partially
observable Markov decision process (POMDP) [32]. We characterize this POMDP by the set
of state values, S, describing all the possible configurations of the agents in the environment,
control actions { A1, As, ..., Ay}, where each agent ¢ performs an action .A;, and set of observations
{01,004, ...,On}, where each agent i’s local observation, O; is not shared globally. Actions are
selected through a stochastic policy mp, : O; x A; — [0,1] or through a deterministic policy
po, : O; — A; [33] with policy parameters 6;, and a new state is generated by the environment
according to the transition function 7 : S x A; x ... x Ay — S'. At every step, the environment
generates a reward, r; : S " x A; — R, for each agent 7 and a new local observation o; : S O;.
The goal is to learn a policy such that each agent maximizes the total expected return R; = ZtT:O yirt
where 7' is the time horizon and -y is the discount factor.

A.1.2 Deterministic Policy Gradient Algorithms

In the framework of deterministic policy gradient (DPG), the parameters 6 of the policy, g, are
updated such that the objective J(0) = Egpr a~p, [R(S, a)] and the policy gradient, (see section
A.1), is given by:

VGJ(G) = ESN'D[VQILQ(G‘S)VGQ“(S, a)\azue(s)] (10)

DDPG is an adaptation of DPG where the policy g and critic Q* are approximated as neural networks.
DDPG is an off-policy method, where experience replay buffers, D, are used to sample system
trajectories which are collected throughout the training process. These samples are then used to
calculate gradients for the policy and critic networks to stabilize training. In addition, DDPG makes
use of a target network, similar to Deep Q-Networks (DQN) [34], such that the parameters of the
primary network are updated every few steps, reducing the variance in learning. Recent work [25]
proposes a multi-agent extension to the DDPG algorithm, so-called MADDPG, adapted through the
use of centralized learning and decentralized execution. Each agent’s policy is instantiated similar
to DDPG, as py, (a;|0;) conditioned on its local observation o;. The major underlying difference

is that the critic is centralized such that it estimates the joint action-value Q(az, ai,...,an), where
x = (01,02,...,0n). We operate under this scheme of centralized learning and decentralized
execution of MADDPG, [25], as the critics are not needed during the execution phase.

A.1.3 Trajectory-TD3 Updates

We extend the Twin Delayed Deep Deterministic Policy Gradient Algorithm for Markov Decision
Processes, [12], to multi-agent systems and recurrent networks in partially observable domains
(section A.1.1). We incorporate the centralized learning-decentralized execution framework from

10

[25], and the recurrent actor-critic from R-MADDPG [26], to learn the policy parameters for each
agent. The R-MADDPG framework uses recurrent actor-critic models for training a multi-agent
system, that can be seen as MADDPG with recurrent networks. However, the R-MADDPG framework
fails to exploit the recurrent characteristics of their network during training time as they train using
samples of a single time-step instead of employing a training mechanism through trajectories. The
core idea of our proposed Multi-Agent Trajectory-TD3 (M-T2D3) updates are derived from the
recurrent-DPG (RDPG) algorithm [27], which exploits trajectory based sampling and update rules for
the actor and critic in a single agent case, and build upon it by incorporating the dual critic framework
of TD3. We use the minimum target-Q values of both the critics across each time-step to compute the
loss function for the critic j updates for each agent 7, given as:

1 w y .
— E : ¥i (.QJt 1 .2 N i\2
’C(wﬂ) - NT Ew,az‘ﬂ’,w’ND [(Q] 7(Ct 3 Xty Q5 gy oeny Ay) _yt)] (11)
¢
’
i . By, o Qi 1 11 12 IN
Yy _rt—"_’yjIE%%Qj (Ct) Xy Qg 5 Ay oeey Ay)
where, T is the length of trajectory sampled, x; = (o}!,0/2,...,0}") are the observations
when actions {a},a?,...,a} } are performed, the experience replay buffer, D, contains the tuples
1 Q2 . .
(X¢, X}, My, a1, ag, ...an, Ty, 2t 9 ¢;), where ry is {ri, 72, ...,7N} and, my, ¢, are the lists of
QL _Q2i

recurrent hidden states of the communication memories and network. ¢, ", ¢~ are the recurrent
hidden states for the dual critics for each agent i. The target Q-value of agent i is defined as . We
perform trajectory roll outs [35] for the recurrent hidden states, where only the first hidden state of
the sampled trajectory, %, cg"?] * and ¢! and communication message my,for each agent is used during
both the actor and critic updates. The goal of the loss function, £(1;;) is to minimize the expectation
of the difference between the current and the target action-state function. The gradient of the resulting
policy, with communication, to maximize the expectation of the rewards, J(6;) = E[R;], can be
written as:

1
VQZJ(IJ/(%) = ﬁ Z]Ex,a,miND |:v9,iu97; (Cta O¢, mt) X
¢ (12)

Mo 1 1 N
V., Q] (c,f2 L Xp, Ay, A)

a;‘:pgi (ct,ot,mt)}

A.1.4 Importance Sampling

We use a common replay buffer to store trajectories from all the parallel environments. However, each
agent maintains a separate priority buffer to store and update its individual trajectory priority. We use
arecurrent Prioritized Replay Buffer, that computes the importance of the stored trajectories as given
in Recurrent Replay Distributed DQN (R2D2), [35]. Our replay prioritization is an extension of R2D2,
where we use the minimum of temporal-difference (TD) errors d; for updating the prioritization
values of each agent. The prioritization for each agent ¢ for each trajectory sampled is then given by

p' = nmaxd; + (1 —n)é,

5216 :jlgile;’%i (c?ji,xt,ai,af,...,aiv)—yf (13)
— 1 .
5, = TZ&;
t

A.1.5 Training M-T2D3 for Individualized Rewards in Centralized Training

Due to the nature of centralized training, each agent is conditioned on the global state-action pair.
For critics that share parameters between agents, each critic would receive a different reward for the
same state-action pair, under which the agents fail to learn a policy. This necessitates the need to
create distinct critics for each agent, that do not share all parameters. Although, in the interest of
faster learning, it is possible to allow the initial encoders to share parameters, while leaving only the
last layers as distinct parameters. This design enables the agents to be trained with different rewards
for the same state-action sets. We maintain separate model instances for each agent’s network,
where the network only outputs the action of the individual agent. For the case of multi-agent

11

communication, all agents keep a copy of the other cooperating agents’ encoders that are required for
the communication process. Parameter sharing is used for each team of cooperating agents for actor
network. Furthermore, as the agents maintain their own instances of networks, we can easily separate
the information shared between competing agents, by not modeling the network of the competing
agents within the agents graph. This is in contrast to the IC3Net framework of Individualized Reward
Independent Controller (IRIC), where for centralized training, agents are required to maintain a
copy of all cooperating and competing agents. The IC3Net framework essentially allows agents
to leak information to other competing agents, and requires a gating function to control the leak
of information. We adopt this framework for all mixed cooperative-competitive environments of
Predator-Prey and Physical Deception for training SARNet and all the baseline architectures.

Results We perform experiments on the cooperative navigation task with 6 SARNet agents using
the following training methodologies,

1. R-MADDPG with single time-step transitions sampled from the replay buffer as described
in [26].

2. TD3 with dual critics [12] extended to R-MADDPG with single time-step transitions.
3. R-MADDPG with RDPG [27] with updates made with trajectories of length 10 time-steps.

4. Multi-agent Trajectory-Twin Deep Deterministic Policy Gradient (M-T2D3), that is R-
MADDPG with RDPG and dual critics of TD3, updated with sampled trajectories of length
10.

5. M-T2D3 with individualized importance sampling for each agent as described in Appendix
A.1.3.

We observe a large performance improvement between R-MADDPG [12] and R-MADDPG with TD3.
We note that the hidden states of the recurrent units that are sampled are from a trajectory generated
by an old policy which introduces staleness in the updates. Since SARNet and other communication
frameworks need to maintain a copy of each communicating agent’s encoder, and consequently their
hidden states, the issue of staleness during policy updates is further exacerbated as the network relies
on all the hidden states of the communicating agent. Introducing a dual critic architecture with TD3
reduces the exploitation of the TD-errors and consequently a reduction in the variance of the updates.
However, we still observe that the agents do not learn to exploit the dependencies between time-steps
through the recurrent architecture, as both R-MADDPG and R-MADDPG with TD3 are trained with
single time steps.

As we move the training to R-MADDPG with the trajectory based-RDPG [27], we see a drastic
improvement in the performance of the network, as the recurrent network learns to utilize past
information to significantly reduce the collisions using Backpropogation Through Time (BPTT).
Extending the trajectory based updates to include TD3, we note an interesting phenomenon, where
we observe that the training policy generates a conservative policy for the agents, by prioritizing the
reduction in collisions at the expense of a larger average distance to the landmarks.

The use of Importance Sampling (IS), Appendix A.1.4, allows the policy to be updated through richer
samples to learn effectively. We note a huge performance jump especially due to the fact that the
environment is partially observable and the rewards for capturing the landmarks are sparse, due to
additional constraints on avoiding collision between agents. Moreover as the number of training
steps are limited due to time and hardware constraints, we observe that IS plays an important role in
achieving a better policy when the training time is constrained.

A.2 Training Details

Individualized Rewards for Baselines Additionally, following the results of IC3Net [15], we
adapt the framework of individualized rewards for training all the architectures. For the traffic
junction task, since all agents cooperate with each other, we model the training graph with all the
agents with shared parameters, and a single action and value head for each agent. Additionally, for
mixed cooperative-competitive tasks such as Predatory-Prey and Physical Deception, we use the
off-policy method of M-T2D3 for SARNet and the baselines, and model the agents according to our
customised graph, refer Appendix A.1.5 to enable training through individualized rewards.

12

Table 3: Experimental results for partially observable cooperative navigation with 6 SARNet agents
trained with different variations of DDPG.

N=L=6

Policy Reward Coll. Avg. dist.

SARNET w/ R-MADDPG -56.394+0.69 55.74+ 0656 0.64440.03

SARNET w/ R-MADDPG + TD3 -27.324+222 26.54+2.15 0.774+ 0.07
SARNET w/ R-MADDPG + RDPG -18.07+0.14 17.444 0.08 0.62+ 0.07
SARNET w/ M-T2D3 -17.52+ 0285 16.65+ 0.31 0.85+0.09
SARNET w/ M-T2D3 + IS -12.39+ 1.0 11.1740.96 0.77+0.52

Training Policy We use batch synchronous method for off-policy gradient methods [36, 37] with
M-T2D3 and individualized rewards for SARNet and all the baselines for the continuous action
space task of Cooperative Navigation, Predator-Prey, and Physical Deception, Table 5. We train
and benchmark all of our experiments for 3 random seeds. Benchmark results were reported after
80, 000 steps with 3 random seeds generated through the system clock. Our models were trained
on an AMD Threadripper 3970x and Nvidia RTX 2080Ti, with Tensorflow 1.14. Training times
for Traffic Junction were less than 12 hours, while for MPE environments the models were trained
between 6 hours to 72 hours that scaled with the number of agents.

For the discrete action space task of Traffic-Junction we use REINFORCE to train for 3000 episodes,
for SARNet and all baselines. Similar to the continuous action space tasks, all architectures shared
similar network sizes, and hyperparameters described in Table 4, and A.2.

Table 4: Hyperparameters and Network Architecture

Parameter Details

LSTM-128 Units
MLP-128 Units
GRU-256 Units
MLP-128 Units
Linear-32 Units
Linear-32 Units

Policy Encoder

Obs Pre Encoder
Critic Encoder
Action Encoder
Key, Query Encoder
Value Encoder

Optimizer ADAM
Actor Learning Rate 1073

Critic Learning Rate 1073

Actor Polyak (7, N agents) 0.05/N
Critic Polyak (7) 0.05
Discount Factor () 0.96

BPTT Length (T)) 10 Steps
Buffer Size 10° (10 steps each)
Critic Update Interval 5 Steps
Actor Update Interval 10 Steps
Parallel Environments 200 (16 for REINFORCE)
« (priority) 0.8

B8 dS) 0.6

Total Training Steps (M-T2D3) 5 x 10°
REINFORCE # Epoch’s 3000
Memory Dropout 0.85

Read Dropout 0.85

Write Dropout 1.0

Output Dropout 0.85

Critic and Policy Regularization 1073 MSE

Exploration Noise Gumbel-Softmax

Network Design for SARNet and Baselines We believe that architectures should be robust to
different training methodologies, and hence we do not perform an extensive hyperparameter search
for learning rate and other hyperparameters for SARNet or other baselines. Instead we use the most

13

Table 5: Comparison of various methods and their training methodology for continuous action space
environments, not including Traffic Junction.

Policy Policy Update Communication Num. of Critics Ind. Reward
SARNet M-T2D3 Scaled Attention 2N v
TarMAC M-T2D3 Attention 2N v
CommNet M-T2D3 Average 2N v
IC3Net M-T2D3 Scaled Average 2N v
MADDPG M-T2D3 None 2N v

common and widely used hyperparameters and model all the recurrent encoders as an LSTM unit.
The authors of IC3Net propose their architecture with an LSTM, and additionally compare that
to CommNet with an LSTM unit. TarMAC uses a Gated Recurrent Unit (GRU) in their original
implementation and compare it to a CommNet modeled with a Vanilla RNN. Following IC3Net, we
model all the communicating and non-communicating architectures with an LSTM unit, to reduce
variance in results that might occur due to different choices of recurrent units.

14

A.3 Structured Attentive Reasoning Network Algorithm

Algorithm 1 Algorithm: SARNet with MT2D3

»

PN AW

ke ko ok
R AN O Tl SR vl

[\
—_

)
bl

RN
AR

27:
28:
29:
30:
31:
32:

33:

)
<

)

Initialize actors (pg,, - - ., fo,) and critics networks (qu’l, '2“, cee Q%N , Q;/’N)
Initialize ~actor target networks (mg, ,...,pp,) and critic target
@7, Q% ..., QY. Q8™
Initialize common replay buffer D and separate importance buffer for each agent
for episode = 1 to E do
Initialize a random process A for exploration
Initialize the memory m; for each agent
for t = 1 to max episode length do
for agent:=1to N do
Receive observation o;
Generate query, key, value, encoding q;, k;, v;, €;, Eq. (1)
Receive K,V from all agents
Compute the question vector a;, Eq. (4)
Process the new information m;, Eq. (7)
Store the new information in memory, m;
Select action aj, Eq. (8)
end for
Setx = (01,...,0n) and ® = (my, ..., my)

networks

Setc = (ey, ..., cn) where ¢ is the hidden state of all recurrent encoders of agent ¢
Execute actions a = (aq, . .., ay), observe rewards r and next observations x’

Store (x,x’, a, ®, c, r) in replay buffer D
end for
for agenti=1to N do

Sample a random minibatch of © of Z trajectories of length T (x,x’, a, ®, ¢, r) from D

i (c?ﬁ o2 /N)

’
. . . [Ls

7 (3 /
Sety; = ri +yminj—12Q; B N VA N 4

Update critic by minimizing:

1 y .
ﬁ(wjl) - ﬁ ZE“’%‘H%W’N@ (Q;Ldl (CfQﬂaxtv CL%, a%v) ai\f) - yilt)2
t

Update Prioritized Replay Buffer, Eq. 13
if episode mod 2 then
Update actor with policy gradient, Eq. 12
end if
end for
Update target networks:

0, =70, + (1 — 70,
end for

15

B Additional Environment Details

Cooperative Navigation

At each time-step, the agent receives an individualized reward of —d, where d is the distance to the
closest landmark, and penalized a reward of —1 for every collision that occurs with another agent.
Moreover, the agents are also penalised —0.01 at every time-step if it hasn’t captured a landmark. In
this cooperative task, all agents strive to maximize their individual rewards. Performance is evaluated
per episode by average reward, number of collisions, and average minimum distance to landmarks.
Each agent’s vision is limited to 4 landmarks and 3 other nearest agents. This environment is designed
with individualised rewards.

Predatory-Prey

In this task, two teams of competing agents, predators and preys, work against each other. The
task of the predator is maximize the number of touches on the prey within a time-step. The prey
in turn needs to evade capture. Predators are rewarded by +10 every time they collide with a prey,
and subsequently the prey is penalized —10. Since the environment is unbounded, the prey are also
penalized for moving out of the environment. For the task, for N = 6 predators, and M = 2 preys,
each agent can observe 1 predator, 1 prey, and 1 landmark. For the N = 12 and M = 4 task, the
agents can observe 2 predators, prey and landmark each. Predators are rewarded +10 points for each
capture of a prey, while the preys are rewarded —10 for every capture. Since, the environments are
unbounded, we also penalize the preys for leaving the environment defined as, r(z) = (z —0.9) x 10
if0.9 <z <1,r(z) =0ifz < 0.9, else 7(z) = ¢**=1). Both the predators and preys receive
individualized rewards.

Physical Deception

Task A team of M adversarial agents must close in on a target landmark, without directly observing
it. The landmark must be inferred from the positions of N communicating agents, whose task is to
deceive the good agents. The adversarial agents must learn to spread out, such that the good agents
fail to infer the target landmark. This task is highly complex and highlights the benefits of targeted
attention, in SARNet and TarMAC compared to averaged-pooled attention of CommNet.

Physical Deception The communicating agents get positively rewarded by d and negatively re-
warded by —d,, where d and d,, is the distance of the communicating and adversarial agent to the
target landmark, respectively. This environment is treated as collaborative and the agents receive a
shared global reward.

Results In this scenario, the adversary agents collaborate to seize all the landmarks, such that the
good agents that are trained with MADDPG for M = 1 and CommNet for M = 2, cannot infer the
target landmark. Due to complex collaboration required from the adversary agents, we observe that
SARNet and TarMAC generates much more valuable information through its attention mechanism
of query-key pairs, resulting in higher scores. In contrast, CommNet with its averaging technique
performs poorly in M = 1 task as compared to MADDPG. We hypothesize that this might be due to
unnecessary information that is being transmitted to the agent, which potentially acts as noise.

Table 6: For Physical Deception, we measure the avg. success rate across all of the communicating
agents NV, to reach the target landmark.

N=4M=1 N=4M=2

Policy Adv.success % Adv.success %
SARNet 0.93+0.07 0.81+£0.02
TarMAC 0.93+0.11 0.79+ 0.01
CommNet 0.75+0.01 0.73£0.06
IC3Net 0.82+0.11 0.77+0.02
MADDPG 0.88+0.03 0.64+0.08

16

Traffic Junction The agents are assigned individual rewards, shaped as a time penalty of —0.017;,
where 7; is the time taken for agent '+’ to complete it’s route, and a collision penalty of r.,;; = —10.
We use the implementation of [15]. The tasks are modeled in an environment grid of 6 x 6, 14 x 14
and 18 x 18 grid for 6, 10, 20 agents respectively. pq,rive 1S set to 0.3, 0.02 and 0.02 respectively.

C Communication and Memory Analysis

C.1 Analysis of Attention in Communication

We analyze the attention mechanism of computing weights through query-key pairs, first by the
dot-product as described in Transformer [9] and used in TarMAC, and the linear projection based
attention mechanism in Eq. 3. We analyze both the methods by applying them to the architecture
of SARNet. We notice a general worsening of performance when the attention mechanisms are
interchanged. This reinforces our initial hypothesis that SARNet benefits from a weighted reduction
of the query-key pairs through a linear layer instead of a naive sum through a dot-product. We
hypothesize that the linear projection allows the architecture to represent and condense the attention
information in a more sophisticated manner to integrate the new information into memory.

Table 7: Experimental results for partially observable cooperative navigation with 6 SARNet agents
with TarMAC’s query-key attention mechanism.

N=L=6
Policy Reward Coll. Avg. dist.
SARNet w/ TarMAC Attn = -32.56+242 30.77+2.28 1.77+0.25
TarMAC -17.16+ 082 16.34+077 0.81+£0.19
SARNet -12.39+ 1.0 11.17+096 0.774+0.52

C.2 Attention in Predator-Prey

Unlike the Cooperative Navigation task, where the task of the agents were to capture a static landmark,
we analyze the attention values in a completely dynamic environment, where a team of 6 predators,
chase 2 preys (CommNet agents). We analyze the attention of Agent 1 with respect to the proximity
it has to each agent it attends to. As can be observed in Fig. 4, SARNet agents consistently group
up while chasing a prey to increase the odds of capturing. On the other hand, TarMAC fails to learn
this strategy, where the average distance of agent 1 to each predator is much higher throughout the
episode. This strategy works in favor of SARNet as the preys are 50% faster than the predators
which significantly increases the difficulty of the task, which can be seen in Table 2. Moreover, the
graphs also suggest that the distribution of attention over SARNet agents is more evenly spread out
compared to that of TarMAC. As expected, in the scenario where an agent moves very far away (see
agent in peach color at the 20th step), Agent 1 stops attending to it. This is due to the fact that Agent
1 and the two other agents in green-yellow and feal are already in pursuit to one of the preys, and the
information of farther agents is not necessarily useful to Agent 1’s immediate goals.

C.3 Analysis of Memory in Communication

We study the performance of SARNet with varying memory size on the Cooperative Navigation task.
Moreover, in order to truly understand the efficacy and impact of the reasoning based communication
framework of SARNet, we also perform benchmarks where the agents can only use partial information
from the memory, in Table 8. This is implemented during testing time, with a dropout layer with
distinct probabilities of reading, writing and gathering information from the memory for action
prediction. We observe a general worsening of the results as the dropout rate is increased, which is to
be expected. More generally, as the dropout rate is increased, the agents’ ability to read and write to
the new memories decreases drastically, which significantly affects the ability of the agents to process
information and complete the task. Specifically, we note that each agent’s ability to read and write
to the memory is crucial to the communication mechanism, and is an essential part of the agent’s
behavior in avoiding collisions.

17

Figure 4: Attention values generated by Agent I in red, in predator-prey with 6 agents and 2 preys
and landmarks each. Attention values are denoted by the shaded regions. Dashed lines indicate the
distance between Agent I and other agents. Attention values generated by query-key pairs (Top) for

SARNet and (Bottom) for TarMAC.

Attention

Attention

o
I
1

Episode Step

18

Additionally, we showcase the dynamics of the memory channel in Fig. 5. We create a heatmap to
analyze the information in the memory unit for different tasks where it visualizes the magnitude for
each index in the memory unit. The communication patterns evolve as the dynamics of the agents
change. We observe changes to the communication memory are more intense when coordination
is imperative to the success of the task. This can be observed especially in the predator-prey task,
where the memory unit is highly active due to the rapid changes in the coordinating agents’ goals
and consequently their behaviors. Alternatively, for the cooperative navigation task where all agents
stabilize around landmarks within the first 15 to 20 time steps, it can be clearly seen in the heatmap
of the memory unit that no further changes are written to the memory channel as the environment and
agents become static. Through these observations, we believe that the introduction of a dedicated
memory unit designed for communication is critical to each agent’s decision making, and further
substantiates our belief that it allows SARNet to perform better than other non-memory based
architectures compared in this work.

Table 8: (Left) Metrics for the impact of memory size on SARNet performance for partially
observable cooperative navigation for N = L = 6. (Right) Performance of SARNet when the
architectures ability to integrate and read new information is reduced through the use of dropouts
during testing time, where the percentage denotes the total ability to use the communication network.

N=L=6 N=L=6
Policy Reward Coll. Avg. dist. Policy Reward Coll. Avg. dist.

SARNet-8 -27.084+ 122 26.33+0.65 1.04+0.1 SARNet-10% -93.12+0.54 79.09+ 0.34 14.04+ 0.88
SARNet-16 -46.134+0.51 45.18+049 0.95+0.1 SARNet-25% -31.13+1.26 30.06+0.96 1.067+ 0.3
SARNet-32 -12.39+1.0 11.17+096 0.77+ 052 SARNet-50% -14.18+0.19 13.34+0.31 0.83+0.11
SARNet-64 -19.434+0.83 18.71+0.76 0.73+0.06 SARNet-75% -13.54+0.23 12.61+024 091+0.14
SARNet-128 -24.274+ 0.86 23.41+0.25 0.864+0.04 SARNet-100% -12.39+1.0 11.17+096 0.77+0.52

19

Figure 5: We illustrate the heatmaps of SARNet’s 32-bit memory unit of a single agent for the
first 40 time-steps of an episode. (Top) for cooperative navigation with 6 agents, as the agents tend
to stabilize around their final positions after 15 time-steps, we observe that no new information is
being written to the memory. (Bottom) However, for predator-prey with 6 SARNet predators and 2
CommNet preys, the dynamic task requires information to be extracted and written to at every time
step, as the state and actions of communicating predators, and competing preys change rapidly.

10 +

15

Memory Index (Bit)

0 5 10 15 20 25 30 35

Time step

Memory Index (Bit)

0 5 10 15 20 25 30 35
Time step

20

References

[1] Li, L., A. Martinoli, Y. S. Abu-Mostafa. Emergent specialization in swarm systems. In
International Conference on Intelligent Data Engineering and Automated Learning, pages
261-266. Springer, 2002.

[2] Kitano, H., S. Tadokoro, I. Noda, et al. Robocup rescue: Search and rescue in large-scale
disasters as a domain for autonomous agents research. In IEEE SMC’99 Conference Proceedings.
1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028),
vol. 6, pages 739-743. IEEE, 1999.

[3] Vinyals, O., T. Ewalds, S. Bartunov, et al. Starcraft ii: A new challenge for reinforcement
learning. ArXiv, abs/1708.04782, 2017.

[4] OpenAl. Openai five. 2018.

[5] Petrillo, A., A. Salvi, S. Santini, et al. Adaptive multi-agents synchronization for collaborative
driving of autonomous vehicles with multiple communication delays. Transportation research
part C: emerging technologies, 86:372-392, 2018.

[6] De Ruiter, J. P, M. L. Noordzij, S. Newman-Norlund, et al. Exploring the cognitive infrastruc-
ture of communication. Interaction Studies, 11(1):51-77, 2010.

[7]1 Garrod, S., N. Fay, S. Rogers, et al. Can iterated learning explain the emergence of graphical
symbols? Interaction Studies, 11(1):33-50, 2010.

[8] Fusaroli, R., B. Bahrami, K. Olsen, et al. Coming to terms: quantifying the benefits of linguistic
coordination. Psychological science, 23(8):931-939, 2012.

[9] Vaswani, A., N. Shazeer, N. Parmar, et al. Attention is all you need. In Advances in Neural
Information Processing Systems 30. 2017.

[10] Hudson, D. A., C. D. Manning. Compositional attention networks for machine reasoning. In
International Conference on Learning Representations. 2018.

[11] Zambaldi, V., D. Raposo, A. Santoro, et al. Deep reinforcement learning with relational
inductive biases. In International Conference on Learning Representations. 2019.

[12] Fujimoto, S., H. van Hoof, D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, pages 1582—-1591. 2018.

[13] Sutton, R. S., D. A. McAllester, S. P. Singh, et al. Policy gradient methods for reinforcement

learning with function approximation. In Advances in neural information processing systems,
pages 1057-1063. 2000.

[14] Sukhbaatar, S., a. szlam, R. Fergus. Learning multiagent communication with backpropagation.
In Advances in Neural Information Processing Systems 29. 2016.

[15] Singh, A., T. Jain, S. Sukhbaatar. Individualized controlled continuous communication model
for multiagent cooperative and competitive tasks. In International Conference on Learning
Representations. 2019.

[16] Das, A., T. Gervet, J. Romoff, et al. TarMAC: Targeted multi-agent communication. vol. 97 of
Proceedings of Machine Learning Research, pages 1538—1546. PMLR, Long Beach, California,
USA, 2019.

[17] Foerster, J., I. A. Assael, N. de Freitas, et al. Learning to communicate with deep multi-agent
reinforcement learning. In Advances in Neural Information Processing Systems 29. 2016.

[18] Jiang,J., Z. Lu. Learning attentional communication for multi-agent cooperation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett, eds., Advances in Neural
Information Processing Systems 31, pages 7254—7264. Curran Associates, Inc., 2018.

[19] Pesce, E., G. Montana. Improving coordination in multi-agent deep reinforcement learning
through memory-driven communication. arXiv preprint arXiv:1901.03887, 2019.

21

[20] Schroeder de Witt, C., J. Foerster, G. Farquhar, et al. Multi-agent common knowledge rein-
forcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,
R. Garnett, eds., Advances in Neural Information Processing Systems 32, pages 9927-9939.
Curran Associates, Inc., 2019.

[21] Lavrac, N., S. Dzeroski. Inductive logic programming. In WLP, pages 146—-160. Springer, 1994.

[22] Dzeroski, S., L. De Raedt, K. Driessens. Relational reinforcement learning. Machine learning,
43(1-2):7-52, 2001.

[23] Andreas, J., M. Rohrbach, T. Darrell, et al. Neural module networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 39-48. 2016.

[24] Andreas, J., M. Rohrbach, T. Darrell, Klein, D. Learning to compose neural networks for
question answering. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
1545-1554. Association for Computational Linguistics, San Diego, California, 2016.

[25] Lowe, R., Y. Wu, A. Tamar, et al. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems, pages 6379—-6390. 2017.

[26] Wang, R. E., M. Everett, J. P. How. R-maddpg for partially observable environments and limited
communication. arXiv preprint arXiv:2002.06684, 2020.

[27] Heess, N., J. J. Hunt, T. P. Lillicrap, et al. Memory-based control with recurrent neural networks.
arXiv preprint arXiv:1512.04455, 2015.

[28] Franklin, S., A. Graesser. Is It an agent, or just a program?: A taxonomy for autonomous agents.
In J. P. Miiller, M. J. Wooldridge, N. R. Jennings, eds., Intelligent Agents Il Agent Theories,
Architectures, and Languages, pages 21-35. Springer Berlin Heidelberg, Berlin, Heidelberg,
1997.

[29] Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

[30] Sutton, R. S., A. G. Barto, et al. Introduction to reinforcement learning, vol. 2. MIT press
Cambridge, 1998.

[31] Konda, V. R., J. N. Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pages 1008—1014. 2000.

[32] Oliehoek, F. A. Decentralized pomdps. In Reinforcement Learning, pages 471-503. Springer,
2012.

[33] Silver, D., G. Lever, N. Heess, et al. Deterministic policy gradient algorithms. 2014.

[34] Mnih, V., K. Kavukcuoglu, D. Silver, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[35] Kapturowski, S., G. Ostrovski, J. Quan, et al. Recurrent experience replay in distributed
reinforcement learning. 2018.

[36] Nair, A., P. Srinivasan, S. Blackwell, et al. Massively parallel methods for deep reinforcement
learning. arXiv preprint arXiv:1507.04296, 2015.

[37] Stooke, A., P. Abbeel. Accelerated methods for deep reinforcement learning. arXiv preprint
arXiv:1803.02811, 2018.

22

