40

41
42

43
44

45
46

47
48

49

50

We thank all the reviewers for their careful reading and thoughtful comments. We also thank the reviewers for general
comments on the presentation, which we will address while preparing our final manuscript.

Reviewer 4 - Importance of removing 1/¢ factor: We note that for algorithms with binary output (say YES or NO),
larger values of ¢ provide rather vacuous guarantees. For example, ¢ = 1.1 would permit an algorithm to go from
outputting YES with probability 1/4 to outputting YES with probability 3/4 by changing just a single point, which we
do not consider private. Additionally, data analysis pipelines (e.g., model selection) in practice typically contain many
private analyses, therefore, in order to achieve a reasonable overall privacy guarantee, each individual private algorithm
must have a small € as the privacy budget is split among the queries. For both these reasons, a minimal dependence on £
is preferred. We note that the 1/e multiplicative baseline can be achieved with a simple application of the subsample and
aggregate framework, a general purpose method for producing differentially private testing algorithms from non-private
testing algorithms. The transition from a multiplicative € factor to an additive ¢ factor has both theoretical and practical
significance. In some regimes our private sample complexity is dominated by the non-private sample complexity (which
never happens with a multiplicative dependence on €). This implies much lower sample complexities in many important
regimes, even for moderate sized e: for example with € = 0.1, subsample and aggregate requires 10x as much data as
the non-private algorithm, while for some settings of d and «, our algorithm requires less than 2x as much data.

Reviewer 4 - Relevance to the community: We note that these problems are of core interest to the community, and
most papers in this particular line on private hypothesis testing have appeared in either NeurIPS or ICML (see, e.g., Cai
et al. ICML’17, Cummings et al. NeurIPS’ 18, Acharya et al. NeurIPS’18, Aliakbarpour et al. ICML’18, Aliakbarpour
et al. NeurIPS’19).

Reviewer 6 - Practical importance: Our paper falls into the category of goodness-of-fit testing, which is ubiquitous in
scientific research including studies that typically use sensitive information such as voting behaviour or clinical trials
(e.g. [1L14,15]). The specific problems we study use the assumption that the analyst knows the family of distributions
that the data come from (product or multivariate normal distributions). These types of parametric tests are often more
powerful than non-parametric ones in the sense that they require fewer samples, and are thus often used in medical
research [2]]. In particular, testing the mean of a normal distribution is one of the most fundamental statistical primitives,
most often achieved via a Z-test or T-test. (Two-tailed) Z-tests are mean tests for normal distributions with known
covariance, which is exactly one of the problems we study in this paper, and they are standard tests used in studies of
treatment effects [3,16]. Since drug trials are paradigmatic of studies where the data contain highly sensitive information,
this demonstrates the need for sample-efficient differentially private alternatives for this task. Finally, we would like to
note that, based on our proof techniques, we generally expect that our algorithms would perform well in practice, even
if the distribution is not exactly Gaussian, but rather “well-behaved” around the origin.

Reviewer 8 - Applicability of the approach: We believe that determining the optimal sample complexity is an
important first step to the implementation of practical differentially private algorithms for these problems. Therefore,
we consider our near-optimal with respect to sample complexity but computationally inefficient algorithm to be an
important, non-trivial, first step towards this goal. Moreover, our computationally efficient algorithm is relatively simple
to implement (as it consists of a truncation step, a filtering step, and then applying a variant of the popular chi-squared
statistic). We predict that the performance of the algorithms in the wild will be faithful to their theoretical guarantees
and close to their non-private counterparts. Empirical evaluation of private identity tests with similar dependence on
in their theoretical guarantees shows that the cost of privacy is low in various settings (Cai et al. [CML’17).
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