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Abstract

We present novel differentially private identity (goodness-of-fit) testers for natural
and widely studied classes of multivariate product distributions: product distribu-
tions over {£1}¢ and Gaussians in R? with known covariance. Our testers have
improved sample complexity compared to those derived from previous techniques,
and are the first testers whose sample matches the order-optimal minimax sample
complexity of O(dl/ 2/a?) in many parameter regimes. We construct two types
of testers, exhibiting tradeoffs between sample complexity and computational
complexity. Finally, we provide a two-way reduction between testing a subclass
of multivariate product distributions and testing univariate distributions, thereby
obtaining upper and lower bounds for testing this subclass of product distributions.

1 Introduction

A foundation of statistical inference is hypothesis testing: given two disjoint sets of probability
distributions H( and H;, we want to design an algorithm 7 that takes a random sample X from
some distribution P € Hg U H; and, with high probability, determines whether P is in Hq or
‘H.. Hypothesis tests formalize yes-or-no questions about an underlying population given a random
sample from that population, and are ubiquitous in the physical, life, and social sciences, where
hypothesis tests with high confidence are the gold standard for publication in top journals.

In many of these applications—clinical trials, social network analysis, or demographic studies,
to name a few—this sample contains sensitive data belonging to individuals, in which case it is
crucial for the hypothesis test to respect these individuals’ privacy. It is particularly desirable to
guarantee differential privacy [33l], which has become the de facto standard for the analysis of private
data. Differential privacy is used as a measure of privacy for data analysis systems at Google [35]],
Apple [31]], and the U.S. Census Bureau [26]. Differential privacy and related notions of algorithmic
stability are also crucial for statistical validity even when confidentiality is not a direct concern, as
they provide generalization guarantees in an adaptive setting 32, |8, 58]
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While differentially private hypothesis testing has been extensively studied (see Section [I.3)), almost
all this work has focused on low-dimensional distributions. Our main contribution is to give novel
algorithms for hypothesis testing of high-dimensional distributions with improved sample complexity.
In particular, we give differentially private algorithms for the following fundamental problems:

1. Given samples from a product distribution P over {41}¢, decide if P is the uniform distribution
or is o-far from the uniform distribution in total variation distance. Or, equivalently, decide if
E[P] = 0 orif ||E[P]|2 > a.

2. Given samples from a product distribution P over {0 11} decide if P is equal to some given
extremely biased distribution () with mean E[Q ) or is a-far from @) in total variation
distance. In this case our tester achieves the provably optlmal sample complexity.

3. Given samples from a multivariate Gaussian P in R? whose covariance is known to be the identity
Igxq, decide if P is N(0,I4xq) or is a-far from A(0,I;x4) in total variation distance. Or,
equivalently, decide if E[P] = 0 or if |E[P]||2 > a.

Although we will focus on the first contribution since it highlights the main technical contributions,
we note that the third contribution, (private) hypothesis testing on the mean of a Gaussian, is one of the
most fundamental statistical primitives (see, e.g., the Z-test and Student’s t-test). The main challenge
in solving these high-dimensional testing problems privately is that the only known non-private
test statistics for these problems have high worst-case sensitivity. That is, these test statistics can
potentially be highly brittle to changing even a single one of the samples. We overcome this challenge
by identifying two methods for reducing the sensitivity of the test statistic without substantially
changing its average-case behavior on typical datasets sampled from the distributions we consider.
The first is based on a novel private filtering method, which gives a computationally efficient tester.
The second combines the method of Lipschitz extensions 13} 52] with recursive preconditioning,
which yields an exponential-time tester, but with improved sample complexity.

1.1 Background: Private Hypothesis Testing

We start by giving some background on private hypothesis testing. First, we say that an algorithm
A: X* — {0, 1} is a differentially private hypothesis tester for a pair Hg, H; over domain X’ if

1. A is e-differentially private in the worst case. That is, for every pair of samples X, X' € X"
differing on one sample, A(X) and A(X') are e-close. In general, A(X) and A(X') are (¢, 9)-
closeif for b € {0,1}, Prl[A(X) = b] < e® Pr[A(X') = b] + 6.

2. A distinguishes Ho from H; on average. If X = (XM, ..., X)) is drawn i.i.d. from some
P € Hy then A(X) outputs 0 with high probability, and similarly if P € #;. The minimum
number of samples n such that A distinguishes Hy and H; is the sample complexity of A.

Note that we want testers that are private in the worst case, yet accurate on average. It is important for
privacy to be a worst-case notion, rather than contingent on the assumption that the data is sampled
ii.d. from some P € HoU H; because we have no way of verifying this assumption (which may be a
modeling simplification), and once privacy is lost it cannot be recovered. Worst-case privacy notions
also enjoy strong composition and generalization properties not shared by average-case privacy.

There exists a black-box method for obtaining a differentially private tester from any non-private
tester A using the sample-and-aggregate framework [S6]]. Specifically, given any tester A with sample
complexity n, we can obtain an e-differentially private tester with sample complexity O(n/c). When
€ is a constant, the reduction is within a constant factor of the optimal sample complexity; however,
this overhead factor in the sample complexity blows up as ¢ — 0.

One can often obtain stronger results using a white-box approach. For example, suppose P is
a Bernoulli random variable and we aim to test if P = Ber(1/2) or P = Ber(1/2 + «). Non-
privately, ©(1/«?) samples are necessary and sufficient. Thus the black-box approach gives a sample
complexity of ©(1/a’¢). However, if we work directly with the test statistic 7'(X) = £ >"_ | XU),
we can obtain privacy by computing T'(X) + Z where Z is drawn from an appropriate distribution



with standard deviation O(1/en). One can now show that this private test succeeds using
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samples, which actually matches the non-private sample complexity up to a factor of 1 + o(1) unless
¢ is very small, namely € = o(«). Our main contribution is to achieve qualitatively similar results for
the high-dimensional testing problem we have described above.

1.2 Our Results

Theorem 1.1 (Informal). There is a linear-time, -differentially private tester A that distinguishes
the uniform distribution over {£1}? from any product distribution over {1} that is a-far in total
variation distance using n = n(d, o, €) samples for
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The sample complexity in Theorem [I.1|has an appealing form. One might even conjecture that this
sample complexity is optimal by analogy with the case of privately estimating a product distribution
over {+1}% or a Gaussian in R? with known covariance, for which the sample complexity is
O(d/a?+d/ae) in both cases [51]]. However, the next result shows that there is in fact an exponential-
time private tester that has even lower sample complexity in some range of parameters.

Theorem 1.2 (Informal). There is an exponential-time, e-differentially private tester A that distin-

guishes the uniform distribution over {+1}¢ from any product distribution over {£1} that is a-far
in total variation distance using n = n(d, o, €) samples for
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We remark that the sample complexity in (@) is precisely, up to logarithmic factors, the optimal sample
complexity for testing uniformity of discrete distributions on the domain {1, ..., d} [3], which hints

that it may be optimal (especially in view of Theorem [I.3|below). The current best lower bound we
can prove is n = € dlf + ) Bridging the gap between this lower bound and the upper bound

seems like it would require developmg fundamentally different lower bound techniques. Lower
bounds for multivariate distribution testing appear to be much more challenging to prove than in the
univariate case, due to the necessity of maintaining independence of marginals in the construction of
a coupling, which is the standard technique for proving lower bounds for private distribution testing.

The expression in (@) is rather complex and somewhat difficult to interpret and compare to ().
One way to simplify the comparison is to consider the range of the privacy parameter € where
privacy comes for free, meaning the sample complexity is dominated by the non-private term
O(d'/?/a?). For the efficient algorithm, privacy comes for free roughly when ¢ = Q(«). For the
computationally inefficient algorithm, however, one can show that privacy comes for free roughly
when ¢ = Q(a? + a/d'/*), which is better if both 1/« and d are superconstant.

Using a simple reduction, we show that Theorems E] and @] extend, with a constant-factor loss in
sample complexity, to identity testing for balanced product distributions. That is, suppose @ is a
product distribution such that every coordinate of E[Q)] is bounded away from —1 and +1. Then with
a constant-factor loss in sample complexity, we can distinguish whether (i) a product distribution P
over {jzl}d is either equal to ), or (ii) whether P is far from () in total variation distance.

We then focus on a specific class of Boolean product distributions, which we refer to as extreme.
Informally, a product distribution is extreme if each of its marginals is O(1/d)-close to constant. For
this restricted class of product distributions, we provide a two-way reduction showing that identity
testing is equivalent to the identity testing in the univariate setting. This allows us to transfer known
lower bounds on private univariate identity testing to our extreme product distribution class, which
gives us the first non-trivial lower bounds for privately testing identity of product distributions.



Theorem 1.3 (Informal). The sample complexity of privately testing identity of univariate distribu-
tions over [d] and the sample complexity of privately testing identity of extreme product distributions
over {+1}4 are equal, up to constant factors.

Finally, we can obtain analogous results for identity testing of multivariate Gaussians with known
covariance by reduction to uniformity testing of Boolean product distributions.

Theorem 1.4 (Informal). There is a linear-time, c-differentially private tester A that distinguishes

the standard normal N'(0, 1y 4) from any normal N (u, Lgx ) that is a-far in total variation distance
qi/2 )

ae /°

pll2 > «) using n = n(d, a, €) samples for n = O(dlfﬂ) + O(
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(or, equivalently,

Theorem 1.5 (Informal). There is an exponential-time e-differentially private tester A that distin-
guishes the standard normal N'(0, 1% q) from any normal N'(u, Ly« q) that is a-far in total variation

. . at/? = gL/ 4173 1
distance using n = n(d, a, €) samples forn = O(“) + O(<o7z + amzm + 22)-

We note that we can also obtain these results directly by extending the techniques of the Boolean
case and constructing the tester. We demonstrate this for the computationally efficient test.

We highlight some tools in this paper which are useful for hypothesis testing, even without privacy
constraints: (1) A reduction from testing the mean of a Gaussian, to testing uniformity of a product
distribution. (2) A reduction from testing identity to a “balanced” product distribution, to testing
uniformity of a product distribution.(3) An equivalence between testing identity over a domain of
size d, and testing identity to an “extreme” product distribution in d dimensions.

1.3 Related Work

We focus on the most relevant related work here, broader coverage appears in the supplement.
Hypothesis testing with a focus on minimax rates was initiated by Ingster and coauthors in the
statistics community [46, 47, |48]], and the work of Batu er al. [[10, 9] in computer science (arising as
a subfield of property testing [42}43]). Works on testing in the multivariate setting include testing of
independence [9, 15,160,154, 2,130,211, and testing on graphical models [20} 28}, 27,38} [1,[11]. We note
that graphical models (both Ising models and Bayesian Networks) include the product distribution
case we study in this paper. Surveys and more thorough coverage include [59, 19} 41} [7,50]. Minimax
study in the private was setting initiated by Cai et al. [17], and we now have close to optimal algorithms
and lower bounds for the univariate setting [3l [4]. Other recent works focus on testing of simple
hypotheses [25] 22]. Awan and Slavkovic [6] give a universally most powerful (UMP) test when the
domain size is two, however Brenner and Nissim [16] shows that UMP tests don’t exist for larger
domains. A line of work complementary to the minimax setting [64, 163165} 37,153 149, [18, 162} 23]
designs differentially private versions of popular test statistics.

The Lipschitz-extension technique that we build upon was introduced in [13| [52], who also gave
efficient Lipschitz extensions for graph statistics such as edge density and number of triangles in
sparse graphs. Later work constructed efficient Lipschitz extensions for richer classes of graph
statistics [57,161]]. [24] introduced a variant of the Lipschitz-extension machinery to give efficient
algorithms for statistics like the median and trimmed mean. Recent results [[15}14] prove the existence
of Lipschitz extensions for all differentially private algorithms, though efficiency is not a focus.

1.4 Techniques

To avoid certain technicalities involving continuous and unbounded data, we will describe our tester
for product distributions over {il}d, rather than for Gaussians over R%. The Gaussian case can be
handled by using a reduction to the Boolean case, or directly, by using a nearly identical approach.

First Attempts. A natural starting point is to study the asymptotically-optimal non-private tester of

Canonne et al. [20]. Let P be a distribution over {+1}% and X = (X, ..., X)) € {£1}"*? be
n 1.i.d. samples from P. Define the test statistic

T(X)=||X||3—nd where X =% X (4)

j=1
The analysis of Canonne et al. shows that if P is the uniform distribution then E[T'(X)] = 0, while
if P is a product distribution that is a-far from uniform then E[T(X)] = Q(a?n?). Moreover,



the variance of T'(X) is bounded so that, for n = O(d'/?/a?), we can distinguish between the
two. To obtain a private tester, we need to add noise to 7'(X) with smaller magnitude than the
a?n? gap. The standard approach is to add noise to T'(X) calibrated to the global sensitivity:
GSy = maxx..x/(T(X)—-T(X")), where X ~ X’ denotes that X and X’ are neighboring samples
that differ on at most one sample. To ensure privacy it is then sufficient to compute a noisy statistic
T(X) + Z where Z is chosen from an appropriate distribution (commonly, a Laplace distribution)
with mean 0 and standard deviation O(GSt/e). One can easily see that the global sensitivity of
T(X) is O(nd), so it suffices to add noise O(nd/e). The tester will require n = Q(d/(a%¢)) to
succeed, giving an undesirable linear dependence in d. Note that this tester is dominated by the
sample-and-aggregate approach.

In view of the above, one way to find a better private tester would be to identify an alternative statistic
for testing uniformity of product distributions with lower global sensitivity. However, we do not
know of any other such test statistic that has asymptotically optimal non-private sample complexity;
a prerequisite to achieving optimal private sample complexity.

Intuition: High-Sensitivity is Atypical. Since we need privacy to hold in the worst case for every
dataset, any private algorithm for computing 7" must have error proportional to GS7 on some dataset
X. However, the utility of the tester only applies on average to typical datasets drawn from product

distributions. Thus, we can try to find some alternative test statistic T that is close to T on these
typical datasets, but has lower global sensitivity. To this end, it will be instructive to look at the
sensitivity of 7" at a particular pair of datasets X ~ X', differing in samples X /) and X'(7).

T(X)-T(X') =2((XY X) - (X'¥ X)) (5)

Notice that T'(X) and T'(X’) can only differ by a large amount when one of the two datasets contains
a point X ) such that (X ), X ) is large. Thus, if we could somehow restrict attention to datasets in

C(A) = {X e {1} vi=1,...,n (XU X)| < A}

the sensitivity would be at most 4A. As we will show, for typical datasets drawn from product
distributions (except in some corner cases), the data will lie in C(A) for A < nd. For example, if we
draw XM ... X uniformly at random in {£1}¢, then we have

B o (X0, )| < 0+ ()2
JEIN

More generally, if X, ... X () are drawn from any product distribution, then we show that

N 1. _
max (XY, X)| S ~ | X5 + || X]|2. (6)
J€[n] n

Note that, except in pathological cases, the right-hand side will be much smaller than nd. Thus, for
typical datasets drawn from product distributions, the sensitivity of 7'(X) should be much lower than
its global sensitivity. We can exploit this in two different ways to obtain improved testers.

A Sample-Efficient Tester via Lipschitz Extensions Suppose we fix some value of A and we are
only concerned with estimating 7'(X') accurately on nice datasets that lie in C(A). Even in this case,
it would not suffice to add noise to 7'(X') proportional to A /e, since we need privacy for all datasets.

However, we can compute 7'(X) accurately on C(A) while guaranteeing privacy for all datasets
using the beautiful machinery of privacy via Lipschitz extensions introduced by Blocki et al. [13]] and
Kasiviswanathan et al. [52] in the context of node-differential-privacy for graph data. Specifically, for
a function 7" defined on domain X', and a set C C X, a Lipschitz extension of T' from C is a function T
defined on all datasets such that: (1) T'(X) = T'(X) for every X € C. (2) The global sensitivity of 7
on all of X’ is at most the sensitivity of 7" restricted to C, namely GS,; < maxx, xec T'(X) —T(X’).

Perhaps surprisingly, such a Lipschitz extension exists for every real-valued function 7" and every
subset of the domain C [55]]! Once we have the Lipschitz extension, we can achieve privacy for all
datasets by adding noise to T proportional to the sensitivity of 7" on C. In general, the Lipschitz
extension can be computed in time polynomial in |X'|, which, in our case, is 2"%.




Thus, if we knew a small value of A such that X € C(A) then we could compute a Lipschitz
extension of 7' from C(A) and we would be done. From (6], we see that a good choice of A is
approximately L[| X3 + [|X||2. But || X3 is precisely the test statistic we wanted to compute!

We untie this knot using a recursive approach. We start with some weak upper bound A(™) such
that we know X € C(A(™)). For example, we use the worst-case A1) = 4nd as a base case.
Using the Lipschitz extension onto C (A(m) ), we can get a weak private estimate of the test statistic
T(X) = || X||? — nd with error < A(™ /. At this point, we may already be able to conclude
that X was not sampled from the uniform distribution and reject. Otherwise, we can certify that
1X]13 < nd+ %.If X was indeed sampled from a product distribution, then (&) tells us that
X € Cc(AMmTY) for

IIXH2 Alm

A(m+1) <

+ X2 S

Then, as long as A+ §g signiﬁcantly smaller than A(m) we can recurse, and get a better private
estimate of || X ||2. Once the recurrence converges, we can stop and make a final decision whether
to accept or reject. One can analyze this recurrence and show that it will converge rapidly to some

A* = O(d++v/nd+1/e). Thus the final test will distinguish uniform from far-from-uniform provided
A* /e < o®n?, which occurs at the sample complexity we claim.

This recursive approach is loosely similar in spirit to methods in [S1}36], whereby we obtain more
and more accurate private estimates, necessitating less noise addition at each step. However, our
technique is very different from theirs, and the first to interact with the Lipschitz extension framework.
We believe our work adds more evidence for the broad applicability of this perspective.

A Computationally Efficient Tester via Private Filtering. The natural way to make the test above
computationally efficient is to explicitly construct the Lipschitz extension T" onto C(A). Although
we do not know how to do so, we can start with the following filtering approach: To compute 7'(X),

throw out every X ) such that (X ), X') > A and replace it with a fresh uniform sample X (/). Let
the resulting dataset be Y and output 7'(Y).

Obviously this will agree with T'(X) for X € C(A), but it is not clear that it has sensitivity O(A).
The reason is that the decision to throw out X /) or not depends on the global quantity X = > j X0,
Thus, we could have one dataset X where no points are thrown out so Y = X, and a neighboring
dataset X’ where, because X is slightly different from X, all points are thrown out so Y/ = (. Then
the difference between the test statistic on Y, Y’ could be much larger than A.

We solve this problem by modifying the algorithm to throw out points based on (X U, X ) for some
private quantity X ~ X. Although the proof is somewhat subtle, we can use the fact that X is private
to argue that filtering based on X and then adding noise calibrated to ~ A preserves privacy. In order

to compensate for the fact that X is only an approximation of X, we cannot take A too small, which
is why this tester has larger sample complexity than the non-computationally efficient one.

Organisation. Due to space constraints, we focus in this extended abstract on Theorem which
illustrates the main ideas and challenges in our approach, and provide a detailed outline of its proof
in Section 2] All omitted details and sections can be found in the supplementary material.

2 Uniformity Testing for Product-of-Bernoulli Distributions

In this section, we provide the outline of our computationally inefficient algorithm for uniformity
testing, Algorithm[2] We will prove the following main theorem (corresponding to Theorem [I.2)).

Theorem 2.1. Algorithm is e-differentially private. Furthermore, Algorithm 2| can distinguish
> « with probability at least 2/3 and has sample complexity

d1/2 /2 d1/3
n= O( + am T gasans g

a2

We first focus on the privacy guarantee of Theorem 2.1} which is based on the existence of Lipschitz
extensions, as established by [55]. For our dataset X and any A > 0, let us define C(A) =



{X e {£1}"*4 | Vj € [n], (XD, X)| < A}. The main element that we need for the privacy
proof is the bound on the sensmVlty of T’ on C(AU™) for all m € [M]. This would ensure that 7" is

4A (™) Lipschitz on C(A(™)), so the 4A(™)-Lipschitz extensions T exist in all the rounds and line
in LIPEXTTEST and line [TT]in Algorithm [2]add enough noise to maintain privacy. Note that the
algorithm would be private regardless of the choice of values A(").

Recall the definition of the test statistic of @): T(X) = || X||3 — nd for X = 3", X1). The next
lemma holds by a calculation of the sensitivity which led to equation (3]) and the definition of C(A).

Lemma 2.2 (Sensitivity of T). For any bound A > 0, for two neighboring datasets X, X' € C(A),
IT(X) — T(X")| < 4.

First, we note that LIPEXTTEST(X, &', A, ) is ¢/-DP, since it only accesses X via the Laplace
mechanism in hneE} Since AlgOI‘lthmE]lS a composition of M — 1 invocations of LIPEXTTEST
with DP parameter ¢’ = /M, and of the Laplace mechanism in llne. 11} its privacy guarantee is a
straightforward application of DP composition and post-processing.

Lemma 2.3 (Privacy). Algorithm|2|is e-differentially private.

Algorithm 1 LIPEXTTEST

Require: Sample X = (X(l) , X(™)), Parameters ¢, A > 0 ﬁ € (0,1].

: Define the set C(A) = {X € {il}”Xd | Vj € [n], \(X(J ) <A}
Let 7'(-) be a 4A- Llpschltz extension of T' from C(A) to all of {£1}7*4,
Sample noise 7 ~ Lap(4A/¢) and let z < T(X) + 7.

if 2 > 10n\/d + 4A1n(1/B) / then return reject.
return accept.

U‘L‘*’N"

Algorithm 2 Private Uniformity Testing via Lipschitz Extension
Requ1re Sample X = (X(l) ., X)) € {£1}"*4 drawn from P". Parameters ¢, av, 3 > 0.
: Let M <« [logn], &’ + z—:/M B« 1/(10n).
Let A < ndand A* + 1000 max(d, vVnd,In(1/8)/¢') - In(1/5).
form <+ 1toM —1do
| if AU™) < A* then
| Let AM) < A(™) and exit the loop.
else
| if LIPEXTTEST(X,e’, A(™) B) returns reject then return reject

|
8: ‘ ‘ Set Alm+1)

NN ARy 2

Alm) A(m) In
ne’

9: Define the set C(AM)) = {X € {£1}"*? | Vj € [n], |<X(J)7 ) < AGDY
10: Let T'(-) be a 4A(M)-Lipschitz extension of T' from C(A™)) to all of {£1}7%7,
11: Sample noise 7 ~ Lap(4AM) /') and let z < T'(X) + 7.

12: if z > in(n — 1)a? then return reject
13: return accept.

‘We now turn our attention to the utility guarantee. The next lemma will help us determine how the
bound on the sensitivity of the statistic decreases in each round, as stated in (6). It is established by a
concentration bound on the sum of the independent r.v.’s Y; = z; X; | X, around its mean || X ||2/n.

Lemma 2.4. If X is drawn i.i.d. from a product distribution, then, with probability at least 1 — 2n3,
_ X||? _
v e X, e, X)) < P4 %), 178) g
As in Algorithm [2} we let A* = 1000 max(d, v'nd, M In(1/8)/¢) - In(1/3), where 8 = 1/(10n)
and M = [log(n)|. Based on the previous lemma, we now analyze the key subroutine, LIPEXTTEST:

1. If X is drawn from a product distribution and, for some A, LIPEXTTEST returns accept, then
X € C(A"), where A’ < A, determined as in lineof Algorithm (Lemma ;

2. If X is drawn from the uniform distribution, LIPEXTTEST will return accept (Lemma .



Lemma 2.5 (Sensitivity reduction). Fix some A > 0, and let A’ = 11(d + vVnd + A/(ne) +
VA/e)In(1/B8). If (i) X is drawn from a product distribution, (ii) X satisfies (7)), (iii) X € C(A),
and (iv) LIPEXTTEST(X, e, A, 8) returns accept, then X € C(A") with probability at least 1 — .

To prove the lemma, we first observe that, by condition (iii), 7(X) = T(X) = ||X||3 — nd. So
condition (iv) and the Laplace mechanism guarantee that || X||3 < 11(nd + Aln(1/3)/e), with
probability 1 — /3. By conditions (i) and (ii), (7) implies that Va € X |{x, X)| < A’ for the given A'.

Lemma 2.6. If (i) X is drawn from the uniform distribution Uy, satisfies T(X) < 10nV/d, and @,
and (ii) A > A*, then LIPEXTTEST(X, ¢, A, 8) returns accept with probability at least 1 — f.

Proof. By condition (i), | X||3 = T(X) + nd < 11nd. Plugging this in (7), we get that Vz € X,
|(z, X)| < 1lnd/n + 2y/ndIn(1/8) < 22max(d, \/ndIn(1/8)) < A* < A, where the last
inequality holds by condition (ii). Thus, X € C(A) so T(X) = T(X) in line [2 and we can
analyze line by bounding 7'(X) 4+ r = T(X) + r < 10nV/d + r. By the Laplace mechanism,
|r| < 4A1n(1/8)/e, with probability 1— 3. Hence, LIPEXTTEST accepts with probability 1 — 5. [

With the analysis of this subroutine, we turn to the utility guarantee, which, unlike the privacy, only
needs to hold for datasets drawn from a product distribution. The crux of the proof is the following:

1. If X is drawn i.i.d. from a product distribution and passes line [3|in round m, then it belongs in
C (A(mH)) with high probability. Thus in every round that the dataset has not been rejected, we
have that with high probability 7(X) = T'(X).

2. If P = Uy, then with high probability X passes all the steps in the loop at line[3]

3. The number of rounds M is sufficient to guarantee that the sensitivity and thus the noise added to
T (X) in line is small enough that one distinguishes between the two hypotheses.

For the latter, we will need to bound A(M), i.e., the sensitivity of T'(X) restricted to C(A()). The
proof follows by observing that in each round where A > A*, A is reduced by 1/2, based on line

Lemma 2.7. For M = [log(n)], ¢’ = ¢/M, and n = Q(log(1/B) /'), AM) < A*,

We can now complete our proof outline, showing that the last test will give the expected guarantees.
Since our test relies on a private adaptation of the test from [20], we state a version of its guarantees.

Lemma 2.8 (Non-private Test Guarantees). For the test statistic T(X) = || X||2 — nd:
o If P =Uythen E[T(X)] = 0, whereas if | P — Uq||1 > o then E[T(X)] > in(n —1)a?
o Var(T(X)) < 2n%d + 4nE[T(X)].

Proof of Theorem[2.1] The privacy guarantee was established in Lemma [2.3] First, note that given
AWM = nd, we have C(AM) = {+1}7%?, 50 X € Cc(AM).

Completeness: Suppose X is drawn from U/;. By the guarantees of the non-private test and Cheby-
shev’s inequality, with probability 49/50, T'(X) < 10n+/d. Moreover, since Uy is a fortiori a product
distribution, X satisfies (7) with probability at least 1 — 2n/3. Assume both of these events hold. By
Lemma [2.6]and a union bound over the M — 1 calls in line[7] we get that with probability at least
1 — M f3 every call returns accept. Assume this holds. Invoking Lemma 2.5 this implies that for all
rounds m, X € C(A("™) except with probability at most M 3, and in particular X € C(A(XM)),

In this case, we have 7/(X) = T'(X) in line It remains to show that with high probability,
z=T(X)+7r <n(n-1)a2/4in line Since r ~ Lap(4A®Y) /), with probability at least

49/50, |r| < 4A™M)(In50)/<’. Again, condition on this, and suppose for now that n satisfies

AANM 150 n(n—1)a?
|| < 7 < ( 3 ) . ®)

Then, by Chevyshev’s and the non-private test guarantees, we can bound the probability that Algo-
rithmrejects in lineas Pr[z > n(n —1)a?/4] < 1/50 for n = Q(d'/?/a?). Therefore, by an
overall union bound and 5 = 1/(10n), the algorithm rejects with probability at most 1/3.




It remains to determine the constraint on n for inequality (8) to hold. By Lemma it suffice
for n?a? = Q(A*/e) = Q(max(d, vnd,log(1/8)/€") -log(l/,é’)/a’). Recalling our choice of
e =¢/M,B=1/(10n), and M = [log(n)]. it suffices to choose

_ d1/2 d1/3 1
n:Q( + + ) ©)

ael/2 * al/3¢2/3 " e

Soundness: Suppose X is drawn from a product distribution which is a-far from uniform. By
Lemma[2.4] X satisfies (7)) with probability at least 1 — 2n3. Suppose that the algorithm does not
return reject in any of the M — 1 calls in line[7] (otherwise, we are done). Conditioning on this, by
Lemmaand an immediate induction, with probability 1 — M 3, X € C(A(™) for all rounds mn,
and in particular X € C(A()). The rest of the proof follows exactly as the completeness, relying
on (8), the guarantees of the Laplace mechanism and the non-private test, and Chebyshev’s inequality.

d;f ) yields the stated sample complexity. [

Combining equation (9) with the non-private bound (

Broader Impact

This work focuses on privacy-preserving statistics: the task of performing statistical learning while
maintaining the privacy of data participants. The right to privacy is a fundamental right, and works in
this area allow for the facilitation of valuable social science and economic research, while preserving
this fundamental right. There are many examples where releases of statistical data, even aggregate
statistics, without formal privacy guarantees has resulted in blatant privacy violations. For example,
Homer et al. [45] demonstrated that it is possible to identify individuals who participated in a
GWAS study based on certain released test statistics. This can be especially harmful when resolving
individuals who participated in trials pertaining to a socially stigmatized disease (e.g., HIV/AIDS).
This finding was considered so significant that the NIH immediately revoked open access to a number
of statistical results from medical trials, including y2-statistics and p values. Hypothesis tests are
applied to sensitive data in a myriad of studies, e.g. on voting behavior [44] or attitude toward
abortion [34]], highlighting urgent need for hypothesis tests which respect the privacy of participant
data.

Some specific applications of goodness-of-fit testing are [12} 139 /40]. The study of uniformity testing
of product distributions is also equivalent to the well-motivated question of mean testing of categorical
data, which has applications to high-dimensional statistical analysis. Further, uniformity testing is
also deeply related to mean testing of high-dimensional normal distributions, as exemplified by our
reduction from the latter to the former. Non-DP mean testing in high-dimensional settings itself has a
long history in statistical hypothesis testing; see for example, [29].

Our objective is to initiate the study of high-dimensional hypothesis testing under privacy constraints.
Although we do not close the chapter on identity testing, we believe our results to be an important,
non-trivial, and natural first step, and a prerequisite to any further investigation (e.g., general identity
testing for non-spherical Gaussians, graphical models, or sub-Gaussian distributions). Our work
exposes and addresses a number of core challenges that arise in private high-dimensional data analysis.
Indeed, the problems we study capture a challenge that is widespread in differential privacy: that
solving high dimensional testing problems privately is difficult because the known non-private testers
have high global sensitivity. We propose a novel way of dealing with this issue by reducing to the
“typical sensitivity.” We demonstrate the effectiveness of this technique on identity testing, but we
conjecture that it will find applications to other testing problems and beyond.
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