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Abstract

We consider the linear model y = X 3, +¢€ with X € R™*? in the overparameter-
ized regime p > n. We estimate 3, via generalized (weighted) ridge regression:
By = (X"X +A%,) Xy, where %, is the weighting matrix. Under a ran-
dom design setting with general data covariance 3, and general prior on the true
coefficients E3, 3, = X3, we provide an exact characterization of the prediction
risk E(y — 27 3,)? in the proportional asymptotic limit p/n — ~ € (1,00). Our
general setup leads to a number of interesting findings. We outline precise condi-
tions that decide the sign of the optimal choice A of the ridge parameter A, based
on the alignment between 3, and X g; this rigorously justifies the surprising em-
pirical observation that A can be negative in the overparameterized regime. We
also discuss the risk monotonicity of optimally tuned ridge regression, and con-
firm the double descent phenomenon for principal component regression (PCR)
under anisotropic X and 3,. Finally, we determine the optimal 3, for both the
ridgeless (A — 0) and optimally regularized (A = Aop) case, and demonstrate the
advantage of the weighted objective over standard ridge regression and PCR.

1 Introduction

In this work we consider learning the target signal 3, in the following linear regression model:
yi:m;ﬁ*—i_eia i:1727"'7n

where each feature vector ; € RP and noise ¢; € R are drawn i.i.d. from the two independent

random variables & and € satisfying E¢ = 0, Ee2 = 62, & = %1/?2z/,/n, and the components of z

are i.i.d. random variables with zero mean, unit variance, and bounded 12th absolute central moment.
To estimate 3, from (x;,y;), we consider the following generalized ridge regression estimator:

B, = (XTX+A8,) X7y, (1.1)

in which X € R"*P is the feature matrix, y is vector of the observations, 3, is a positive definite

weighting matrix, and the symbol T denotes the Moore-Penrose pseudo-inverse. When A > 0, B A
minimizes the squared loss plus a weighted ¢, regularization: ming Y, (v; —x] 8)*+ A8 X, 8.
Note that 33, = I; reduces the objective to standard ridge regression.

While the standard ridge regression estimator is relatively well-understood in the data-abundant
regime (n > p), several interesting properties have been recently discovered in high dimensions,
especially when p > n. For instance, the double descent phenomenon suggests that overparameter-
ization may not result in overfitting due to the implicit regularization of the least squares estimator
[HMRT19, BLLT19]. This implicit regularization also relates to the surprising empirical finding
that the optimal ridge parameter A can be negative in the overparameterized regime [KLS20].

*Equal contribution; alphabetical ordering.
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Motivated by the observations above, we analyze the estimator B » in the proportional limit: p/n —
v € (1,00)* asm, p — co. We place a general prior on the true parameters (independent of & and €):
EB,3, = X, which covers both random and deterministic (3,.. Our goal is to study the prediction
risk of By: Ez 2, (5 — &' 3,)? where y = &' 3, + €. Compared to previous high-dimensional
analysis of ridge regression [DW 18], our setup is generalized in two important aspects:

Anisotropic 3, and X 3. Our analysis handles general prior X5 and data covariance X, in contrast
to previous works which assume either isotropic features or signal (e.g., [DW18, HMRT19]). Note
that the isotropic assumption on the signal or features implies that each component is roughly of the
same magnitude, which may not hold true in practice. For instance, the optimal ridge penalty is prov-
ably non-negative when either the signal X3 [DW18, Theorem 2.1] or the features 3, [HMRT19,
Theorem 5] is isotropic. On the other hand, it has been empirically demonstrated that the optimal
ridge for real-world data can be negative [KLS20]. While this observation cannot be captured by
previous works, our less restrictive assumptions lead to a concise description of this phenomenon.

Weighted /> Regularization. We consider generalized ridge regression instead of simple isotropic
shrinkage. While the generalized formulation has also been studied (e.g., [HK70, Cas80]), to the best
of our knowledge, no existing work computes the exact risk in the overparameterized proportional
limit and decides the corresponding optimal 32,,. Our setting is also inspired by recent observations
in deep learning that weighted {5 regularization often achieves better generalization compare to
isotropic weight decay [ZWXG18]. Our analysis illustrates the benefit of weighted /5 regularization.

Under the general setup (1.1), the contributions of this work can be summarized as (see Figure 1):

» Exact Asymptotic Risk. In Section 4 we derive the prediction risk R(\) of our estimator (1.1) in
its bias-variance decomposition (see Figure 2). We also characterize principal component regres-
sion (PCR) and confirm the double descent phenomenon under more general setting than [XH19].

* “Negative Ridge” Phenomenon. In Section 5, we analyze the 05
optimal regularization strength Ay, under different 33, and pro-
vide precise conditions under which the optimal A is negative
in the overparameterized regime. In brief, we show that Ay is
negative when SNR is large and the large directions of 3, and
B3, are aligned (see Figure 4), and vice versa. On the other hand, o,
we show that the optimal ridge penalty is always non-negative in
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the underparameterized regime (p < n); this implies an implicit 01 55—

{5 regularization effect of overparameterization for certain cases.

Optimal Weighting Matrix 3,,. In Section 6, we decide the
optimal ¥, for both the optimally regularized ridge estimator
(A= Agpt) and the ridgeless limit (A — 0). In the ridgeless limit,
based on the bias-variance decomposition, we show that the op-
timal 3, should interpolate between 32,, which minimizes the
variance, and Egl, which minimizes the bias. Whereas for the
optimally regularized case, in many settings the optimal 3, is
simply Egl (Figure 6) (for more general result see Theorem
10). We demonstrate the benefit of weighted regularization over
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Figure 1: Tllustration of the
“negative ridge” phenomenon
and the advantage of weighted
{5 regularization under “aligned”
3, and ¥g. We set v = 2,
52 = 0. Red: standard ridge
regression (3, = I); note that
the lowest prediction risk is
achieved when A < 0. Blue:
optimally weighted ridge re-
gression (3, = Egl), which

achieves lower risk compared to

standard ridge regression and PCR, and also propose a heuristic
the isotropic shrinkage.

choice of 3,, when information of 3, is not present.

Notations: We denote E as taking expectation over 3, , Z, €. Let d;, dg, d,, be the vectors of the
eigenvalues of 3, 33 and X, respectively. We use Ls as the indicator function of set S. We write
¢ =E(z'B,)?/(v5?) as the signal-to-noise ratio (SNR) of the problem.

2 Related Works

Asymptotics of Ridge Regression. The prediction risk of standard ridge regression (%,, = I4) in
the proportional asymptotics has been widely studied. When the data is isotropic, precise characteri-
zation can be obtained from random matrix theory [Kar13, Dic16, HMRT19], approximate message

2Some of our results also apply to the underparameterized case, as we explicitly highlight in the sequel.
3When 3, is deterministic, Ez ¢, g.G—x2"B 5,)2 reduces to the prediction risk for one fixed 3, .
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passing algorithm [DM16], or the convex Gaussian min-max theorem*| TAH18]. Under general data
covariance, closely related to our work is [DW18], which considered a random effects model with
isotropic prior on the target coefficients (3g = I4). Our risk characterization is built upon the
general random matrix result of [RM11, LP11]. Similar tools have been applied in the analysis of
sketching [LD19] and the connection between ridge regression and early stopping [AKT19, Lol20].

Weighted Regularization. The formulation (1.1) was first introduced in [HK70], and many choices
of weighting matrix have been proposed [Str78, Cas80, MS05, MS18]; yet since these estimators
are usually derived in the n > p setup, their effectiveness in the high-dimensional and overparame-
terized regime is largely unknown. In semi-supervised linear regression, it is known that weighted
matrix estimated from unlabeled data can improve the model performance [RC15, TCG20]. In deep
learning, anisotropic Gaussian prior on the parameters enjoyed empirical success [LW17, ZTSG19].
Additionally, decoupled weight decay [LH17] and elastic weight consolidation [KPRT17] can
both be interpreted as an ¢y regularization weighted by an approximate Fisher information ma-
trix [ZWXG18], which relates to the Fisher-Rao norm [LPRS17]. Finally, beyond the ¢ penalty,
weighted regularization is also effective in LASSO regression [Zou06, CWB08, BVDBS™15].

Benefit of Overparamterization. Our overparameterized setting is partially motivated by the dou-
ble descent phenomenon [BHMM18], which can be theoretically explained in linear regression
[AS17, HMRT19, BLLT19], random features regression [MM 19, dRBK20, DL20], and max-margin
classification [MRSY19, DKT19, HMX20], although translation to neural networks can be more
nuanced [BES™20]. For least squares regression, it has been shown in special cases that overparam-
eterization induces an implicit /5 regularization [KLLS20, DLM19], which agrees with the absence of
overfitting. This observation also leads to the speculation that the optimal ridge penalty in the over-
parameterized regime may be negative, to partially cancel out the implicit regularization. While the
possibility of negative ridge parameter has been noted in [HG83, BS99], theoretical understanding
of its benefit is largely missing, expect for heuristic argument (and empirical evidence) in [KLS20].
We provide a rigorous characterization of this “negative ridge” phenomenon.

Concurrent Works. Independent to our work, [RMR20] computed the asymptotic prediction risk
under a similar extension of the isotropic assumption on X4, but did not consider the sign of Agpy.
We note that their result requires codiagonalizability of the covariances and certain functional rela-
tions between the eigenvalues, which is more restrictive than our setting. [TB20] provided a non-
asymptotic analysis of ridge regression and constructed a specific spike model® in which negative
regularization may lead to better generalization bound than interpolation (A = 0). In a companion
work [ABG™20], we connect properties of the ridgeless limit of the generalized ridge regression es-
timator to the implicit bias of preconditioned gradient descent (e.g., natural gradient descent), which
allows us to decide the optimal preconditioner (for generalization) in the interpolation setting.

3 Setup and Assumptions

In addition to the prediction risk of the weighted ridge estimator 3, = (XX + )\Ew)TX Ty, the
setup of which we outlined in Section 1, we also analyze the principal component regression (PCR)

estimator: for 6 € [0, 1], the PCR estimator is given as 3, = (X, X)Xy, where X = XUy
and the columns of Uy € RP*P are the leading fp eigenvectors of X,,.

Under the setup on (&, 3,, €) described in Section 1, the prediction risk of (1.1) can be simplified as

~ JESp 2 9 1 . 1 - _9
E(y _F ﬁ/\) = &1+ w zx/w(x/wx/w n )\I) - /\Em/w(X/wX/w + )\I)
Part 1, Variance
)\2 —1 —1
+ >t (zx/w (X}wx/w + )\I) S (X}wx/w + AI) > 3.1)
Part 2, Bias

where X/, = X2, '2 %, , =22, 212 5, ;= 5/°2;551/2 Note that the variance
term does not depend on the true signal, and the bias is independent of the noise level. Let d /,, be

*We remark that convergence and uniqueness of AMP and CGMT can be challenging to establish for A < 0.
Also, to our knowledge the current AMP framework does not handle the joint relation between X, and 3.
>Our negative ridge construction relies on the general notion of alignment, which subsumes the spike model.



the eigenvalues of 3/, and 3./, = U/, D /wU; Jw be the eigendecomposition of X, /,,,, where
z/w

U . is the eigenvector matrix and D /,, = diag(dm/w). Let dyyp £ diag (UT Zu,,;Uw/w).

When ¥, = I, d,,g characterizes the strength of the signal 3, along the directions of the eigen-
vectors of feature covariance 3,. To simplify the RHS of (3.1), we make the following assumption:

Assumption 1. Let d,,, ; and dyg,; be the ith entry of d /., and d.g, respectively. The empirical
distribution of (dy /i, dwp,s) jointly converges to non-negative random variables (h, g). Further,
ming d ;> ¢, Max; (dy j, i, dwp,i)) < o and || Eyg|| < cy for some ¢y, ¢, >0 independent of p.

One can check that 3, and ¥4 studied in [DW18, HMRT19, XH19] (with 33, = I) are special cases
of Assumption 1 with either h or g being a point mass. Our Assumption 1 thus covers much more
general settings of 3, and X3, which allows us to precisely analyze the negative ridge phenomenon.

4 Risk Characterization

With the aforementioned assumptions, we now present our characterization of the prediction risk.

Theorem 1. Under Assumption 1, the asymptotic prediction risk is given as
= 2\ m'(=A) gh
IE(”—NT ) LA S R N ) 52) == RO\), YA > —co (4.1

where co = (/7 — 1)?c;, and m(z) is the Stieltjes transform of the limiting distribution of the
eigenvalues of X ;,, X Iw' Additionally, m(—X), m'(=X) > 0 satisfy the self-consistent equations:

1 h
A sy Ry e Y (42)
1 h2 ,
b <m2(—A)VE(h-m(—A)H)z)m(A)' (4.3)

Note that the condition A\ > —cg ensures both m(—\) and m/(—\) exist and are positive. Fur-
thermore, it can be shown from prior works [DW 18, XH19] that the variance term (part 1) in (3.1),

converges to &2 :nn2((:§)) . Our main contribution is to characterize the bias term, Part 2, under signif-

icantly less restrictive assumption on (3,, 33, 33,,). In particular, we show that
m/(—A) gh

P
Part2 — -vE YA > —cp.
m2(—\) (h-m(=X\)+1)%’
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Figure 2: Finite sample prediction risk E(§ — @7 3,)? (experiment) and the asymptotic risk R(\) (theory)
against A for standard ridge regression (2., = I4). We set v = 2 and (n,p) = (300, 600). ‘dc’ and ‘ct’ stand
for for discrete and continuous distribution, respectively. We write ‘aligned’ if d,, and dg have the same order,
‘misaligned’ for the reverse, and ‘random’ for random order. Colors indicate different combinations of d, and
dg. Note that our derived risk R(\) matches the experimental values, and in the aligned and noiseless case, the
optimal risk is achieved when A < 0 (predicted by Theorem 4). The noisy case is presented in Appendix D.

We illustrate the results of Theorem 1 in Figure 2 (noiseless case) and Figure 8 (noisy case) for
both discrete and continuous design for d, and dg with 3, = diag(d,),¥s = diag(ds) and
3, = I (see design details in Appendix D). Note that Assumption 1 specifies a joint relation
between d.(= d,/,,) and dg(= d.p). In the following section, we mainly consider the three
following relations, which allow us to precisely determine the sign of A\qp.



Definition 2. For two vectors a,b € RP, we say a is aligned (misaligned) ———

with b if the order of a is the same as (reverse of) the order of b, i.e., aligned B
a; > a; iff b > (<) b for all i,j. Additionally, we say a and b have e
random relation if given the order of one vector, the order of the other is >

uniformly permuted at random. ’

Intuitively, aligned d,. and dg implies that when one component in d,, has <

large magnitude, then so does the corresponding component in dg, and k
vice versa (see Figure 3). In Figure 2, we plot the prediction risk of all Figure 3: Alignment be-
three joint relations defined above (see Appendix D for details). tween z and (3, in 2D.

Theorem 1 allows us to compute the risk of the generalized ridge estimator B » and also its ridgeless
limit, i.e., the minimum ||3||s,, norm interpolant (taking X,, = I yields the min ¢ norm solution).

Connection to PCR estimator. Note that the principal component regression (PCR) estimator is
closely related to the ridgeless estimator in the following sense: picking the leading fp eigenvectors
of X, (for some 6 € [0, 1]) is equivalent to setting the remaining (1 — 6)p eigenvalues of X,, to be

infinity [HG83]. The following corollary characterizes the prediction risk of the PCR estimator Bg:

Corollary 3. Given Assumption 1 and ¥,, = I, and h has continuous and strictly increasing
quantile function Qp,. Then for all 6 € (0,1], asn,p — oo,
my(0) ( gh ~2>
- AE +0 0y >1
5 N2 2 v . 2 ’
E(y-ap,) H {70 A (erme@ ) (4.4)

(VElgh - Tn<qn—0) +3°) 0y <1

1—-6v’

where hg = h - 1,50, (1-g) and mg(2) satisfies —z = my ' (z) — yEhg - (1 + hg - mg(2)) ™%

In addition, if E[g|h] is a decreasing function of h, and h has continuous p.d.f., then the asymptotic
prediction risk of By is a decreasing function of @ when 0~ > 1.

Corollary 3 confirms double descent under more general settings of (X, X ) than [XH19], i.e. the
risk exhibits a spike as v — 17, and then decreases as we further overparameterize by increasing

6. In Section 6 we compare the PCR estimator ,fig with the minimum ||B||)3w norm solution.
Remark. The PCR estimator [XHI9] and the ridgeless regression estimator (considered in
[HMRTI19]) are fundamentally different in the following way: in ridgeless regression, increasing
the model size corresponds to changing ~y, which also alters the dimensions of B, in contrast, in
PCR, increasing 0 does not change the data generating process (which is a more natural setting).

In terms of the risk curve, Figure 9(a) shows that the ridgeless regression estimator can exhibit
“multiple descent” as -y increases, whereas Corollary 3 and Figure 9(b) demonstrate that in the
misaligned case, the PCR risk is monotonically decreasing in the overparameterized regime 6y > 1.

S Analysis of Optimal A,

In this section, we focus on the optimal weighted ridge estimator and determine the sign of the
optimal regularization parameter Ay Taking the derivatives of (4.1) yields

¢ ¢ g_gh__
R'(\)- M — _~2E(17+03 R gh¢ YE o Eiep 51
( ) QW(ml(_/\))Q B 7 1-— ]EL (1+C)3 1— EL , 5.1
,7 (1+<)2 7 (1+<)2
Part 3 Part 4

where ( = h - m(—X\). For certain special cases, we obtain a closed form solution for Aoy (see
details in Appendix B.1) and recover the result from [HMRT19, DW18]° and beyond:

e When h = ¢ (ie., isotropic features [HMRT19]), the optimal Aoy is achieved at c/&.
e When g e (i.e., isotropic signals [DW18]), the optimal A is achieved at &2 /c.
 When E[g|h] £ E[g] (e.g., random order), the optimal Ay is achieved at 52 /E[g].

a.s.

In [HMRT19], A = 1. In [DW18], 2 = 1 and their signal strength o/ is equivalent to ¢y in our setting.
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Figure 4: We set ¥, = I and X3 = X7 where d, has two point masses on 1 and 5 with probability 3/4 and
1/4 respectively. Left: optimal \; solid lines represents the noiseless case & = 0 and dashed lines represents
SNR ¢ = 5. Right: prediction risk of the ridgeless (R(Aqp), dashed lines) and optlmally regulanzed (R(Xopt)s
solid lines) estimator in the noiseless case. We normalize the prediction risk as Ej*> = E(& ' 3,)%.

Although A, may not have a tractable form in general, we may infer the sign of Ay,. Note that in
(5.1), Part 3 is due to the variance term (Part 1) and Part 4 from the bias term (Part 2) in (3.1). We
therefore consider the sign of Part 3 and Part 4 separately in the following theorem.

Theorem 4. Under Assumption 1, we have

* Part 3 (derivative of variance) is negative for all A > —cy.

* IfE|g|h] is an increasing function of h on its support, then Part 4 (derivative of bias) is positive
forall X > 0. At A\ = 0, Part 4 is non-negative and achieves 0 only if E[g|h] = E[g].

* IfE[g|h] is a decreasing function of h on its support, then Part 4 is negative for all \ € (—cp, 0).
At \ = 0, Part 4 is non-positive and achieves 0 only if E[g|h] = E[g].

The first point in Theorem 4 is consistent with the well-understood variance reduction property of
ridge regularization. On the other hand, when the prediction risk is dominated by the bias term (i.e.,
5% = 0(1)) and both d, /w and dy,5 converge to non-trivial distributions, the second and third point
of Theorem 4 reveal the following surprising phenomena (see Figure 2 (a) and (b)):

M1 Ay < 0 whend,,, aligns with d,,s, or in general, E[g|h] is a strictly increasing function of h.
In the context of standard ridge regression, it means that shrinkage regularization only increases
the bias in the overparameterized regime when features are informative, i.e., the projection of
the signal is large in the directions where the feature variance is large.

M2 X\, > 0 when d,,, is misaligned with d,p, or in general, E[g|h] is a strictly decreasing
function of h. This is to say, in standard ridge regression, when features are not informative,
i.e., the projection of the signal is small in the directions of large feature variance, shrinkage is
beneficial even in the absence of label noise (the variance term is zero).

M1 and M2, together with aforementioned special case when g and h have random relation, provide
a precise characterization of the sign of Aoy In particular, M1 confirms the “negative ridge” phe-
nomenon empirically observed in [KLS20] and outlines concise conditions under which it occurs.
We emphasize that neither M1 nor M2 would be observed when one of 33, /,, and 3,5 is identity.
In other words, these observations arise from our more general assumption on (3, Jws Sw 8)-

Implicit regularization of overparameterization. Taking both the bias and variance into account,
Theorem 4 suggests a bias-variance tradeoff between Part 3 and Part 4, and Ay, will eventually be-
come positive as 62 increases (i.e., risk is dominated by variance, for which positive \ is beneficial).
For certain special cases, we can provide a lower bound for the transition from Agp <0 t0 Agp > 0.
Proposition 5. Given Assumption 1, let (h, g) = (1, 1) with probability 1 — q and (h, g) = (h1, g1)
with probability q, where hy > 1 and g1 > 1. Denote ¥ = v — 1. Then Ay, < 0 if

52 — — - max (Vq — 1)3:73(1 — Q) ’YCI(l - Q)'73
<(hi =191 — D <(1 — V(P + (yq — 1)%h2)’ (1—q)(hi + 7)3 n qh%'yf‘)'

As g approaches 0 or 1, the above upper bound goes to 0 because 33, 313 becomes closer to I. Oth-
erwise, when yq > 1, the upper bound suggests G2 = O(g;~y) which implies the SNR & = Q(hq /7).



Hence, as v increases, Aqp; remains negative for a lower SNR, which coincides with the intuition that
overparameterization has an implicit effect of {5 regularization (Figure 4 Left). Indeed, the following
proposition suggests such implicit regularization is only present in the overparameterized regime:

Proposition 6. When v < 1, A,y on (—cg, 00) is always non-negative under Assumption 1.

In Figure 4 we confirm our findings in Theorem 4 (for additional results on different distributions
see Figure 10). Specifically, we set X, = I, X, = diag(d,) and X3 = 3. As we increase «
from negative to positive, the relation between d,; and dg transitions from misaligned to aligned.
The left panel shows that the sign of A\, is the exact opposite to the sign of « in the noiseless case
(i.e. the variance is 0), which is consistent with M1 and M2. Moreover, when d. aligns with dg, Aop
decreases as y becomes larger, which agrees with our observation on the implicit /5 regularization of
overparameterization. Last but not least, in Figure 4 (Right) we see that the optimal ridge regression
estimator leads to considerable improvement over the ridgeless estimator. We comment that this
improvement becomes more significant as « or condition number of 3, and X3 increases.

Risk monotonicity of optimal ridge regression. [DS20, Proposition 6] showed that for isotropic
data (¥, = I), the asymptotic prediction risk of optimally-tuned ridge regression monotonically
increases with . This is to say, under proper regularization, more training data always helps the test
performance [KH92]. Here we extend this result to data with general covariance and isotropic 3, .

Proposition 7. Given E[xx | = X, satisfying Assumption 1 A0
and E[B,8]] = d 7, the asymptotic prediction risk of the v Aope=yolc
optimally-tuned ridge regression estimator (i.e., 3, = I) with

Aopt = Y02 /c is an increasing function of vy € (0, 00). R(A)

As shown in Figure 5 (where d,, has 3 point masses and dg = 1),
{5 regularization can suppress “multiple descent”, and the risk of
the optimally-tuned ridge estimator (purple) is monotone w.r.t. .
We remark that establishing such characterization under general 05 10 15 20
orientation of 3, (anisotropic 33) can be challenging, because
the optimal regularization A, may not have a convenient closed-
form. We leave the analysis for general 33 as future work.

Figure 5: Impact of ridge regular-
ization on the risk curve (SNR=3).
Darker color corresponds to larger .

6 Optimal Weighting Matrix

Having characterized the optimal regularization strength, we now turn to the optimal weighting
matrix 3,,. Toward this goal, we additionally require the following assumptions on (X, 33, %,,):
Assumption 2. The covariance matrix X, and the weighting matrix 3., share the same set of eigen-

vectors, i.e., we have the following eigendecompositions: ¥, = UD,U" and ¥,, = UD,U",
where U € RP*? is orthogonal, and D, = diag(d,), D,, = diag(d.).

Define ds = diag(U " XU ). Note that when X5 also shares the same eigenvector matrix U, then
c_lg = dg, which is simply the eigenvalues of 3.

Assumption 3. Let d ;, Jg,i, dw,i be the ith element of d,, 35, d,, respectively. We assume that
the empirical distribution of (dy ;,dg i, dy, ;) jointly converges to (s, v, s/r), where s,v,r are non-
negative random variables. Further, there exists constants cy, c,, > 0 independent of n and p such
that min; (min(dy i, dg.i, dw ) > ¢, max;(max(dy ;, dgi, dwi)) < ¢y and [|[ S| < cy.

For notational convenience, we define H,, and H, to be the sets of all 32,, and r, respectively, that
satisfy Assumption 2 and Assumption 3. Additionally, let S,, and S, be the subset of H,, and H,
such that » = f(s) for some function f (this represents X, € H,, that only depends on X, but
not X3). By Assumption 2 and 3, the empirical distribution of (dy /., dwg,i) jointly converges to
(r, sv/r) and satisfies the boundedness requirement in Assumption 1. Thus by Theorem 1 we have:
ml(—=\) sv _
R(r,\) & —/— 2. (4E 2), 6.1
o & T (P ) oD
where m,.(—\) satisfies the equation A = m.~* (=) —yE(1+7-m,.(—=\))~!r. Itis clear that when

r s, (6.1) reduces to the standard ridge regression with 3,, = I, and for r s 1, the equation

"Note that the parameter scaling differs from the previous setting by + to be consistent with that of [DS20].



reduces to the cases of isotropic features (3,, = X;). Note that (6.1) indicates that the impact of
3.5 on the risk is fully captured by dz. Hence we define 33 = U diag (dﬂ) U, which corresponds
to 7 = sv, and is equivalent to 33 when 34 also shares the same eigenvector matrix U. In the

following subsections, we discuss the optimal X, for two types of estimator: the minimum || 3]s,
solution (taking A — 0), and the optimally weighted ridge estimator (A = Aop). Note that the risk
for both estimators is scale-invariant over 3,, and r. Hence, when we define a specific choice of
(3., ), we simultaneously consider all pairs (¢X,,,7/c) for ¢ > 0. Finally, we note that the choice
of r = s- E[v|s] € S, plays a key role in our analysis, and its corresponding choice of X, is given
as B, = (f,(2,)) ", where f,(s) £ E[v|s] and f, applies to the eigenvalues of 3.

6.1 Minimum | 3|5, solution

Taking the ridgeless limit leads to the following bias-variance decomposition of the prediction risk,

) m!.(0) SV ) A mi(0)
Bias: Ry(r) & ——Z .~E Vi : Ry(r) & /< .5°
ias: Rp(r) m2(0) 0l RN OESIE ariance (r) m2(0) 2
In the previous sections we observe a bias-variance tradeoff in choosing the optimal \. Interesting,
the following theorem illustrates a similar bias-variance tradeoff in choosing the optimal X,,:

Theorem 8. Given Assumptions 2 and 3,

o r ¥ sv(ie, Xy = 2;1) is the optimal choice in H, that minimizes the bias function Ry(r).
Additionally, r = Ev|s] - s (i.e., Ty = (fo(Ss)) ") is the optimal in S, that minimizes Ry ().

e rE1(ie, Xp=X,)is optimal in both S, and H,. that minimizes the variance function R, ().

Theorem 8 implies that the variance is minimized when X, = 3. Since the variance term does not
depend on 3, it is not surprising that the optimal X, is also independent of 3 3. Furthermore, this

result is consistent with the intuition that to minimize the variance, B » should be penalized more in
the higher variance directions of ,, and vice versa. On the other hand, Theorem 8 also implies that
the bias is minimized when d,, = 1/dg which does not depend on d,,. While this characterization
may not be intuitive, when c_lg = dg (i.e., X also shares the same eigenvector matrix U), one
analogy is that since the quadratic regularization corresponds to the a Gaussian prior N (0, 2;1), it

is reasonable to match 32 ! with the covariance of 3, , which gives the maximum a posteriori (MAP)
estimate. In general, the optimal 3, admits a bias-variance tradeoff (i.e., the bias and variance are
optimal under different 3,,) except for the special case of 3,33 = I.

Additionally, the following proposition demonstrates the advantage of the minimum ||3|5;,, solution
over the PCR estimator in the noiseless case.

Proposition 9. Given Assumption 2 and 3 and & = 0, suppose s and E[v|s] - s both have continuous
and strictly increasing quantile functions. Then the minimum || 3||s;, solution outperforms the PCR
estimator for all § € [0,1) when X, = 251 € Hy, or when X, = (f,(22)) 7! € Sy

6.2 Optimal weighted ridge estimator

Finally, we consider the optimally-tuned weighted shrinkage and discuss the optimal choice of 3.

Theorem 10. Suppose Assumptions 2 and 3 hold. Then r = sv (i.e., 3, = 2;1 ) is the optimal

solution in H, that minimizes miny R(r, \). Additionally, r = Elv|s] - s (i.e., T = (fo(Z2))"Y)
is the optimal solution in S, that minimizes miny R(r, \).

In contrast to the ridgeless setting in Theorem 8, the optimal d,,, for general Aoy does not depend on
the noise level but only on d, the strength of the signal in the directions of the eigenvectors of 3.
We conjecture that this is because in the optimally weighted estimator, Ay is capable of balancing
the bias-variance tradeoff; therefore the weighting matrix may not need to adjust to the label noise
and can be chosen solely based on the signal 3, . Indeed, as previously discussed, 3, = 251 isa

preferable choice of prior under the Bayesian perspective when dg = c_lg.
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Figure 6: R(Aop)/E(2" B,)? against ~y for various weighting matrix X.,,. Solid lines represent the noiseless
case 6 = 0 and the dashed lines represent the noisy case with fixed SNR £. We set d,; to be aligned with dg
and Left: d, to have 4 point masses (1,2, 3,4) with equal probabilities and dg with 2 point masses on 1 and
5 with probabilities 3/4 and 1/4, respectively; Right: d, has 2 point masses on 1 and 5 with probabilities 3/4
and 1/4, respectively, and X5 = Efc; we set X, = Eg.

Theorem 10 is supported by Figure 6, where we plot the prediction risk of the generalized ridge
regression estimator under different 33, and optimally tuned Ay, We consider a simple discrete
construction for aligned d., and dg(= dg). On the left panel, we enumerate a few standard choices
of 3,,: 3,3, 1,3, ! and the optimal choice 251 (red). On the right, we take X, to be powers of

> around the optimal E/gl. In both setups, we confirm that 251 achieves the lowest risk uniformly
over v, as predicted by Theorem 10.

Note that our main results require knowledge of ¥, and 5. While 3, can be obtained in a semi-
supervised setting using unlabeled data (e.g., [RC15, TCG20]), it is typically difficult to estimate 3

directly from data. Without prior knowledge on ¥4, Theorem 10 suggests that r = E[v|s] - s is the
optimal r that only depends on s. That is, 3,, = (f,(2,)) ! is the optimal X, that only depends
on X,. In the special case of E[v|s] = E[v], standard ridge regression (2., = I) is optimal in S,,.
When the exact form of f,(s) is also not known, we may use a polynomial or power function of s
to approximate either f,(s) or 1/f,(s), whose coefficients can be considered as hyper-parameters
to be cross-validated. We demonstrate the effectiveness of this heuristic in Figure 7: although our
proposed X, = fU(EI)_1 (blue) is worse than the actual optimal (red) 3, = Egl (same as f}gl
due to diagonal design), it is the best choice among weighting matrices that only depend on 3J,. In
addition, we seek the best approximation of f,(s) by applying a power transformation on 3, and
we observe that certain powers of X, also outperform the standard isotropic regularization.

0.6

“|— Noiscless 6 =0

o v
2 Noiseless & = 0

1.0 15 20 255 30 35 4.0 10 15 20 25y 3.0 35 4.0
Figure 7: R(\op)/E(2 " B3,)? against ~ for various weighting matrix 3,, under noiseless & = 0 (solid lines)
and noisy setting with fixed SNR & (dashed lines). Left: We set f,(s) as an increasing function of s on its

support; Right: We set f,(s) as a decreasing function of s on its support. Note that the heuristically chosen
weighting matrices often outperform the standard ridge regression estimator (green).

7 Conclusion

We provide a precise asymptotic characterization of the prediction risk of generalized ridge re-
gression in the overparameterized regime. Our result greatly generalizes previous high-dimensional
analysis of ridge regression, which enables us to discover and theoretically justify various interesting
findings, including the negative ridge phenomenon, the implicit regularization of overparameteriza-
tion, and a concise description of the optimal weighted shrinkage. Future works include extending
our analysis to border settings, such as more general eigenvalue conditions [XH19] or the random
features regression model [MM19]. Another important direction is to construct weighting matrix
3. solely from training data that outperforms isotropic shrinkage in the overparameterized regime.



8 Broader Impact

This work does not present any foreseeable direct societal consequence.
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