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A Proofs omitted in Section 4

A.1 Proof of Theorem 1

We first claim that function m(—\) that satisfies (4.2) is indeed the Stieltjes transform of the limiting
distribution of the eigenvalues of X /wX . This is because the empirical distribution of the eigen-

values of X, /., converges to the dlstrlbutlon of h due to Assumption 1. By the Marchenko-Pastur
law, it is straightforward to show that the minimal eigenvalue of X /., X ;w is lower bounded by cg
as n — oo. Hence, we have m(—\) > 0 for all A > —cg. Then by taking derivatives of (4.2), we
know that (4.3) holds. The rest of the proof is to characterize Part 1 and Part 2 in (3.1) and show
4.1).

For Part 1 in (3.1), based on prior works [DW18, XH19], we have

_om/ (=)
Part 1 in (3.1 G A.l
art 1in (3.1) — m2(—\) (A.1)
Hence, we only need to show that
(=X h
Part 2in 3.1) B E g (A2)

m2(—N) T om(eN 1 )2

Towards this goal, we first assume that 3,5 is invertible and define S = X 23X /25 + )\E:U}g,

where X 25 = X 1,35/ ~ N(0, 15, /25) and 2,25 = S,1°5, ), S, 1/%. Simplifica-
tion of Part 2 yields
2

A

o tr (2, w258 2.

—tr(Zp /w255 )

To analyze the above quantity, we adopt the similar strategy used in [LP11] and first characterize a

related quantity % tr (X ;w2 5X Jw Bz). Note that, on one hand, we know that
Li(s2x7.,,Xx _ ly(stoasy!
E tr Jw? B Jw2p = ﬁ tI‘( - wp

1 T -1 T -2
= = tr(EwB(X/wX/w A = AB5(X X o + AT) )
(A.3)

On the other hand, let ;25 ; be the ith row of X /25 and S\; = S — w/wzﬂ,iaz;wzﬁ ;» then we
have

S
M:

1
ﬁtr<572X;w25X/w2r3> - /1025 lS L jw2p,i
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—

)\2:13;“}2ﬁ Z‘S\_7;2w/w2ﬁ,i

(A Az, ST x/wzﬁl)w

(A4)
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where the last equality holds due to the Matrix Inversion Lemma. Note that from Assumption 1, the

eigenvalues of 3, /,, i Ywsl is
bounded away from co. Hence, by the Marchenko—Pastur law, we know that

2¢1/2 w—1/2 g—2 —1/2 1/2 25:21/2 _1 _1wl1/2
H)\ Em/wzwﬁ S\z 2 m/wH - HA z/w(X}er/w + )\I) 271’5(X/U1X/w + )\I Ez/wH
and

1/2 52=1/2 g1 1/2 1/2 1/2 T _1w1/2
h
"We can exchange expectation and derivatives because 2 hm ' =7 1+}’:m>2 < sup h when m(—\) > 0
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are upper bounded away from oo for any A\ > —co®. Furthermore, observe that Jw?8,; 1S indepen-
dent of S \i and(A.4). Hence by Lemma 2.1 in [LP11], we can show that

1 o1 n %tr(zw/qﬁgs\;z)
—tr(STX 25 X ju2g) =Y , YA > —cq.
n Jw2B [w?p n N2
i—1 ()\ + 2 tr (23,/“,%5\_1. ))
Next, we replace S \71.1 by S ' and show the difference made by this rank-1 perturbation is negligible.
From the Matrix Inversion Lemma, we have

A A B
%tr(zw/wggs\}) — S tr(Sa 2 1)‘

sup
A m}—u@,@,is\iilEw/WQBSQIm/w257i
= sup— —
i@ n Lt@) 05,5 T/wp
_ —1/2 —1/2
A ||w;w2ﬂ,is\i12$/w2ﬁs\i / ” : ”S\Z / w/uz2,8,7',||
S sup — 1
i n 1+ w/Tuﬂﬁ,iS\i T /w2p,i
—1/2 -1/2 -1/2 —1/2
Mz 2.8 2118 2 B0 sus 832 1S P2 2l
< sup-— : —
i 1+ m}rwzﬁ,is\i w/'WQﬂvi
-1 x] o ST s
< IS0l -supAH(X}wX/w PN —apa,) |- supt LA
i ’ i nl4+ :n;w%’is\i T /w2,
1
< o))
Similarly,

A2 _ A2 _
g tr(Zw/wzﬁS\f) - ; tr(Ex/wszS 2) ‘

sup
i

2 (S (850 = 57)) sl (B (55 - 57)57)

—1 —1
12 ol 1 (0 A (372 AL = i) | A (7 +00) )

= sup
i

IN

1 m;w’zﬁ,is\_ilw/wzﬁ,i
- sup — — —
i 1A T g5\ Brurp,i

-1
X sup )\H (X;wX/w + AT — w/w’iw;w’o

o)

Hence, we have

/\72 tr(Em/wzﬁS_Q)
(A+ 2 40(Tyu2sS )’
%2 tr(Em/sz.SHQ)

<)\ n ;\Ltr<Dw/w (X;wx/w n /\I)l)>2

%2 tr(zx/w2ﬁs_2)

2
1
(m(—)\) )

where the last equality used the following known results in [LP11, DW18, XH19]:
1

A T -1 P,

1
Etr(S_2X7w2BX/w25) £>

1=

s VA > —Cp, (AS)

8We take pseudo-inverse when A = 0
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Combine (A.3) and (A.5), we have
1
m?(—A)

1
Part2 % 2 tr(zwg(X}wX/w D) = A0 (X ] X + /\I)*Q) YA > —co.
n

Our next step is to characterize % tr (Ewg (X LUX Jw M )*1). From Theorem 1 in [RM11], for

any deterministic sequence of matrices ®,, such that % tr ( (©, ('-)n)l/ 2) is finite, we know that as
n,p — 00,

1 1\ a6 1 -1
ntr(Qn(X;wX/w—zI) )dﬁnt <®n(cn(z)2x/w—zI) ), Vz e CT —RT,

where ¢, (z) satisfies
hncn(z)
hnen(z) — 27
and h,, follows the empirical distribution of D, ,,. Hence, it is clear that ¢, (z) — —zm(z) for all

z € Ct —R* due to (4.2) and the dominated convergence theorem. Now let ©,, = X,,5. Since
> wg 1s a positive semi-definite matrix, we have

en(z)=1—19E

1 1/2 1 d
—t(ETEw ):—tEw < e, < o
nr( 5 g) nr( B)*nc 00

Therefore, applying Theorem 1 in [RM11] yields

itr(zu,[g (X;wX/w - zI)_1> % 1 tr(ZUJlg(fzm(z) B — ZI)il)

n
1 _
= ftr<Ux/wEwﬁU;/w(fzm(z) Dy — 2I) 1)
n
_ wﬂz +
= - g d T VzeC

z/w, zm
From Assumption 1 and dominated convergence theorem, we have
A -1 a.s. g
22 (XTXw )\I) woE— 9 y_ieCt—R* A6
nr< wp\ & fuwk fo ¥ TR m—a) + 1 < (A.6)

-1
Note that both 3,5 and (X LUX Jw + M ) are positive semi-definite matrices, and thus

IN

;\Ltr<2w5 (XX o+ A1) 1) )\H (XX + /\I)IH . %tr(zwﬁ)

IN

)\H (X7 X + /\I)IH : %cu

1
Hence 2 2 tr (Zwﬂ (X/wX/w + /\I) ) is bounded on A\ > —cg; by the dominated convergence

theorem, we can extend (A.6) to A > —c( and conclude that

A _ g
Z Y (X7 X DY p— 4 _
SN EIETEIRSTE PR R

It is straightforward to check % tr (Ew s(X ;wX Jw AL )*2) is bounded as well. With arguments
similar to [DW 18] and [HMRT19], we have

oL tr(zwﬁ(xij/w + AI)*1>

1 T —2 _
Etr(zwg(X/wX/w D) ) - -

‘We therefore arrive at the desired result

A - A vy g g- /(7)‘)
2 tr(Bu (X X o+ AD?) 25 JE— ey Ly
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Combining the above calculations, we know (A.2) holds when 3,3 is invertible. Finally, we extend
(A.2) to the case when X, is not invertible. For any € > 0, we let 37 5= Y wg + €l. Then, from
the above analysis, we have

A’ T R T 1 ag M (=A) (g +e)h
71H<2uw(kavw+XQ o (XX ju + M) >>m%<MWEw-mGA%+DT

Note that the LHS of above equation is decreasing as e decreases to 0 and the RHS of above equation
is always bounded for any € < 1. Hence by the dominated convergence theorem, we know that (A.2)
holds for non-invertible 3,3 as well.

A.2 Proof of Corollary 3

We only provide the proof for the overparameterized regime when 6 > 1, because the calculation
is straightforward when 6y < 1 (see [XH19]). Since h has continuous strictly increasing quantile
function Qp,, we know that the 1 — 6 quantile of d,,, (which is the threshold of top fp elements
of d,,,) converges to Qp,(1 — ). Therefore, the empirical distribution of the top 6p elements of
d, /., and the corresponding d,,s jointly converges to the conditional distribution of (h,g) given
h > Qn(1 — 0). Hence, we can apply Theorem 1 and obtain that

w5 ) » m(0) gh ~
IE( — ) b O (R | ————— | > 1-46 Eghl _ 2).

Yy xﬁa — mg(o) Y (hm9(0)+1)2| - Qh( ) +’Y g h<Qn(1-0) +o
Here the extra term yEghl, <@g, (1—6) comes from the “misspecification” by dropping the small
(1 — 0)p number of eigenvalues, and my(z) should satisfy that

h
—z = me(Z)’YeE[l—i—h-ﬂMZ)VLZQh(IG)}

By replacing the conditional expectation with the normal expectation, we complete the calculation
of the asymptotic prediction risk in Corollary 3.

Next, when E[g|h] is a decreasing function of h and h has continuous p.d.f. denoted by f(h) (in this

m3(0)
decreasing function of 6. Let gy and my be the shorthand for Q(1 — ) and mg(0) respectively.
Because @)y, is a strictly increasing continuous function and A has continuous p.d.f., we know that
% exists and is negative. Hence, by the chain rule, we only need to show that 881;”; > 0, which is

equivalent to

proof), we show that the asymptotic prediction risk mg(0) (wE [W} + &2) £ Ryisa

E[g|h]hf(h) ghj 5m9> hemyg
0 —7‘ + Elglh]hf(h ‘ _9E .
< (hmg 4+ 1)2 Ih=qo lglh]R () h=qo (hemo +1)3  0qo ) (home +1)2
gh o\ [ hPmZf(h) hZmyg 6m5>
(B—2 7‘ _9F : , A7
< (heme +1)2 7 ) <(hm9 +1)2 lh=go (heme +1)3  0qe A7
where we use the fact that
—1
m’Q(O) homyg 2 hemeg
mg(O) < " (hgma + 1) an 7 1+ hgmy
We simplify the RHS of (A.7) by breaking it into three parts:
h*m3 (2 + hmy) ) h*mg f(h) Elg|hlho
RHS of (A7) = Elglh he—’ )E —( 0 ‘ >E
of (A.7) ( [g| }f( ) (hmg + 1)2 h=qo (hemg + 1)2 (hme + 1)2 h=qp (hgmg + 1)2
part (i)
2 Omy (E him3 E gheme ghim? E home )
mg dqe (homg +1)3 (hgmg + 1)? (hemg +1)3  (hgmyg + 1)
part (ii)

+ (Eghli<q, +&°) <2]E hgmo __ Omg h2m§f(h)‘ )
o
h=qe

(heme + 1) dgs  (hmg + 1)2

part (iii)
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To show part (i) is positive, note that since E[g|h] is a decreasing function of h, we have

Elg|h]he he
_ WY < Rlglh B,
(hgmg +1)2 — g1 ]’h:qs (hgmg + 1)?
Therefore,
] he thgf(h) )
t (i) > Elglh -E :
part (i) > E[g|h] heao  (hgmg + 1)2 ((hm0+1)‘h=q9

Hence part (i) is positive because gy < sup h.

To show that part (ii) is non-negative, observe that by taking derivatives with respect to gy on both
sides of 1 = YE4™¢_ we have

hgmg+1°
h 0 h h
E 0 . me  _ mo f( )‘ . (A.9)
(hgmg +1)2  Oqe hmg + 1 lh=qo
Hence, we know that %739" > (. What remains is to show that
hgmy - Blglhlhome . Elglhlhgmg . homo (A10)
(hgmg + 1)2 (hgmg + 1)2 - (hgmg + 1)3 (hgmg + 1)2 ' ’
Denote the probability measure of h as u and let fi be the new measure of hgmau - [(hgme +
I)QE%]*. Let  be a random variable following the new measure /i and hg = hl .
Then since E:;::i 7 is an increasing function of h and E[g|h = h] is a decreasing function of h, we
have B - B
h ~ homoElg|lh = h
B2 E(E[glh = ]) > B2 I =2 lglh = h]
homg + 1 homg + 1

We then change h back to h and obtain that (A.10) holds. We therefore conclude that part (ii) is
non-negative.

To show that part (iii) is non-negative, we only need to confirm that
h2mg ~Omy S h*m2 f(h) ‘
(homo + 1) Og9 — (hmg +1)% lh=q,
From (A.9), this is equivalent to
W3me _mmmw Wﬁﬂm‘ g o
(hgmg +1)3  hmg+11h=¢e — (hmg+ 1)2lh=qo = (hgmy + 1)2’

which is then equivalent to

2E

h? S h ’ B he
homg +1)2 = (hmg+1)lh=qp  (hgmg +1)%"

2E
(
The above equation clearly holds because #ﬁl is an increasing function of h.
The proof of Corollary 3 is completed by combining the above calculations.
B Proofs omitted in Section 5
B.1 Optimal )\ for simple cases

When h == ¢, then ¢ = h - m(—)\) is a single point mass at ¢ - m(—\). Thus (5.1) achieves 0 is
equivalent to

¢ ¢ =2 —
il (1- 7oy ) — 77 gl — () = 0,

Ii[-g] (1 —7(1i<)> = m(-\). (B.1)

which is also equivalent to
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Note that (4.2) is now simplified to

1=Am(=)\) + Wﬁ

Furthermore, under Assumption 1, the SNR can be simplified to

Plug the above calculations into (B.1), we have

Aopt = == = —.

On the other hand, when g 2 ¢, then (5.1) achieves 0 is equivalent to

¢? ¢? ¢? ¢ - ¢?
B (1 R <>2) — Rty T VR

which is equivalent to
¢ =2
1-—7E—— -A) = 0.
< 1B . —a“m(=\)

Plug (4.2) in above equation, we recover

=2
2

)\Opt = ?
Finally when E[g|h] & Eg, then (5.1) achieving 0 is equivalent to

% e e ¢ %
B By (1 ‘”]E<1+<>2> “E R R g O mENE

which is equivalent to

¢ > -2
Eg-{1—9E—— | —"m(—=X) = 0.
g ( (et pnws (=)
Plug (4.2) in above equation yields the desired result
~2
o

Aoyt = ——.
" Elg]

B.2 Proof of Theorem 4

Let ¢ = h - m(—A\). Taking derivatives of (4.3) with respect to A on both sides, we have

~ Bt (w(-3)”

m’(=\) =
— Bt ™Y
Also, rearranging (4.2) and (4.3) yields
¢
am(=\) = 1—~yE——
m(=A) gttt

m'(=\) = <1—7E(Cfl)2)_lm2(—x).

By (B.2)-(B.4), we have

% = (=A)m(=A) +2(m' (2)))?
a m3(=A)
I (U CoN) S SRS
m3(—\) I_VEﬁ (1—|—<)3-

19

(B.2)

(B.3)

(B.4)

(B.5)



Hence with (B.5), it is straightforward to obtain (5.1). In addition, note that m(—X\), m'(—=X) > 0
for all A > —cy. Therefore, from (B.4), we know that 1 — vE% > 0 and thus Part 3 is always
negative for all A > —c.

Next, we analyze the sign of Part 4. Note that

. 1 % gh¢ - . & gh
Partd 20 = (VE(1+C)2>E(C+1)3 <Earorturoe

Amn(—=X) ¢ gl® o ¢? g¢
( Y +EO+(P>E@+1P:5E0+<PEO+CF’

(B.6)
where the last equivalence holds due to (B.3) and m(—\) > 0 for all A\ > —¢g. Denote the proba-

bility measure of h as p(h). We introduce a new probability measure i(h) = (HS%. Let
a+0)?

follow this new measure ji and ( = k- m(—A). In addition define f(h) = E[g|h).

* When E[g|h] = f(h) is an increasing function of h, then for any fixed m(—X\) > 0, we have

f(h)S ¢ -
EL2S S B> _RE(R
1+<Z 1+¢ fh),

because both —<~ and f (iL) are increasing function of h. Then we change h back to h and obtain

1+¢
E[g|h]¢? 2 Elg|h
LSS e S lglh]¢
(C+1)% ((+1)? (1+0)? (C+1)?
Hence, for all A > 0, we know that Part 4 is positive; at A = 0, Part 4 is non-negative. Moreover,
the equality in above equation is only achieved when E[g|h] is constant almost surely or A is

E

constant almost surely, which is equivalent to E[g|h] = E[g]. Hence, Part 4 is 0 at A\ = 0 only
when E[g|h] = E[g].
* When E[g|h] = f(h) is a decreasing function of A, then for any fixed m(—\) > 0, we have

f(h)¢ ¢ .
EL2S < B> Ef(h
1+<S 1+¢ ),

due to the fact that fr z and f (ﬁ) have different monotonicity w.r.t. h. Replacing h with h, we

arrive at ) ) )
E
Gy ¢ g ¢ LElglC
C+1)?2 (C+1)2 7 (140 ((+1)?
Hence, for all A < 0, we know that Part 4 is negative; at A = 0, Part 4 is non-positive. Similarly,
Part 4 is 0 at A = 0 only when E[g|h] = E[g].

E

This completes the proof of Theorem 4.

B.3 Proof of Proposition 5

From the proof of Theorem 4 in Appendix B.2, we know that to obtain Aoy < 0, it is sufficient to

show
gh¢_ o ¢ SE R

Parotaror T g >0

E

E _
1+0? (40?2 v (1+¢?
With the distribution assumption on (h, g), this is equivalent to the following

(hl - 1)(91 - 1)h1m2 > 5_2 (1 . ) m2 + h%mQ
(1 +m)3(L + hym)3 Da+meE "0+ hm) )
where m = m/(0) satisfies that

m him
1= 1-— . B.
’y(( q)1+m+qh1m+1> (B.7)

vq(1 - q)
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This gives the following upper bound for 52:

(hy —1)(g1 — D)y
1—¢q)(1 4 him)3 + gh?(1 4+ m)3’

To provide a more intuitive result, we remove m from (B.8). Note that from (B.7), we can derive
the following straightforward upper bound for m:

1 1
m < max , ,
- <h1(vq—1) 7—1)

which we plug in (B.8) and obtain

52 <yq(1—q) ( (B.8)

(h1 —1)(g1 — D)y (h1 —1)(g1 — Dhy(y — 1)

3 37 - _1)\3 2.3
(1_q)(7;gl) +qh§(ﬁ) (1=q)(h +v—1)" +aghiy

52 < yq(1 — q) max

B.4 Proof of Proposition 6

Note that (3.1) holds for v < 1 as well. It is clear that the bias term is non-negative and is strictly
positive when A # 0. Hence, we know the bias achieve its minimum only at A = 0. We therefore
only need to demonstrate that the variance term converges to a decreasing function of A for A > —cy.
Let s(z) be the Stieltjes transform of the limiting distribution of the eigenvalues of X ;wX Jw> then
we have s(—\) satisfying

1
R(1 —~+4As(=N)) + A

In addition, from the Marchenko-Pastur law, the minimal eigenvalue of X ;wX Jw is bounded by
inf,ere, e, b (1— \ﬁ)z Hence, when vy < 1, for all A > —c¢g, we know that s(—X\) is well defined
and positive. Observe that for all A # 0, m(—X\) and s(—\) satisfies the following relation

s(-)) = E (B.9)

1—
m(=A\) = TV Fys(—N). (B.10)
Therefore from the proof of Theorem 1, we have the exact same expression of Part 1 for v < 1 and
A # O
2 (=)
m?*(=A)
When A = 0, we should replace m(—AX) by s(—\) using (B.10). Since Part 1 is a continuous
function of A\, we only need to focus on A # 0 and show the following equation for all A > —cy and
A #0:

Part1 5 & YA > —co, A # 0.

CZ
(V). Baige
m3(=A)  1-4E

o < 0. (B.11)
(1+¢)?
Although we have proved (B.11) for the case v > 1 in Appendix B.2, we used the fact that m(—X\) >
0 which is not guaranteed when v < 1. In fact, only s(z) and its any order derivatives are guaranteed

to be positive on z < ¢y, and m(—\) can be negative. Hence, we need to rederive (B.11) for v < 1.
From (B.5) and (B.4), what is left to be shown is that

r_ 2 2, _
N g ¢ W meN
m(=A) (1+¢)? (1+h-m(=2))?

By taking derivatives on both sides of (B.10) and from s’(—\) > 0, we have
L—7
\2

We therefore have m/(—\) > 0 and (B.12) clearly holds when m(—X) > 0. Since A > 0 implies
m(—A) > 0 due to (B.10), we only need to show (B.12) when A < 0 and m(—X) < 0. We claim

>0, YA>—co,A#0. (B.12)

m' (=) — = vs'(=\) > 0.
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that when A < 0 and m(—\) < 0,1+ k- m(—A) < 0 holds almost surely, and thus (B.12) is true

due to
h2
— E .
m(—A) <0 and (1+h~m(—)\))3<0

We use contradiction to prove the claim. Suppose there exists ¢, > inf h £ ¢;, such that 1 + h -
m(—\) > 0 for all h < ¢, and the probability of h < c, is positive. Then let ¢, = —m(—\)"1,
we have ¢, > ¢, > ¢, > 0. Furthermore, from (B.3) and definition of ¢y, we have

h h'cm

—cn(l - ﬁ)2 =—C <A=—Cm— VEW < —Cm +7Eﬁﬂh>cm~

Therefore, we have

h 1 ch D\ 22—
E——Thse —1-—(1- 0. B.13
et > (1= 20— A2) > 2 .13
On the other hand, since m’(—AX) > 0, from (B.4), we have
1 h? h2c?
0 —AE < AR om .
S A hom(en)E S T )2 e

which is equivalent to

1 h 2
—>E{ ——1I}~. .
’Y> (hcm h>m>

However, from (B.13) and Jensen’s inequality, we have

h 2 2-4)2 1
E( Hh>0m> > w > —.

h —cm Y ¥

We have arrived at a contradiction and thus 1+ hAm(—X) < 0 should hold almost surely when A < 0
and m(—\) < 0.

B.5 Proof of Proposition 7

First note that in the setup of general data covariance and isotropic prior on 3,, the prediction risk
under optimal ridge regularization is given in [DW18, Theorem 2.1] as
1

R()\opt) = )\optm(_>\opt) )

(B.14)

where Aope = 52v/c. Note that (4.2) implies that m(—Aqpt) satisfies the following equation when
v > 1or when~ > 0 and 52 > 0°:

h . m(_AO [)
Ao “Dopt) = 1 —yB—— 27 B.1
pt(—Aopt) T (= opt) (B.15)
Therefore, taking the derivative of (B.14) with respect to v yields
dR(Xopt) ~ _iz 1 n 1 oM~ (—Aopt)
dy Y2 m(=Aopt) Y 2]
1 1 1/52 h 0 h )
= - V——+-—4+E—F+———+y " E—— ——
Y2m(=Xopt) Y ( ¢ L+ h-m(—Aopt) 'Y@,Y L+ h-m(—Aopt)
0 h
P
9y T+ m(— o)
h2 ) am(*Ao t)
= _(E L2y B.16
( T+ h-m(e))?) 0 (.10

“Note that when 5 = T and 5% > 0 we have Aoy > 0. Hence m(—MAop) exists for all y > 0.
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For notational convenience we define o = 52 /e, i.e. Aopt = y. Note that for a fixed a, m(—Aopt)
is a function of . Thus we let u(y) = m(—a~). Then (B.16) implies that we only need to show

d%—g) < 0. Taking the derivative with respect to v on both sides of (B.15), we have
du(y) h - u(y) h? du(y)
+ - _E —~E . :
B ) R (R0
which is equivalent to
h-u
du(y) _ —oul(y) —Egpily
= =
! oy + VB e
h- _>\o t
B —am(—=Aoy) — E 1+$§L(—>I\)(,)p,)
= =
Y + VB e
1

_ - ’
v (0‘7 T VE e >
where the last inequality holds due to (B.15). Finally, when 62 = 0 and v < 1, we know that

Aopt = 0 and R()\Opt) = 0. We thus know that the prediction risk R is increasing as a function of
v € (0, 00).

C Proofs omitted in Section 6

C.1 Proof of Theorem 8

We first show that 3, = 3 ! i.e., r being a point mass, is the optimal ., for the variance term.
From (B.3) and (B.4), we know the the variance function R, (r) can be written as

1 1
R,(r) = &° =5’
¢ [
L= Bty VBT
where we define ¢, = r - m(0) in this proof. Note that % and ﬁ are both monotonic function

of ;- with different monotonicity, we thus have

r ” 1 1 1
E ¢ 2§]E ¢ E —<1>,
(1+¢) 1+¢ 14¢ v gl
where the last equality holds due to (B.3). The equality is achieved only when 7 is a single point
mass. Hence, we have
~2 ~2
R (r) > 071 -9
(1-2) -1
The minimum variance is achieved when r is a single point mass, i.e., D, Jw = I and therefore,
z, =31

For the bias term, we first show that r 2 s, i.e., X, = 2[;1 is the optimal choice of r for all non-

negative random variable'?. The result for » € S, immediately follows because as long as r € S,
Ry, remains the same when we replace v by E[v|s]. Suppose r # sv almost surely. Let us define
ro = - sv + (1 — a)r and consider the following bias function Ry, («):

5 M (0) v
Ry(a) = mi(O)W (ra - ma(0) +1)2°

where mq (—X), m/, (=) > 0 satisfy that

(o3

1 Ta

= —vE
A Ma(—N) 1 e ma(—N)

1%We do not require  being bounded away from 0 and oo because we focus on the function Ry, directly.
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1 r2 -
b <ma(—)\)’YE(ra.ma(_)\)_i_l)Z)ma( A)- (C.1)

Note that mq () is the Stieltjes transform of the limiting distribution of the eigenvalues of + X, X
where the covariance matrix of the rows of X ,, has its eigenvalues weakly converging to the random
variable r,,. Hence m,(0) > 0 and m/,(0) > 0 are well defined.

Our goal is to show that 1 € argmin, Ry(). We define (, = 74 - mq(0). Then from (4.2) and
(C.1), we know that (B.3) and (B.4) hold with ( replaced by (. Hence, we have

Eety _E
Rp(a) = ot =

2 - 9
(o3

¢ Ca
1-9E (Cat1)Z E(Cqul)Q

sv
(Cat1)?

where the last equality holds due to (B.3). By taking derivatives with respect to « in (B.3), we know
that

Oa A=0 ETama(=N) __|yx=0 (1—a)]E<7“2’ :
(147ra-ma(—N))2 (1+<¢a)
where ¥, = sv - my(0). With (C.2), we have
de(Oé) (%) wa (¢a - Ca) C(x 2 1%@ (wa - <(x) Ca
do = ETaToe (Eu +<a>2> (T (TSP (A
_ Coc (1 - Ca)(wa - Ca) wa (1 - Ca)ga '(/)a - Coz "/}a
(S L (Y R oY A F S R (N EA (RaSEN
(C.3)

where in equation (i) we omitted the following positive multiplicative scalar:

()

We claim that the RHS of (C.3) is equivalent to the following

(Yo — Ca)? G\ Yo —Ca \n Ca(Pa = Ca) s Yo — Ca Ca
R (E<1+ca>2> - (Euwm) B MR L FUrL A G
A B C

-1

(C4)

We apply the AM-GM inequality on the first two terms and obtain that A + B > 2v/AB, and
then apply Cauchy-Schwartz inequality on v/AB and obtain that v/AB > C. Hence we know
—2(A + B — 2C) < 0 and the equality is achieved only when £ ¢, which implies & = 1 or
both ¢, and (,, are single point mass. For the later case, we have %{i‘l) = 0 for all v and therefore
a=1,ie,r £ sv, is one of the minimum solutions. For the first case, we know Ry, («) is a strictly

decreasing function of « and achieves its minimum at o« = 1 which is r % sv. To show (C.4), we
first simplify the first two terms in the RHS of (C.3).

"/}a (Q/Ja B <a) Ca 2 waga (wa B Coc) Ca
e o) I e i e e

_ _ Ca(wa_goc) Ca 2{2—1%@ (¢a—ca) Ca
= AT (Emca TR AR E Y (N

—2E

2
)2> +4C +2E

_ _ Coz (wa — Coc) Ca Yo CCQK (% — Ca) Coc
= 2A 4+ 4C -2 L+ E(l n Ca)2E(1 ) + 2E(1 T Ca)3E (140G E(l FWRE
= —2A-2B+4C
Coz (% B Coz) Coc wa Cgt 7/}(1 - Coz wa
B (o Rl (N i ON ElL e (IoN o (RSN EL (RPN ER
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(C.5)
Similarly for the last two terms of (C.3),

o TR oy Tt A (RS EI (R
S (Er A e e woron:
B (E o (bre b e R oo o (e
= e e e et e e

(C.6)
Combine (C.5) and (C.6), we have (C.4) holds.

C.2 Proof of Proposition 9

Since X, = 2;1 is the optimal choice for 3,, € H,,, we only need to prove this proposition in the
case when 2, = (f,(Z,)) "

Note that the proposition holds in the regime 6 > 1 due to the proof of Theorem 8 and Corollary

3. When v < 1, denote the quantile functions of s and § = E[v|s] - s as Q; and Q- respectively.
We have

E[sv-Iicqi(1-0)] E[E[v]s] - sls<q, (1-0)]
= E[8licq,(1-6)5<@.(1-0)) + E [8H3<Q1(1 0),5>Qa(1-0))
> E[8l,c0,(1-0),5<@s(1-0)] + Q2(1 = O)P(s < Q1(1 —6),5 > Q2(1 — 0))
= E[slicg,(1-0)5<0s(1-0)] + Q2(1 —O)P(s > Q1(1 — 0),5 < Q2(1 - 0))
> E[8l,c0,(1-0),5<@s(1-0)] +E[3L>q,(1-0),5<Q2(1-0)]

= E [S]I§<Q2(1—9)] :

From Corollary 3, we know that the risk achieved by the PCR estimator is at least the same as that of
a second PCR estimator where we replace (3., X3) by (£,X.*, I'). From [XH19], the optimal risk
achieved by the PCR estimate for v < 1 in the second PCR problem is worse than the full model

solution. Hence we

risk R(E[v|s] - s,0) which is the same risks achieved by the minimum || 3| s,
know that the minimum ||3||s,, solution outperforms the PCR estimate for v < 1 as well.

C.3 Proof of Theorem 10

From (B.3) and (B.4), we have the following equivalent formula for the risk function R(r, \):
72 +E

R(r,\) = &7
1= Bty
where we define ¢, = r - m,.(—\) in this proof. We also know that m,.(—\) satisfies
Gr
1=2m,. (=) +~E .
(=A) +9E C

Let us first consider » € H,. The result for » € S, immediately follows because as long as
r € &, R(r,\) remains the same when we replace v by E[v|s]. We now apply similar proof
strategy of Theorem 8 in Section C.1. Consider any r € H,. with 7 # sv almost surely. We define
rq = a - sv + (1 — «)r and consider the following risk function R, (\):

7* + B loop
Ba(A) = [SYCNEI
1 =B or
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where (o (A) = 74 - Mo (=), and m, (— ) satisfies that

1 T
A = “AE
Ma(—A) Rt} + 7o s Mo (=)

Note that m,,(z) is the Stieltjes transform of the limiting distribution of the eigenvalues of %X X,
where the covariance matrix of the rows of X ,, has its eigenvalues weakly converges to the random
variable r,. We define ¢, = — infcx x > 0, in which

1
K = support of the limiting distribution of the eigenvalues of — X , X .
n
We know that mq,(—A) > 0 and m/ (=\) > 0 for all A\ > ¢,, and from Section 4 of [SC95], we
know that 2(3)
. Ca(A
hm Eai
roet - (L+ Ca(V)?

Furthermore, mq(—A) — 0 as A — oo. Hence we know that Aoy (@) = argmin, R, (\) exists!'!,
and by taking derivatives with respect to A for R, (\), it is clear that Ay (cv) should satisfy that

=1.

~2 sv sv-Co

BTy Engey 7
a - a :

1-vEqzey By

where we slightly abuse the notation and use ¢, as a shorthand for (4 (Aopt(x)). We now consider
the following optimization problem:

min Ro(Aopt(@)).

Our goal is to show that 1 € argmin,, R, (Aopi(c)), from which we have
m/\in Rsv()‘) = Ra()‘OPt(a)”a:l < Ra(>‘0pl(04))|a:0 = m/\in R.(N).

Which informs us that the optimal 7 for optimal weighted ridge regression is 7 = sv.

Taking the derivatives of R, (Aopt(cr)) with respect to o yields

d R (Aopt()) _ ORa(A)  (Oma(=A) d Aopi (@) n Ome (=) ‘ n aRa()\)’
do Omea(—A) O\ do Oo A=Aop (@) O Ia=Agp(a)
@) ORa(N)

Oa ’A:x\opl(a)

SU('(/)a_Ca) Cc% Ca('(/)a_Ca) ~2 SU
B EYNE (1‘”E<1+<a>2)+E 143 (” ”E@aﬂ)?)’

K

(C.8)

a?,ia((_)\))\) N =0, and we defined 1o = sv - Mo (—Aopt()) in

this proof. In addition, the multiplicative scalar omitted in the last equation is the following positive

constant 7
1-a ¢\
( 2 (“”E(uca)?))

Combining (C.7) and (C.8) yields

dR, ()‘Opt(a)) "/}aga Ca ('(/)a — Coc) wa ("/)a — Ca) Cc%
da =0 % Paar arar P ara)r T+
Ca(wa - Ca) ? (¢a — Ca)2 Cgé
“ (E 0+ G ) =E ey e
Where the last inequality holds for all o < 1 by Cauchy-Schwartz. Therefore,
1 € argmin Ry, (Aopt(v)).

where equality (i) holds due to

This completes the proof of the theorem.

"TAs A — oo, the LHS of (C.7) remains finite and the RHS of (C.7) goes to infinity. On the other hand, as
X — ¢, the LHS of (C.7) goes to infinity and the RHS of (C.7) remains finite.
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D Auxiliaries

D.1 Experiment Setup

We include the detailed constructions of d, and dg and figures mentioned in the main text. The
values of d, and dg used in Figure 2 are constructed in the following way:

Discrete to discrete: For d,, we set each quarter of elements to be 1, 3,5 and 7 respectively; For
dg, we set one forth elements to be 8 and rest of the elements to be 1.

Discrete to continuous: For d,., we set half of the elements to be 1 and rest of the elements to be
8; For dg, we i.i.d. sample from unif([1, 8]).

Continuous to continuous: For d,, we i.i.d. sample from unif([1, 5]); For dg, we i.i.d. sample
from random variable @ = min(u? + 1,5) where u ~ N(0, 1).

Continuous to discrete: For d,, we i.i.d. sample from unif([1, 8]); For dg, we set half of the
elements to be 1 and rest of the elements to be 7.

The values of d,, and dg used in Figure 7 are constructed as:

We construct a and b to be two independent Gaussian N (0, 1) random variables.

Left: Let (dy;,dg;) S (s,v) where s = |a| + 5 and v = (a + b/2)? + 1. It is then straight-
forward to show that f,(s) = E[v|s] = (s — 5)% + 5/4. Hence, the optimal ¥, € S, is
Sw = (8, —5I)2 +1.251) .

Right: Let (d i, dg,;) ey (s,v) where s = |a|7' +2and v = (a + b/2)® + 1. It is then
straightforward to show that f,(s) = E[v|s] = ﬁ + 5/4. Hence, the optimal X, € S, is

= (8 —20)"24+1.251) .

The covariances in Figure 9 are constructed as follow (we remark that the slightly different scaling
is to ensure that the resulting risk for each choice is roughly of the same magnitude to be presented
in one figure):

Aligned: We construct d, to be three point masses (a, b, c) with weights (4/11,4/11,3/11),
respectively. We choose x = 50 and locate a = 1,b = a/k and ¢ = b/k. We set Xg = 18/5- .

Misaligned: We construct d,, to be the same as the aligned case, and set X3 = 4/9 - 2;1.

Other: We construct d, and dg to be the sum of two vectors d; and ds, both of which consists
of two point masses. d; has its first 1/5 entries to be 1 and the rest 1/10, and ds has its first 4/5
entries to be 1 and the rest 1/10. We setd,, = 2-d; and dg = (d1 + d2)/3,
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D.2 Additional Figures
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(a) Aligned, SNR &€ = 5 (b) Misaligned, SNR £ = 5 (c) Random, SNR ¢ =5

Figure 8: Finite sample prediction risk E(§ — & B,)? (experiment) and the asymptotic risk R(\) (theory)
against A for standard ridge regression (2,, = I4) under label noise with SNR & = 5. We set v = 2 and
(n,p) = (300,600). ‘dc’ and ‘ct’ stand for for discrete and continuous distribution, respectively. We write
‘aligned’ if d, and dg have the same order, ‘misaligned’ for the reverse and ‘random’ for random order. Colors
indicate different combinations of d, and dg. Note that our derived risk R(\) matches the experimental values
for all cases.
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(a) ridgeless regression risk. (b) PCR risk.

Figure 9: Comparison of the ridgeless regression estimator [HMRT19] and the PCR estimator. We set
n = 300, v = 5 and SNR=50. Observe that the ridgeless regression risk exhibits multiple peaks in the overpa-
rameterized regime due to the anisotropic covariances (especially when d, and dg are misaligned). In contrast,
the PCR risk is largely decreasing with 6, especially for the misaligned case, which agrees with Proposition 3.
We remark that the PCR risk is not always monotone for 6 > 1, as illustrated by the blue curve.
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Y Y
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(a) d,; ~ unif([1, 3]). (b) d; ~ 501 + 503.

Figure 10: We set 3, = I and X3 = 3. As ~ increases from 1.1 to 4, we show the optimal value of X and
the solid lines represents the noiseless case ¢ = 0 and the dashed lines represents the noisy case with a fixed
SNR £. The solid green line shows the level of 0. We set the distribution of d to be (a): uniform on [1, 3];
(b):two point masses on 1 and 3 with half and half probability.
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