
Appendix: Towards a Better Global Loss Landscape of GANs
The code is available at https://github.com/AilsaF/RS-GAN. This appendix consists of additional
experiments, related work, proofs, other results and various discussions.

Contents
1 Introduction 1

2 Difference of Population Loss and Empirical Loss 2

3 Landscape Analysis of GANs: Intuition and Toy Results 3

4 Main Theoretical Results 5
4.1 Landscape Results in Function Space . 5
4.2 Landscape Results in Parameter Space . 6
4.3 Discussion of Implications . 7

5 Case Study of Two-Cluster Experiments 7

6 Real Data Experiments 8

7 Conclusion 9

A Related Work 15
A.1 Related Works on Local Minima and Mode Collapse . 15

B 2-Cluster Experiments: Details and More Discussions 17

C Result and Experiments for Imbalanced Data Distribution 18
C.1 Imbalanced Data: Math Results for Two-Clusters . 18
C.2 Experiments . 19

D Experiments of Bad Initialization 19

E Experiments of Regular Training: More Details and More Results 20
E.1 Experiment Details and More Experiments with Logistic Loss 20
E.2 Experiments with Hinge Loss . 22
E.3 Experiments with Least Square Loss . 22

F Experiments on High Resolution Data 22

G Discussions on Empirical Loss and Population Loss (complements Sec. 2) 23
G.1 Particle space or probability space? . 23
G.2 Empirical loss and population loss . 24
G.3 Generalization and overfitting of GAN . 24

H Proofs for Section 3 (2-Point Case) and Appendix C (2-Cluster Case) 24
H.1 Proof of Claim 3.1 and Corollary 3.1 (for JS-GAN) . 24
H.2 Proof of Claim 3.2 (for RS-GAN) . 25
H.3 Proofs for 2-Cluster Data (Possibly Imbalanced) . 26

I Proof of Theorem 1 (Landscape of Separable-GAN) 26

J Proof of Theorem 2 (Landscape of RpGAN) 27
J.1 Warm-up Example . 27
J.2 Proof of Theorem J.1 . 28

J.2.1 Graph Preliminaries and Proof of Lemma 1 . 30
J.2.2 Proof of Claim J.1 . 31

J.3 Proof of Theorem 2 . 32

K Results in Parameter Space 33
K.1 Sufficient Conditions for the Assumptions . 33
K.2 Other Sufficient Conditions . 34
K.3 Proofs of Propositions for Parameter Space . 35
K.4 A technical lemma . 36
K.5 Proof of claims . 37

L Discussion of Wasserstein GAN 37

14

https://github.com/AilsaF/RS-GAN

A Related Work

We provide a more detailed overview of related work in this section.

Global analysis in supervised learning. Recently, global landscape analysis has attracted much
attention. See Sun [81], Sun et al. [80], Bianchini and Gori [15] for surveys and [55, 57, 26, 56, 38,
2, 92, 27] for some recent works. It is widely believed that wide networks have a nice loss landscape
and thus local minima are less of a concern (e.g., [60, 32, 50]). However, this claim only holds for
supervised learning, and it is not clear whether local minima cause training difficulties for GANs.

Single-mode analysis. For single-mode data, Feizi et al. [30] and Mescheder et al. [65] provide a
global analysis of GANs. They consider a single point 0 and a single Gaussian respectively. Feizi
et al. [30] differs from ours in a few aspects. First, they consider the single-mode setting which does
not have an issue of mode collapse. Second, they assume pdata is a Gaussian distribution, while
we consider an arbitrary empirical distribution. Third, they analyze “quadratic-GAN,” which is not
common in practice, while we analyze commonly used GAN formulations (including JS-GAN).

Mode collapse. Mode collapse is one of the major challenges for GANs which received a lot of
attention. There are a few high-level hypotheses, such as improper loss functions [3, 5] and weak
discriminators [66, 78, 5, 52]. Interestingly, RpGAN both changes the loss function and improves the
discriminator. The theoretical analysis of mode collapse is relatively scarce. Lin et al. [58] makes a
key observation that two distributions with the same total variation (TV) distance to true distribution
do not exhibit the same degree of mode collapse. They proposed to pack the samples (PacGAN) to
alleviate mode collapse. This work is rather different from ours. First, they analyze the TV distance,
while we analyzed SepGANs and RpGANs. Second, their analysis is statistical, while our analysis is
about optimization. As for the empirical guidance, RpGAN and PacGAN are complimentary and can
be used together (suggested by the author of [41]). There are a few more works that discuss mode
collapse and/or local minima; we defer the discussion to Appendix A.1.

Theoretical studies of loss functions. The early work on GANs [35] built a link between the
min-max formulation and the J-S distance to justify the formulation. Arjovsky and Bottou [3] pointed
out some possible drawbacks of J-S distance, and proposed a new loss based on Wasserstein distance,
referred to as WGAN. Later, Arora et al. [5] point out that both Wasserstein distance and J-S distance
are not generalizable, but they also argued that this is not too scary since people are not directly
minimizing these two distances but a class of metrics referred to as “neural-network distance.”

Convergence analysis. Many recent works analyze convergence of GANs and/or min-max opti-
mization, e.g., [23, 22, 6, 34, 64, 88, 39, 79, 90]. These works often only analyze local stability or
convergence to local minima (or stationary points), making it different from our work. Lei et al. [48]
studied the convergence of WGAN, but restricted to 1-layer neural nets.

Other theoretical analysis. There are a few other theoretical analysis of GANs, e.g., [68, 59, 29, 16,
8, 51, 61, 48]. Most of these works are not directly related to our work.

Other GAN Variants. There are many GAN variants, e.g., WGAN [4, 3, 36] and variants [86,
46, 1, 24, 25], f -GAN [74], SN-GAN [67], self-attention GAN [89], StyleGAN [43, 44] and many
more [63, 69, 12, 70, 21, 54, 49, 78, 74, 75, 66, 37, 76, 10, 49]. Our analysis framework (analyzing
global landscape of empirical loss) can potentially be applied to more variants mentioned above.

A.1 Related Works on Local Minima and Mode Collapse

We discuss a few related works on local minima and mode collapse, including Kodali et al. [45], Li
and Malik [53] and Unterthiner et al. [83] that are mentioned in the main text.

DRAGAN. Kodali et al. [45] suggested the connection between mode collapse and a bad equilibrium
based on the following empirical observation: a sudden increase of the gradient norm of the discrimi-
nator during training is associated with a sudden drop of the IS score. However, Kodali et al. [45]
don’t present formal theoretical results on the relation between mode collapse and a bad equilibrium.
IMLE. Li and Malik [53] proposed implicit maximum likelihood estimation (IMLE). The empirical
version of IMLE in the parameter space is the following:

min
w

nX

j=1

min
i2{1,...,m}

kxi �Gw(zj)k2. (9)

15

In other words, for each generated sample yj = Gw(zj), the loss is the distance from yj to the
closest true sample xi. Interestingly, IMLE and RpGAN both couple the true data and the fake
data in the loss. The differences are two fold: first, IMLE does not have an extra discriminator f✓,
while RpGAN has; second, IMLE compares yj with all xi (so as to find the nearest neighbor) while
RpGAN compares yj with an arbitrary xj . See Table 3 for a comparison. Note that Li and Malik
[53] don’t present formal theoretical results on the landscape.

Table 3: Models that couple true data and fake data in the loss
Model name Empirical form of loss i Form of coupling Optimization
RpGAN [41] maxf

P
j
h(f(xj)� f(yj)) pairing min-max ii

RaGAN iii [41] maxf
P
j
h(1

n

nP
i=1

f(xi)�f(yj)) comparing with average min-max

(max-)sliced-WGAN max
|f |L1

nP
i=1

[f(X)(i) � f(Y)(i)]
2 iv pairing sorted output min-max

[24, 25]
IMLE [53]

P
j
mini2[n] kyj � xik2 comparing with closest min

Coulomb-GAN
P

i,j k(xi, xj) +
P

i,j k(yi, yj) non-zero-sum
[83] �2

P
i,j k(xi, yj)

v all-pairs game vi

i We show the empirical form of the loss in the function space. Rigorously speaking, the provided form is the the loss for one mini-batch;
in practice, in different iterations of SGD we will use different samples of xi, yj . For the emprical loss in the parameter space, we shall
replace f by f✓ and yj by Gw(zj). ii Besides the zero-sum game form (min-max form), RpGAN can be easily modified to a non-zero-
sum game form (“non-saturating version” proposed in [35]). iii The precise expression of RaGAN (relativistic averaging GAN) shall beP

j
h1(1

n

P
n

i=1 f✓(xi)�f✓(yj))+
P

i
h2(1

n

P
n

j=1 f✓(yj)�f✓(xi)), but for simplicity we only present one term in the table.
iv Here f(X)(1)  · · ·  f(X)(n) and f(Y)(1)  · · ·  f(Y)(n) are the sorted versions of f(xi)’s and f(yi)’s respectively.
v Here k is the Coulomb kernel, defined as k(u, v) = 1

(
p

ku�vk2+✏2)↵
where u, v 2 Rd, ↵  d � 2 and ✏ > 0. The original

form of Coulomb-GAN is a non-zero-sum game, but it is straightforward to transfer the formulation to a pure minimization form since
the discriminator-minimization problem has a closed form solution (used in the proof of [83, Theorem 2]). We presented the transformed
minimization problem here. vi Coulomb-GAN is presented as a non-zero-sum game, but as mentioned earlier it can be transformed to
a minimization problem. The original Coulomb-GAN uses a smoothing operator in the generator loss; in this empirical form, we omit the
smoothing operator for easier comparison (thus it is not the same as Coulomb-GAN). In the table, we show the resulting loss in the pure
minimization form. Unlike SepGAN and RpGAN that can be written as either min-max form or non-zero-sum game form, we point out
that there is no min-max form for Coulomb-GAN, since the design principle of Coulomb-GAN is very different from typical GANs.

Coulomb-GAN. Unterthiner et al. [83] argued that mode collapse can be a local Nash equilibrium
in an example of two clusters (see [83, Appendix A.1]). They further proposed ColumbGAN and
claimed that every local Nash equilibrium is a global Nash equilibrium (see [83, Theorem 2]). Their
study is different from ours in a few aspects. First, they still consider the pdf pg , though restrict the
possible movement of pg (according to a continuity equation). In contrast, we consider the empirical
loss in particle space. Second, the bad landscape of JS-GAN is discussed in words for the 2-cluster
case [83, Appendix A.1], but not formally proved. In contrast, we prove rigorous result for the general
case. Third, they do not study parameter space (though with informal discussion). Fourth, they do
not present landscape-related experiments, such as the narrow-net experiments we have done.

Common idea: Coupling true data and fake data. Interestingly, similar to IMLE and RpGAN,
ColumbGAN also coupled the true data and fake data in the loss functions. RpGAN, RaGAN (a
variant of RpGAN considered in [41]), IMLE and ColumbGAN differ in two aspects: the specific
form of coupling (pairing, comparing with average, comparing with the closest, all possible pairs),
and the specific form of optimization (pure minimization, min-max, non-zero-sum game). See the
comparison in Table 3. It is interesting that all three lines of work choose to couple true data and
fake data to resolve the issue of mode collapse. We suspect it is hard to prove similar results on the
landscape of empirical loss for IMLE and Coulomb-GAN.

Relation to (max)-sliced Wasserstein GAN. We point out that the sliced Wasserstein GAN (sliced-
WGAN) [24] and the max-sliced Wasserstein GAN (max-sliced-WGAN) [25] also couple the
true data and fake data. For any function f , denote f(X) = (f(x1), . . . , f(xn)) and f(Y) =
(f(y1), . . . , f(yn)). The empirical version of the max-sliced Wasserstein GAN can be written as

min
Y

max
|f |L1

W2(f(X), f(Y))2. (10)

Here f is a neural net with codomain R, and W2 is the Wasserstein-2-distance. Denote f(X)(1) 
· · ·  f(X)(n) and f(Y)(1)  · · ·  f(Y)(n) as the sorted versions of f(xi)’s and f(yi)’s respec-

16

(a) JS-GAN 1st run (b) JS-GAN 2nd run (c) RS-GAN 1st run (d) RS-GAN 2nd run
Figure 7: Comparison of JS-GAN and RS-GAN for two different runs. First row: D loss; second row: fake data movement during training.

tively. Then Eq. (10) is equivalent to

(max-)sliced-WGAN6 : min
Y

max
|f |L1

nX

i=1

[f(X)(i) � f(Y)(i)]
2. (11)

This form is quite close to RpGAN (when h(t) = t2): the only differences are the sorting of
f(X), f(Y) and the extra constraint |f |L  1. The extra constraint |f |L  1 is due to unbounded h,
and can be removed if we use an upper bounded h (which leads to a sorting version of RpGAN). See
the comparison of max-sliced-WGAN with RpGAN and other models in Table 3.

Nash equilibria for Gaussian data. A very recent work Farnia and Ozdaglar [28] shows that for a
non-realizable case (with a linear generator) Nash equilibria may not exist for learning a Gaussian
distribution. This setting is quite different from ours.

B 2-Cluster Experiments: Details and More Discussions

In this part, we present details of the experiments in Section 5 and other complementary experiments.

Experimental Setting. The code is provided in “GAN_2Cluster.py”. We sample 100 points from two
clusters of data near 0 and 4 (roughly 50 in each cluster). We use GD with momentum parameter 0.9
for both D and G. The default learning rate is (Dlr, Glr) = (10�2, 10�2). The default inner-iteration-
number for the discriminator and the generator are (DIter, GIter) = (10, 10). The discriminator and
generator net are a 4-layer network (with 2 hidden layers) with sigmoid activation and tanh activation
respectively. The default neural network width (Dwidth, Gwidth) = (10, 5). We will also discuss the
results of other hyperparameters. The default number of training iterations is MaxIter = 5000. We
use the non-saturating versions for both JS-GAN and RS-GAN.

Understanding the effect of mode collapse, by checking D loss evolution and data movement.
In the main text, we discussed that mode collapse can slow down training of JS-GAN. For easier
understanding of the training process, we add the visualization of the data movement (which is
possible since we are dealing with 1-dimensional data) in Figure 7. We use the y-axis to denote the
data position, and x-axis to denote the iteration. The blue curves represent the movement of all fake
data during training, and the red straight lines represent the position of true data (two clusters). The
training time may vary across different runs, but overall the time for JS-GAN is about 2-4 times
longer than that for RS-GAN.

Effect of width. The default width is (Dwidth, Gwidth) = (10, 5). We tested two other settings:
(20, 10) and (5, 3). For the wide-network setting, the convergence of both JS-GAN and RS-GAN are
much faster, but RS-GAN is still faster than JS-GAN in most cases; see Fig. 8. For the narrow-network
setting, RS-GAN can recover two modes in all five runs, while JS-GAN fails in two of the five runs
(within 5k iterations). See Fig. 9 for one success case of JS-GAN and one failure case of JS-GAN. In
the failure case, JS-GAN completely gets stuck at mode collapse, and the D loss is stuck at around
0.48, consistent with our theory.

6Note that max-sliced-WGAN in Deshpande et al. [25] uses minY maxkvk1,|g|L1 W2(v
T g(X), vT g(Y))2, while sliced-

WGAN in Deshpande et al. [24] uses minY Ekvk=1 max|g|L1 W2(v
T g(X), vT g(Y))2. In Eq. (10) we use f(u) to replace vT g(u)

to simplify the expression; although technically, f and vT g are not equivalent, this minor difference does not affect our discussion.

17

(a) JS-GAN 1st run (b) JS-GAN 2nd run (c) RS-GAN 1st run (d) RS-GAN 2nd run
Figure 8: Wide network (Dwidth, Gwidth) = (20, 10): JS-GAN and RS-GAN in two different runs. Compare to regular widths (Dwidth,
Gwidth) = (10, 5), both GANs converge faster. Anyhow, RS-GAN is still 2-3 times faster than JS-GAN.

(a) JS-GAN 1st run (b) JS-GAN 2nd run (c) RS-GAN 1st run (d) RS-GAN 2nd run
Figure 9: Narrow network setting: Comparison of JS-GAN and RS-GAN in two runs. RS-GAN is a few times faster than JS-GAN in general.
Compare to default widths (D width 10, G width 5), both GANs converge slower. In one case (b), JS-GAN gets stuck at mode collapse.

Other hyperparameters. Besides the width, the learning rates and (DIter, GIter) will also affect the
training process. As for (DIter, GIter), we use (10, 10) as default, but other choices such as (5, 2) and
(1, 1) also work. As for learning rates, we use (0.01, 0.01) as default, but smaller learning rates such
as (0.001, 0.001) also work. Different from the default hyper-parameters, for some hyper-parameters,
the D loss of JS-GAN does not reach 0.48, indicating that the basin only attracts the iterates half-way.
Nevertheless, in most settings RS-GAN is still faster than JS-GAN.

C Result and Experiments for Imbalanced Data Distribution

In the main results, we assume xi’s are distinct. In this section, we allow xi’s to be in general
positions, i.e., they can overlap. The 2-point model can only approximate two balanced clusters.
Allowing xi’s to overlap, we are able to analyze imbalanced two clusters. We will show: (i) a
theoretical result for 2-cluster data; (ii) experiments on imbalanced 2-cluster data and MNIST.

C.1 Imbalanced Data: Math Results for Two-Clusters

Assume there are n true data points X = (x1, . . . , xn) in two modes with proportion ↵ and 1� ↵
respectively, where ↵ > 0.5. More precisely, assume x1 = x2 = · · · = xn↵ and xn↵+1 = · · · = xn,
and denote two multi-sets X1 = {x1, x2, . . . , xn↵} and X2 = {xn↵+1, x2, . . . , xn}. Denote Y =
(y1, . . . , yn) as the tuple of all generated points, and let Y be the multiset {y1, . . . , yn}.
Claim C.1. Consider the JS-GAN loss defined in Eq. (1), where X is defined above. We have

�JS(Y,X) = q↵(m1) + q1�↵(m2), if |X1\Y|=m1, |X2\Y|=m2,

where q↵(m) , ↵

2
log(↵n) +

m

2n
logm� ↵n+m

2n
log(↵n+m).

(12)

As a result, the global minimal loss is � log 2, which is achieved iff Y = X1 [X2.

Corollary C.1. Suppose Ŷ = (ŷ1, . . . , ŷn) satisfies |X1 \ Ŷ|= n1, |X2 \ Ŷ|= n � n1, where

Ŷ = {ŷ1, . . . , ŷn} is the multiset of all ŷj’s, then Ŷ is a strict local minimum. Moreover, if n1 6= n↵,

then Ŷ is a sub-optimal strict local minimum.

The proofs of Claim C.1 and Corollary C.1 are given in Appendix H.3.

Denote m1 , |X2\Y|,m2 , |X1\Y|. The value q↵(n) indicates the value of �(Y,X) at the mode
collapsed pattern (state 1a) where m1 = n,m2 = 0. Note that q↵(n) = ↵

2 log ↵
↵+1 + 1

2 log
1

↵+1 is
a strictly decreasing function of ↵. When ↵ = 1/2, q↵(n) = 1

4 log
1
3 + 1

2 log
2
3 ⇡ �0.4774; when

↵ = 2/3, q↵(n) ⇡ �0.5608. The more imbalanced the data are (larger ↵), the smaller q↵(n), and

18

Figure 10: Illustration of the landscape of JS-GAN for balanced two clusters with ↵ = 0.5 (left) and imbalanced two clusters with ↵ = 2/3

(right). Denote mi , |Xi \Y|, i = 1, 2. Here state 0, state 1a, state 1b, state 2 represent (m1,m2) = (0, 0), (n↵, 0), (n↵, 0),
(n↵, n(1 � ↵)) respectively. By Claim C.1, for ↵ = 1/2, q↵(n) ⇡ �0.48 and q↵(↵n) ⇡ �0.35; for ↵ = 2/3, q↵(n) ⇡ �0.56
and q↵(↵n) ⇡ �0.46. Different from the 2-point-case landscape in Fig 5, there should be some intermediate patterns (satisfying m1 
n,m2 = 0), but for simplicity we do not show them. From state 1a to state 2, Y can go through state 1b or go through state 0, but we only
show the path through state 1b. We view the gap between state 0 and state 1a as an approximation of the “depth” of the basin.

(a) JS-GAN D loss (b) JS-GAN Data Evolution (c) RS-GAN D loss (d) RS-GAN Data Evolution

Figure 11: Imbalanced 2-cluster result: comparison of JS-GAN in (a) and (b), and RS-GAN in (c) and (d). (a)
and (c): evolution of D loss; (b) and (d): data position movement during training.

further the deeper the basin. In Figure 10, we compare the loss landscape of the balanced case
↵ = 1/2 and the imbalanced case ↵ = 2/3.

We suspect that the deeper basin in the imbalanced case will make it harder to escape mode collapse
for JS-GAN. We then make the following prediction: for JS-GAN, mode collapse is a more severe
issue for imbalanced data than it is for balanced data. For RS-GAN, the performance does not change
much as data becomes more imbalanced. We will verify this prediction in the next subsections.

C.2 Experiments

2-Cluster Experiments. For the balanced case, the experiment is described in Appendix B. Both
JS-GAN and RS-GAN can converge to the two-mode-distribution. For the imbalanced case where
↵ = 2

3 , with other hyper-parameters unchanged, JS-GAN falls into mode collapse while RS-GAN
generates the true distribution (2/3 in mode 1 and 1/3 in mode 2) (see Fig. 11). The loss �JS(Y,X)
ends up at approximately -0.56, which matches Claim C.1.

MNIST experiments. To ease visualization, we create an MNIST sub-dataset only containing 5’s
and 7’s. We use the CNN structure of Tab. 7 and train for 30k iterations. For the balanced case, the
number of 5’s and 7’s are identical (i.e., ratio 1:1). Both JS-GAN and RS-GAN generate a roughly
equal number of 5’s and 7’s, as shown in Fig. 12(a,b). For the imbalanced case with 4 times more 7’s
than 5’s (ratio 1:5), JS-GAN only generates 7’s, while RS-GAN generates 13 5’s among 64 generated
samples, aligning with the true data distribution (see Fig. 12(c,d)).

The above two experiments verify our earlier prediction that RS-GAN is robust to imbalanced data
while JS-GAN easily gets stuck at mode collapse for imbalanced data.

D Experiments of Bad Initialization

A bad optimization landscape does not mean the algorithm always converges to bad local minima7. A
‘bad’ landscape means is that there exists a “bad” initial point (the blue point in Fig. 13(a)) that it will
lead to a ‘bad’ final solution upon training. In contrast, a good landscape is more robust to the initial
point: starting from any initial point (e.g., two points shown in Fig. 13(b)), the algorithm can still find
a good solution. Therefore, bad optimization landscape of JS-GAN does not mean the performance of
JS-GAN is bad for any initial point, but it should imply that JS-GAN is bad for certain initial points.

Next, we will show experiments that support this prediction.
7Technically since we are not dealing with a pure minimization problem, we should say “the algorithm

converges to a bad attractor”. But for simplicity of illustration, we still call it “local minimum.”

19

(a) balanced MNIST: JS-GAN (b) balanced MNIST: RS-GAN (c) imbalanced MNIST: JS-GAN (d) imbalanced MNIST: RS-GAN

Figure 12: Balanced and Imbalanced MNIST setting: Comparison of JS-GAN and RS-GAN.

5-Gaussian Experiments. We consider a 2-dimensional 5-Gaussian distribution as illustrated in
Fig. 14(a). We design a procedure to find an initial discriminator and generator. For JS-GAN or
RS-GAN, in some runs we obtain mode collapse and in some runs we obtain perfect recovery. Firstly,
for the runs achieving perfect recovery (Fig. 14(b)) in JS-GAN and RS-GAN respectively, we pick
the generators at the converged solution, which we denote as GJS0 and GRS0 respectively. Secondly,
for the runs attaining mode collapse (Fig. 14(c)) in JS-GAN and RS-GAN respectively, we pick
the discriminators at the converged solution, referred to as DJS0 and DRS0, Then we re-train both
JS-GAN and RS-GAN from (DJS0, GJS0) and (DRS0, GRS0) respectively.

Figure 15: MNIST experiment

We define an evaluation metric =
PK

k=1 min1i104(↵kxi�Ckk),
where Ck’s are the cluster centers, ↵ is a scalar and xi’s are 104 true
data samples. We repeat the experiment S = 50 times and compute
the average . The larger the metric, the worse the generated points.
As shown in Fig. 14(a), the metric � is much higher for JS-GAN than
for RS-GAN, for various learning rates lr.

MNIST Experiments. We use a similar strategy to find initial parameters for MNIST data. Fig. 15
(also in Sec. 6) shows that RS-GAN generates much lower FID scores (30+ gap) than JS-GAN.

The two experiments verify our prediction that RS-GAN is more robust to initialization, which
supports our theory that RS-GAN enjoys a better landscape than JS-GAN.

E Experiments of Regular Training: More Details and More Results

In this section, we present details of the regular experiments in Sec. 6 and a few more experiments.

E.1 Experiment Details and More Experiments with Logistic Loss

Non-saturating version. Following the standard practice [35], if limt!1 h(t) = 0, we use the
non-saturating version of RpGAN in practical training:

min
✓

LD(✓;w) , 1
n

X

i

h(f✓(xi))� f✓(Gw(zi))),

min
w

LG(w; ✓) , 1
n

X

i

h(f✓(Gw(zi))� f✓(xi))).
(13)

For logistic and hinge loss, we use Eq. (13). For least-square loss, we use the original min-max
version (check Appendix E.3 for more). We use alternating stochastic GDA to solve this problem.

Neural-net structures: We conduct experiments on two datasets: CIFAR-10 (32 ⇥ 32 size) and
STL-10 (48⇥ 48 size) on both standard CNN and ResNet. As mentioned in Sec. 6, we also conduct
experiments on the narrower nets: we reduce the number of channels for all convolutional layers in
the generator and discriminator to (1) half, (2) quarter and (3) bottleneck (for ResNet structure), The

(a) bad landscape with bad local minima (b) good landscape with multiple global minima

Figure 13: Left: for a bad landscape, a good initial point (red) leads to convergence to a global optima while a
bad one (blue) does not. Right: for a good landscape, two initial points both converge to global minima.

20

(a) (b) (c) (d)
Figure 14: Five Gaussian experiment. (a): ground truth. (b): generated data covers all five clusters. (c): mode
collapse happens and only two clusters get covered. (d) JS-GAN and RSGAN’s loss under different lr
(generator lr = discriminator lr).

CIFAR-10 CIFAR-10+EMA STL-10+EMA

IS " FID # IS " FID # IS " FID #

ResNet
JS-GAN+SN 8.03±0.10 20.06±0.18 8.41±0.09 17.79±0.43 9.14±0.12 33.06
RS-GAN+SN 7.94±0.09 19.79±0.57 8.37±0.10 17.75±0.56 9.23±0.08 31.87
JS-GAN+SN+GD channel/2 7.77±0.08 23.36±0.46 8.24±0.08 20.55±0.59 8.69±0.08 42.05
RS-GAN+SN+GD channel/2 7.76±0.07 21.63±0.51 8.21±0.09 18.91±0.45 8.77±0.13 39.31
JS-GAN+SN+GD channel/4 6.75±0.06 44.39±4.38 7.18±0.06 38.75±6.28 8.42±0.06 52.38
RS-GAN+SN+GD feature/4 7.20±0.07 31.40±0.78 7.60±0.06 26.85±0.56 8.43±0.10 48.92
JS-GAN+SN+BottleNeck 7.51±0.07 27.33±1.05 7.99±0.10 23.71±0.86 8.37±0.08 47.97
RS-GAN+SN+BottleNeck 7.52±0.10 25.05±0.35 8.06±0.11 21.29±0.22 8.48±0.06 44.60

Table 4: Repeat the experiments (logistic loss) in Tab. 2 with at least three seeds.

architectures are shown in Tab. 7 (CNN), Tab. 9 (ResNet for CIFAR) and Tab. 10 (ResNet for STL)
and Tab. 11 (Bottleneck for CIFAR) and Tab. 12 (Bottleneck for STL).

Hyper-parameters: We use a batchsize of 64. For CIFAR-10 on ResNet we set �1 = 0 and �2 = 0.9
in Adam. For others, �1 = 0.5 and �2 = 0.999. We use GIter = 1 for both CNN and ResNet. We
also use DIter = 1 for CNN and DIter = 5 for ResNet. We fix the learning rate for the discriminator
(dlr) to be 2e-4. For RpGANs, we find that the learning rate for the generator (glr) needs to be larger
than dlr to keep the training balanced. Thus we tune glr using parameters in the set 2e-4, 5e-4, 1e-3,
1.5e-3. For SepGAN, we set glr = 0.0002 for SepGANs (JS-GAN,hinge-GAN) as suggested by
[67, 76] 8. See Tab. 13 for the learning rate of RS-GAN and hyper-parameters of WGAN-GP.

More details of EMA: In Sec. 6, we conjectured that the effect of EMA (exponential moving
average) [88] and RpGAN are additive. Suppose w(t) is the generator parameter in t-th iteration of
one run, the EMA generator at the tth iteration is computed as follows w(t)

EMA = �w(t�1)
EMA +(1��)w(t),

where w(0)
EMA = w(0). Note that EMA is a post-hoc processing step, and does not affect the training

process. Intuitively, the EMA generator is closer to the bottom of a basin while the real training is
circling around a basin due to the minmax structure. We set � = 0.9999. As Tab. 4 shows, while
EMA improves both JS-GAN and RS-GAN, RS-GAN is still better than JS-GAN.

Results on Logistic Loss with More Seeds: Besides the result in Tab. 2, we run at least 3 extra
seeds for all experiments with ResNet structure on CIFAR-10 to show that the results are consistent
across different runs. We report the results in Tab. 4, and find RS-GAN is still better than JS-GAN
and the gap increases as the networks become narrower.

Samples of image generation: Generated samples obtained upon training on CIFAR-10 are given in
Fig. 16 for CNN, Fig. 17 for ResNet. Generated samples obtained upon training on STL-10 dataset
are given in Fig. 18 for CNN, Fig. 19 for ResNet. Instead of cherry-picking, all sample images are
generated from random sampled Gaussian noise.

8We tuned glr in the set 2e-4, 5e-4, 1e-3, 1.5e-3 and find that glr = 2e-4 performs the best in most cases for
SepGAN, so we follow the suggestion of [67, 76].

21

CIFAR-10 CIFAR-10 + EMA

IS " FID # FID Gap IS " FID # FID Gap

ResNet + Hinge Loss
Hinge-GAN 7.92±0.08 21.30 8.44±0.10 17.43
Hinge-GAN +GD channel/2 7.63±0.05 27.21 7.90±0.08 24.35
Hinge-GAN +GD channel/4 6.79±0.09 37.51 7.39±0.07 34.45
Hinge-GAN +BottleNeck 7.16±0.10 33.24 7.91±0.09 26.56
Rp-Hinge-GAN 7.84±0.09 19.10 2.20 8.21±0.09 17.19 0.24
Rp-Hinge-GAN +GD channel/2 7.77±0.08 21.10 6.11 8.34±0.11 19.19 5.17
Rp-Hinge-GAN +GD channel/4 7.21±0.11 29.41 8.10 7.77±0.08 25.57 8.88
Rp-Hinge-GAN +BottleNeck 7.52±0.07 23.28 9.96 8.05±0.07 22.03 4.53

Table 5: Comparison of Hinge-GAN and Rp-Hinge-GAN. We also show the FID gap between Rp-Hinge-GAN
with Hinge-GAN (e.g. 2.20 = 21.30� 19.10 and 9.96 = 33.24� 23.28).

E.2 Experiments with Hinge Loss

Hinge loss has become popular in GANs [82, 67, 18]. The empirical loss of hinge-GAN is

min
✓

LHinge
D

(✓;w) , 1

2n

"
X

i

max(0, 1 � D✓(xi)) +
X

i

max(0, 1 + D✓(Gw(zi))

#
,

min
w

LHinge
G

(w; ✓) , �
1

n

X

i

D✓(Gw(zi)).

Note that Hinge-GAN applies the hinge loss for the discriminator, and linear loss for the generator.
This is a variant of SepGAN with h1(t) = h2(t) = �max(0, 1� t).

The Rp-hinge-GAN is RpGAN given in Eq. (13) with h(t) = �max(0, 1� t):

min
✓

LR-Hinge
D

(✓;w) , 1

n

X

i

max(0, 1 + (f✓(Gw(zi)) � f✓(xi))),

min
w

LR-Hinge
G

(w; ✓) , 1

n

X

i

max(0, 1 + (f✓(xi) � f✓(Gw(zi)))).

We compare them on ResNet with the hyper-parameter settings in Appendix E.1. As Tab. 5 shows,
Rp-Hinge-GAN (both versions) performs better than Hinge-GAN. For narrower networks, the gap is
4 to 9 FID scores, larger than the gap for the logistic loss.

E.3 Experiments with Least Square Loss

We consider the least square loss. The LS-GAN [62] is defined as follows:

min
✓

LLS
D
(✓;w) , 1

2n

"
X

i

(f✓(xi) � 1)2 +
X

i

f✓(Gw(zi))
2

#
,

min
w

LLS
G
(w; ✓) , 1

n

X

i

(f✓(Gw(zi)) � 1)2.

This is a non-zero-sum variant of SepGAN with h1(t) = �(1� t)2, h2(t) = �t2.
Rp-LS-GAN addresses the following objectives:

min
✓

LRp-LS
D

(✓;w) , 1

n

X

i

(f✓(xi) � f✓(G(zi)) � 1)2,

min
w

LRp-LS
G

(w; ✓) , �LRp-LS
D

(✓;w) = �
1

n

X

i

(f✓(xi) � f✓(Gw(zi)) � 1)2.

(14)

For least square loss h(t) = �(t� 1)2, the gradient vanishing issue due to h does not exist, thus we
can use the min-max version given in Eq. (14) in practice. Our version of Rp-LS-GAN is actually
different from the version of Rp-LS-GAN in [41] which is similar to Eq. (13) with least square h.

In Tab. 6 we compare LS-GAN and Rp-LS-GAN on CIFAR-10 with CNN architectures detailed in
Tab. 7. As Tab. 6 shows, Rp-LS-GAN is slightly worse than LS-GAN in regular width, but is better
than LS-GAN (with 5.7 FID gap) when using 1/4 width.

F Experiments on High Resolution Data

There are two approaches to achieve a good landscape: one uses a wide enough neural net [73, 50],
and the other uses a large enough number of samples (approaching convexity of pdf space). As we

22

Regular width channel/2 channel/4

IS FID FID Gap IS FID FID Gap IS FID FID Gap

LS-GAN 6.91±0.10 32.93 6.63±0.08 37.83 5.69±0.10 48.63

Rp-LS-GAN 7.09±0.07 34.78 -1.85 6.94±0.04 34.34 3.49 6.22±0.10 42.86 5.77

Table 6: Comparison of LS-GAN and Rp-LS-GAN on CIFAR-10 with the CNN structure.

discuss in Sec. 2 (see also Appendix G.1), when the number of samples is far from enough for filling
the data space, the convexity (of pdf space) may vanish. A higher dimension of data implies a larger
gap between empirical loss and population loss, thus the non-convexity issue will become more
severe. Thus we conjecture that JS-GAN suffers more for higher resolution data generation.

We consider 256 ⇥ 256 LSUN Church and Tower datasets with CNN architecture in Tab. 8. For
RS-GAN, we set glr = 1e-3 and dlr = 2e-4 We train 100, 000 iterations with batchsize 64. The
generated images are presented in Fig. 20. For both datasets, RS-GAN outperforms JS-GAN visually.

G Discussions on Empirical Loss and Population Loss (complements Sec. 2)

As mentioned in Sec. 2, the pdf space view (the population loss) was first used in [35], and became
quite popular for GAN analysis. See, e.g., [71, 40, 20]. In this part, we provide more discussions on
the relation of empirical loss and population loss in GANs.

G.1 Particle space or probability space?

Suppose pz = N (0, Idz
) (or other distributions) is the distribution of the latent variable z, and

Z = (z1, . . . , zn) are the samples of latent variables. During training, the parameter w of the
generator net Gw is moving, and, as a result, both the pdf pg = Gw(pz) and the particles yj = Gw(zj)
move accordingly. Therefore, GAN training can be viewed as either probability space optimization or
particle space optimization. The two views (pdf space and particle space) are illustrated in Figure 1.

In the probability space view, an implicit assumption is that the pdf pg moves freely; in the particle
space view, we assume the particles move freely. Free-particle-movement implies free-pdf-movement
if the particles almost occupy the whole space (a one-mode distribution), as shown in Fig. 21.
However, for multi-mode distributions in high-dimensional space, the particles are sparse in the space,
and free-particle-movement does NOT imply free-pdf-movement. This gap was also pointed out in
[83]; here, we stress that the gap becomes larger for sparser samples (eiher due to few samples ore
high dimension). This forms the foundation for experiments in App. F.

To illustrate the gap between free-pdf-movement and free-particle-movement, we use an example of
learning a two-mode distribution pdata. Suppose we start from an initial two-mode distribution pg, as
shown Figure 22. To learn pdata, we need to do two things: first, move the two modes of pg to roughly
overlap with the two modes of pdata which we call “macro-learning”; second, adjust the distributions
of each mode to match those of pdata, which we call “micro-learning.” This decomposition is
illustrated in Fig. 22 and 23. In micro-learning, the pdf can move freely, but in macro-learning, the
whole mode has to move together and cannot move freely in the pdf space.

Figure 21: Illustration of the learning process of the single mode.
The generated samples are moving, which corresponds to adjustment
of the probability densities.

Figure 22: Illustration of the process of learning a multi-mode distri-
bution. We decompose this process into two parts in the next figure.

y y1 2
x x1 2

(a) Macro-learning (b) Micro-learning

Figure 23: Decomposing learning a multi-mode distribution into macro-learning and micro-learning. Macro-learning refers to the movement
of the whole mode towards the underlying data mode. Micro-learning refers to the adjustment of the distribution within each mode. If
macro-learning fails, then an entire mode is missed in the generated distributions, which corresponds to mode collapse.

23

G.2 Empirical loss and population loss

The population version of RpGAN [41] is minpdata �R,E(pg, pdata), where

�R,E(pg, pdata) = sup
f2C(Rd)

E(x,y)⇠(pg,pdata)[h(f(x)� f(y))]. (15)

Suppose we sample x1, . . . , xn ⇠ pdata and y1, . . . , yn ⇠ pg, then 1
n

Pn
i=1[h(f(xi) � f(yi))] is

an approximation of E(x,y)⇠(pg,pdata)[h(f(x)� f(y))]. The empirical version of RpGAN addresses
minY 2Rd⇥n �R(Y,X), where

�R(Y,X) = sup
f2C(Rd)

1

n

nX

i=1

[h(f(xi)� f(yi))]. (16)

Our analysis is about the geometry of �R(Y,X) in Eq. (16). In practical SGDA (stochastic GDA), at
each iteration we draw a mini-batch of samples and update the parameters based on the mini-batch.
The samples of true data xi are re-used multiple times (similar to SGD for a finite-sum optimization),
but the samples of latent variables zi are fresh (similar to on-line optimization). Due to the re-use of
true data, stochastic GDA shall be viewed as an online optimization algorithm for solving Eq. (16)
where xi’s can be the same. Recall that in the main results, we have assumed that xi’s are distinct,
thus there is a gap between our results and practice. Extending our results to the case of non-distinct
xi’s requires extra work. This was done in Claim C.1 for the 2-cluster setting. But for readability we
do not further study this setting in the more general cases. We leave this to future work.

G.3 Generalization and overfitting of GAN

One may wonder whether fitting the empirical distribution can cause memorization and failure to
generate new data. Arora et al. [5] proved that for many GANs (including JS-GAN) with neural nets,
only a polynomial number of samples are needed to achieve a small generalization error. We suspect
that a similar generalization bound can be derived for RpGAN.

!
!

! !!
!

& & & & &&

Figure 24: How to generate new point.

We provide some intuition why fitting the empirical data distribution
via a GAN may avoid overfitting. Consider learning a two-cluster dis-
tribution as shown in Fig. 24. During training, we learn a generator that
maps the latent samples zi to xi, thus fitting the empirical distribution.
If we sample a new latent sample zi, then the generator will map zj to
a new point xj in the underlying data distribution (due to the continuity
of the generator function). Thus the continuity of the generator (or the
restricted power of the generator) provides regularization for achieving generalization.

H Proofs for Section 3 (2-Point Case) and Appendix C (2-Cluster Case)

We now provide the proofs for the toy results (i.e., the case n = 2).

H.1 Proof of Claim 3.1 and Corollary 3.1 (for JS-GAN)

Proof of Claim 3.1: We will compute values of �JS(Y,X) for all Y . Re-
call D can be any continuous function with range (0, 1). Recall that �JS(Y,X) =
supD

1
2n [

Pn
i=1 log(D(xi)) +

Pn
i=1 log(1�D(yi))] . Consider four cases. Denote a multiset

Y = {y1, y2}, and let mi = |Y \ {xi}|, i 2 {1, 2}.
Case 1 (state 1): m1 = m2 = 1. Then the objective is

sup
D

1
2


1
2
log(D(x1)) +

1
2
log(1�D(x1)) +

1
2
log(D(x2)) +

1
2
log(1�D(x2))

�
.

The optimal value is � log 2, which is achieved when D(x1) = D(x2) =
1
2 .

Case 2 (state 1a): {m1,m2} = {0, 1}. WLOG, assume m1 = 1,m2 = 0, and y1 = x1, y2 /2
{x1, x2}. The objective becomes

sup
D

1
2


1
2
log(D(x1)) +

1
2
log(D(x2)) +

1
2
log(1�D(x1)) +

1
2
log(1�D(y2))

�
.

24

The optimal value � log 2/2 is achieved when D(x1) = 1/2, D(x2) ! 1 and D(y2) ! 0.
Case 3 (state 1b): {m1,m2} = {0, 2}. WLOG, assume y1 = y2 = x1. The objective becomes

sup
D

1
2


1
2
log(D(x1)) + log(1�D(x1)) +

1
2
log(D(x2))

�
.

The optimal value 1
4 log

1
3 + 1

2 log
2
3 ⇡ �0.4774 is achieved when D(x1) = 1/3 and D(x2) ! 1.

Case 4 (state 2): m1 = m2 = 0, i.e., y1, y2 /2 {x1, x2}. The objective is:

sup
D

1
2


1
2
log(D(x1)) +

1
2
log(D(x2)) +

1
2
log(1�D(y1)) +

1
2
log(1�D(y2))

�
.

These terms are independent, thus each term can achieve its supreme log 1 = 0. Then the optimal
value 0 is achieved when D(x1) = D(x2) ! 1 and D(y1) = D(y2) ! 0.

Proof of Corollary 3.1: Suppose ✏ is the minimal non-zero distance between two points of
x1, x2, y1, y2. Consider a small perturbation of Ȳ as Y = (ȳ1 + ✏1, ȳ2 + ✏2), where |✏i| < ✏.
We want to verify that

�(Ȳ , X) > �(Y,X) ⇡ �0.48. (17)

There are two possibilities. Possibility 1: ✏1 = 0 or ✏2 = 0. WLOG, assume ✏1 = 0, then we must
have ✏2 > 0. Then we still have y1 = ȳ1 = x1. Since the perturbation amount is small enough, we
have y2 /2 {x1, x2}. According to Case 2 above, we have �(Ȳ , X) = � log 2 ⇡ �0.35 > �0.48.
Possibility 2: ✏1 > 0, ✏2 > 0. Since the perturbation amount ✏1 and ✏2 are small enough, we
have y1 /2 {x1, x2}, y2 /2 {x1, x2}. According to Case 4 above, we have �(Ȳ , X) = 0 > �0.48.
Combining both cases, we have proved Eq. (17). 2

H.2 Proof of Claim 3.2 (for RS-GAN)

This is the result of RS-GAN for n = 2. WLOG, assume x1 = 0, x2 = 1. Denote gRS(Y) ,
�RS(Y,X) = supf2C(Rd)

1
2 log

1
1+exp(f(0)�f(y1))

+ 1
2 log

1
1+exp(f(1)�f(y2))

. Denote mi = |{yi} \
{xi}|, i = 1, 2; note this definition is different from JS-GAN in App. H.1. Consider three cases.

Case 1: m1 = m2 = 1. If y1 = 0, y2 = 1, then gRS(Y) = 1
2 [log 0.5 + log 0.5] = � log 2 ⇡

�0.6937. If y1 = 1, y2 = 0, then

gRS(Y) = sup
f2F

1
2
log

1
1 + exp(f(0)� f(1))

+
1
2
log

1
1 + exp(f(1)� f(0))

= sup
t2R


1
2
log

1
1 + exp(t)

+
1
2
log

1
1 + exp(�t)

�
= � log 2.

Case 2: {m1,m2} = {0, 1}. WLOG, assume y1 = 0, y2 6= 1 (note that y2 can be 0). Then

gRS(Y) � sup
f2F

1
2
log

1
1 + exp(f(0)� f(0))

+
1
2
log

1
1 + exp(f(1)� f(y2))

= �1
2
log 2 + sup

t2R

1
2
log

1
1 + exp(t)

= �1
2
log 2 ⇡ �0.3466.

The value is achieved when f(1)� f(y2) ! �1.

Case 3: m1 = m2 = 0. Then

gRS(Y) � sup
f2F

1
2
log

1
1 + exp(f(0)� f(y1))

+
1
2
log

1
1 + exp(f(1)� f(y2))

= sup
t12R,t22R

1
2
log

1
1 + exp(t1)

+
1
2
log

1
1 + exp(t2)

= 0.

The value is achieved when f(1)� f(y2) ! �1 and f(0)� f(y2) ! �1.

The global minimal value is � log 2, and the only global minima are {y1, y2} = {x1, x2}. In addition,
from any Y , it is easy to verify that there is a non-decreasing path from Y to a global minimum.

25

H.3 Proofs for 2-Cluster Data (Possibly Imbalanced)

Proof of Claim C.1. The proof is built on the proof of Claim 3.1 in Appendix H.1.
We first consider a special case |X1\Y |=m, |X2\Y|=0. This means that m generated points are in
mode 1, and the rest are in neither modes. The loss value can be computed as follows:

�JS(Y,X) =
1
2n


↵n log(

↵n
↵n+m

) +m log(1� ↵n
↵n+m

)

�

=
↵
2
log(↵n) +

m
2n

logm� ↵n+m
2n

log(↵n+m)) = q↵(m).

In general, if |X1\Y|=m1, |X2\Y|=m2, then �JS(Y,X) can be divided into three parts: the first part
is the sum of the terms that contain x1 (including xi’s and yj’s that are equal to x1), the second part is
the sum of the terms that contain xn (including xi’s and yj’s that are equal to xn), and the third part
is the sum of the terms that contain yj’s that are not in {x1, xn}. Similar to Case 3 above, the value
of the first part is q↵(m1), and the value of the second part is q1�↵(m2). Similar to the above special
case, the value of the third part is 0. Therefore, the loss value is �JS(Y,X) = q↵(m1) + q1�↵(m2).

It is easy to show that q↵(m1) + q1�↵(m2) � � log 2, and the equality is achieved iff m1 =
n↵,m2 = n(1� ↵), i.e., Y = X1 [X2. 2

Proof sketch of Corollary C.1. After a small enough perturbation, we must have m1 , |X2\Y| 
n1,m2 , |X1\Y|  n2. Since q↵(m) and q1�↵(m) are strictly decreasing functions of m, we have

�(Y,X) = q↵(m1) + q1�↵(m2)  q↵(n1) + q1�↵(n2) = �(Ŷ , X).

The equality holds iff (m1,m2) = (n1, n2), i.e., Y = Ŷ . This means that if (n1, n2) 6= (n↵, n(1�
↵)), then Ŷ is a sub-optimal strict local minimum. 2

We skip the detailed proof, since other parts are similar to the proof of Corollary 3.1.

I Proof of Theorem 1 (Landscape of Separable-GAN)

Denote F (D;Y) = 1
2n

Pn
i=1[h1(f(xi)) + h2(�f(yi))]  0 (since hi(t)  0, i = 1, 2 for any t).

Step 1: Compute the value of �(·, X) for each Y . For any i, denote Mi = {j : yj = xi},mi =
|Mi| � 0, i = 1, 2, . . . , n. Then m1 + · · ·+mn = n. Denote ⌦ = M1 [M2 · · · [Mn. Then

�(Y,X) =
1

2n
sup
f

nX

i=1

[h1(f(xi)) + h2(�f(yi))] =
1

2n
sup
f

0

@
nX

i=1

[h1(f1(xi)) + mih2(�f(xi))] +
X

j /2⌦

h2(�f(yi))

1

A

(i)
=

1

2n

nX

i=1

sup
ti2R

[h1(ti) + mih2(�ti)] + |⌦c| sup
t2R

h2(t)

!
(ii)
=

1

2n

nX

i=1

⇠(mi) (18a)

(iii)

�
1

2n

nX

i=1

mi⇠(1) =
1

2
⇠(1).

Here (i) is because f(yj), j 2 ⌦ are independent of h(xi)’s and thus can be any values; (ii) is
by the definition ⇠(m) = supt[h1(t) + mh2(�t)] and Assumption 4.1 that supt h2(t) = 0; (iii)
is due to the convexity of ⇠ (note that ⇠ is the supreme of linear functions). Furthermore, if there
is a certain mi > 1, then ⇠(mi) + (mi � 1)⇠(0) = ⇠(mi) > mi⇠(1) (according to Assumption
4.2), causing (iii) to become a strict inequality. Thus the equality in (iii) holds iff mi = 1, 8i, i.e.,
{y1, . . . , yn} = {x1, . . . , xn}. Therefore, we have proved that �(Y,X) achieves the minimal value
1
2⇠(1) iff {y1, . . . , yn} = {x1, . . . , xn}.
Step 2: Sufficient condition for strict local-min. Next, we show that if Y satisfies m1+m2+ · · ·+
mn = n then Y is a strict local-min. Denote � = mink 6=l kxk�xlk. Consider a small perturbation of
Y as Ȳ = (ȳ1, ȳ2, . . . , ȳn) = (y1+✏1, y2+✏2, . . . , yn+✏n), where k✏jk < �, 8j and

P
j k✏jk2 > 0.

We want to prove �(Ȳ , X) > �(Y,X).

Denote m̄i = |{j : ȳj = xi}|, i = 1, 2, . . . , n. Consider an arbitrary j. Since yj 2 {x1, . . . , xn},
there must be some i such that yj = xi. Together with kȳj � yjk = k✏jk < � = mink 6=l kxk � xlk,
we have ȳj /2 ({x1, x2, . . . , xn}\{xi}). In other words, the only possible point in {x1, . . . , xn} that
can coincide with ȳj is xi, and this happens only when ✏j = 0. This implies m̄i  mi, 8i. Since

26

we have assumed
P

j k✏jk2 > 0, for at least one i we have m̄i < mi. Together with Assumption
4.3 that ⇠(m) is a strictly decreasing function in m 2 [0, n], we have �(Ȳ , X) = 1

n

Pn
i=1 ⇠(m̄i) >

1
n

Pn
i=1 ⇠(mi) = �(Y,X).

Step 3: Sub-optimal strict local-min. Finally, if Y satisfies that m1 + m2 + · · · + mn = n and
mk � 2 for some k, then �(Y,X) > 1

2⇠(0). Thus Y is a sub-optimal strict local minimum. Q.E.D.
Remark 1: ⇠(m) is convex (it is the supreme of linear functions), thus we always have ⇠(m) =
⇠(m) + (m � 1)⇠(0) � m⇠(1). Assump. 4.2 states that the inequality is strict, thus it is slightly
stronger than the convexity of ⇠. By Assump. 4.1, we also have h1(t) + (m + 1)h2(�t) 
h1(t) +mh2(�t), thus ⇠(n)  ⇠(n� 1)  · · ·  ⇠(0). Assumption 4.3 states that the inequalities
are strict. This holds if the maximizer of h1(t) +mh2(�t) does not coincide with the maximizer of
h2(t). Intuitively, if h(t) is “substantially different” from a constant function, then Assump. 4.2 and
Assump. 4.3 hold.

Remark 2: The upper bound 0 in Assumption 4.1 is not essential, and can be relaxed to any finite
numbers (change other two assumptions accordingly). We skip the details.

J Proof of Theorem 2 (Landscape of RpGAN)

This proof is the longest one in this paper. We will focus on a proof for the special case of RS-
GAN. The proof for general RpGAN is quite similar, and presented in Appendix J.3. Recall
�RS(Y,X) = supf

1
n

Pn
i=1 log

1
1+exp(f(yi)�f(xi))

.

Theorem J.1. (special case of Theorem 2 for RS-GAN) Suppose x1, x2, . . . , xn 2 Rd
are distinct.

The global minimal value of �RS(Y,X) is � log 2, which is achieved iff {x1, . . . , xn} = {y1, . . . , yn}.

Furthermore, any point is global-min-reachable for the function.

Proof sketch. We compute the value of g(Y) = �RS(Y,X) for any Y , using the following steps:

(i) We build a graph with vertices representing distinct values of xi, yi and draw directed edges from
xi to yi. This graph can be decomposed into cycles and trees.

(ii) Each vertex in a cycle contributes � 1
n log 2 to the value g(Y).

(iii) Each vertex in a tree contributes 0 to the value g(Y).

(iv) The value g(Y) equals � 1
n log 2 times the number of vertices in the cycles.

The outline of this section is as follows. In the first subsection, we analyze an example as warm-up.
Next, we prove Theorem J.1. The proofs of some technical lemmas will be provided in the following
subsections. Finally, in Appendix J.3 we present the proof for Theorem 2.

J.1 Warm-up Example

We prove that if {y1, y2, . . . , yn} = {x1, . . . , xn}, then Y is a global minimum of g(Y).
Suppose yi = x�(i), where (�(1),�(2), . . . ,�(n)) is a permutation of (1, 2, . . . , n). We
can divide {1, 2, . . . , n} into finitely many cycles C1, C2, . . . , CK , where each cycle Ck =
(ck(1), ck(2), . . . , ck(mk)) satisfies ck(j + 1) = �(ck(j)), j 2 {1, 2, . . . ,mk}. Here ck(mk + 1) is
defined as ck(1). Now we calculate the value of g(Y).

g(Y) = sup
f

1
n

nX

i=1

log
1

1 + exp(f(yi)� f(xi)))
(i)
= � inf

f

1
n

KX

k=1

X

i2Ck

log (1 + exp(f(yi)� f(xi)))

= � inf
f

1
n

KX

k=1

mkX

j=1

log
⇣
1 + ef(xc

k
(j+1))�f(xc

k
(j)))

⌘
(ii)
= � 1

n

KX

k=1

inf
f

mkX

j=1

log
⇣
1 + ef(xc

k
(j+1))�f(xc

k
(j))

⌘

= � 1
n

KX

k=1

inf
t1,t2,...,tmk

2R

"
mk�1X

j=1

log (1 + exp(tj+1 � tj)) + log (1 + exp(t1 � tmk
))

#

(iii)
= � 1

n

KX

k=1

mk log(1 + exp(0)) = � log 2.

27

Here (i) is because {1, 2, . . . , n} is the combination of C1, . . . , CK and i 2 Ck means that i = ck(j)
for some j. (ii) is because Ck’s are disjoint and f can be any continuous function; more specifically,
the choice of {f(xi) : i 2 Ck} is independent of the choice of {f(xi) : i 2 Cl} for any k 6= l,
thus we can take the infimum over each cycle (i.e., put “inf” inside the sum over k). (iii) is becausePm�1

j=1 log(1+ exp(tj+1 � tj)) + log (1 + exp(t1 � tm)) is a convex function of t1, t2, . . . , tm and
the minimum is achieved at t1 = t2 = · · · = tm = 0.

J.2 Proof of Theorem J.1

This proof is divided into three steps. In Step 1, we compute the value of g(Y) if all yi 2 {x1, . . . , xn}.
This is the major step of the whole proof. In Step 2, we compute the value of g(Y) for any Y . In
Step 3, we show that there is a non-decreasing continuous path from Y to a global minimum.

Step 1: Compute g(Y) that all yi 2 {x1, . . . , xn}. Define

R(X) = {Y : yi 2 {x1, . . . , xn}, 8i}. (19)

Step 1.1: Build a graph and decompose it. We fix Y 2 R(X). We build a directed graph
G = (V,A) as follows. The set of vertices V = {1, 2, . . . , n} represent x1, x2, . . . , xn. A directed
edge (i, j) 2 A if yi = xj . In this case, there is a term log(1 + exp(f(xj)� f(xi))) in g(Y). It is
possible to have a self-loop (i, i), which corresponds to the case yi = xi. By Eq. (19), we have

g(Y) = � inf
f

1
n

nX

i=1

log
⇣
1 + ef(yi)�f(xi)

⌘
= � inf

f

1
n

X

(i,j)2A

log
⇣
1 + ef(xj)�f(xi)

⌘
. (20)

Each yi corresponds to a unique xj , thus the out-degree of i, denoted as outdegree(i), must be exactly
1. The in-degree of each i, denoted as indegree(i), can be any number in {0, 1, . . . , n}.

We will show that the graph G can be decomposed into the union of cycles and trees (see App. J.2.1
for its proof, and definitions of cycles and trees). A graphical illustration is given in Figure 25.
Lemma 1. Suppose G = (V,A) is a directed graph and outdegree(v) = 1, 8v 2 V . Then:

(a) There exist cycles C1, C2, . . . , CK and subtrees T1, T2, . . . , TM such that each edge v 2 A
appears either in exactly one of the cycles or in exactly one of the subtrees.

(b) The root of each subtree um is a vertex of a certain cycle Ck. In addition, each vertex of the graph

appears in exactly one of the following sets: V (C1), . . . , V (CK), V (T1)\{u1}, . . . , V (TM)\{uM}.

(c) There is at least one cycle in the graph.

(a) Eg 1 for Lemma 1 (b) Eg 2, with self-loop (c) Example graph for general
case

Figure 25: The first two figures are two connected component of a graph representing the case yi 2 {x1, . . . , xn}, 8i. The first figure
contains 10 vertices and 10 directed edges. It can be decomposed into a cycle (1, 2, 3, 4) and two subtrees: one subtree consists of edge
(10, 4) and vertices 10, 4, and another consists of edges (8, 7), (9, 7), (7, 5), (6, 5), (5, 1). The second figure has one cycle being a self-
loop, and two trees attached to it. The third figure is an example graph of the case that some yi /2 {x1, . . . , xn}. In this example, n = 8
(so 8 edges), and all yi’s are in {x1, . . . , xn} except y6, y7. The two edges (6, 9) and (6, 9) indicate the two terms h(f(y6) � f(x6))
and h(f(y7) � f(x7)) in g(Y). They have the same head 9, thus y6 = y7. The vertice 9 has out-degree 0, indicating that y6 = y7 /2
{x1, . . . , xn}. This figure can be decomposed into two cycles and three subtrees. Finally, adding a self-loop (9, 9) will generate a graph
where each edge has outdegree 1 (this is the reduction done in Step 2).

Denote ⇠(yi, xi) = log
�
1 + ef(yi)�f(xi)

�
. According to Lemma 1, we have

� ng(Y) = inf
f

nX

i=1

⇠(yi, xi) � inf
f

2

4
KX

k=1

X

i2V (Ck)

⇠(yi, xi)

3

5 , gcyc. (21)

28

Step 1.2: Compute gcyc. We then compute gcyc. Since Ck is a cycle, we have Xk , {xi : i 2
Ck} = {yi : i 2 Ck}. Since Ck’s are disjoint, we have Xk \ Xl = ;, 8k 6= l. This implies that
f(xi), f(yi) for i in one cycle Ck are independent of the values corresponding to other cycles. Then
gcyc can be decomposed according to different cycles:

gcyc = inf
f

2

4
KX

k=1

X

i2V (Ck)

log (1 + exp(f(yi)� f(xi)))

3

5 =
KX

k=1

inf
f

X

i2V (Ck)

log (1 + exp(f(yi)� f(xi))) .

Similar to Warm-up example 1, the infimum for each cycle is achieved when f(xi) = f(xj), 8i, j 2
V (Ck). In addition,

gcyc = � log 2
KX

k=1

|V (Ck)|. (22)

Step 1.3: Compute g(Y). According to Eq. (21) and Eq. (22), we have

�ng(Y) �
KX

k=1

|V (Ck)| log 2. (23)

Denote F (Y ; f) = � 1
n

Pn
i=1 log

�
1 + ef(yi)�f(xi)

�
, then g(Y) = inff F (Y ; f). We claim that for

any ✏ > 0, there exists a continuous function f such that

�nF (Y ; f) <
KX

k=1

|V (Ck)| log 2 + ✏. (24)

Let N be a large positive number such that

n log (1 + exp(�N))) < ✏. (25)

Pick a continuous function f as follows.

f(xi) =

(
0, i 2

SK
k=1 V (Ck),

N · depth(i), i 2
SM

m=1 V (Tm).
(26)

Note that the root um of a tree Tm is also in a certain cycle Ck, thus the value f(xum
) is defined twice

in Eq. (26), but in both definitions its value is 0, thus the definition of f is valid. For any i 2 V (Ck),
suppose yi = xj , then both i, j 2 V (Ck) which implies f(yi)�f(xi) = f(xj)�f(xi) = 0. For any
i 2 V (Tm)\{um}, suppose yi = xj , then by the definition of the graph (i, j) is a directed edge of the
tree Tm, which means that depth(i) = depth(j) + 1. Thus f(yi)� f(xi) = f(xj)� f(xi) = �N.
In summary, for the choice of f in Eq. (26), we have

f(yi)� f(xi) =

(
0, i 2

SK
k=1 V (Ck),

�N, i 2
SM

m=1 V (Tm).
(27)

Denote p =
PK

k=1 |V (Ck)| log 2. For the choice of f in Eq. (26), we have

�nF (Y ; f) =
nX

i=1

log
⇣
1 + ef(yi)�f(xi)

⌘

=

2

4
KX

k=1

X

i2V (Ck)

log
⇣
1 + ef(yi)�f(xi)

⌘
+

MX

m=1

X

i2V (Tm)\{um}

log
⇣
1 + ef(yi)�f(xi)

⌘
3

5

(27)
=

2

4
KX

k=1

X

i2V (Ck)

log
�
1 + e0

�
+

MX

m=1

X

i2V (Tm)\{um}

log
⇣
1 + e�N

⌘
3

5

=
KX

k=1

|V (Ck)| log 2 +
MX

k=1

(|V (Tm)|� 1) log
⇣
1 + e�N

⌘
 p+ n log

⇣
1 + e�N

⌘ (25)
< p+ ✏.

(28)

29

This proves Eq. (24). Combining the two relations given in Eq. (24) and Eq. (23), we have

g(Y) = inf
f

F (Y ; f) =
1
n

KX

k=1

|V (Ck)| log 2, 8 Y 2 R(X). (29)

Step 2: Compute g(Y) for any Y .

In the general case, not all yi’s lie in {x1, . . . , xn}. We will reduce to the previous case. Denote

H = {i : yi 2 {x1, . . . , xn}}, Hc = {j : yj /2 {x1, . . . , xn}}.

Since yj’s in Hc may be the same, we define the set of such distinct values of yj’s as

Yout = {y 2 Rd : y = yj , for some j 2 Hc}.

Let n̄ = |Yout|, then there are total n+ n̄ distinct values in x1, . . . , xn, y1, . . . , yn. WLOG, assume
y1, . . . , yn̄ are distinct (this is because the value of g(Y) does not change if we re-index xi’s and yi’s
as long as the subscripts of xi, yi change together), then

Yout = {y1, . . . , yn̄}.

We create artificial “true data” and “fake data” xn+1 = xn+1 = y1, . . . , xn+n̄ = yn+n̄ = yn̄. Define
Fauc(Y, f) = �

Pn+m
i=1 log

�
1 + ef(yi)�f(xi)

�
gauc = � inff Fauc(Y, f). Clearly, Fauc(Y, f) =

nF (Y, f)� n̄ log 2 and ng(Y) = gauc � n̄ log 2.

Consider the new configurations X̂ = (x1, . . . , xn+n̄) and Ŷ = (y1, . . . , yn+n̄). For the new
configurations, we can build a graph Ĝ with n+ n̄ vertices and n+ n̄ edges. There are K self-loops
CK+1, . . . , CK+n̄ at the vertices corresponding to y1, . . . , yn̄. Based on Lemma 1, we have: (a)
There exist cycles C1, C2, . . . , CK , CK+1, . . . , CK+n̄ and subtrees T1, T2, . . . , TM (with roots um’s)
s.t. each edge v 2 A appears in exactly one of the cycle or subtrees. (b) um is a vertex of a certain
cycle Ck where 1  k  K + n̄. (c) Each vertex of the graph appears in exactly one of the following
sets: V (C1), . . . , V (CK+n̄), V (T1)\{u1}, . . . , V (TM)\{uM}. According to the proof in Step 1, we
have gauc =

PK+n̄
k=1 |V (Ck)| log 2 =

PK
k=1 |V (Ck)| log 2 + n̄ log 2. Therefore,

ng(Y) = gauc � n̄ log 2 =
KX

k=1

|V (Ck)| log 2.

We build a graph G by removing the self-loops CK+j = (yj , yj), j = 1, . . . , n̄ in Ĝ. The new graph
G consists of n + n̄ vertices corresponding to x1, . . . , xn and y1, . . . , yn̄ and n edges. The graph
can be decomposed into cycles C1, C2, . . . , CK (since n̄ cycles are removed from Ĝ) and subtrees
T1, T2, . . . , TM . The value ng(Y) =

PK
k=1 |V (Ck)| log 2, where Ck’s are all the cycles of G.

Step 3: Finding a non-decreasing path to a global minimum. Finally, we prove that for any Y ,
there is a non-decreasing continuous path from Y to one global minimal Y ⇤. The following claim
shows that we can increase the value of Y incrementally. See the proof in Appendix J.2.2.

Claim J.1. For an arbitrary Y that is not a global minimum, there exists another Ŷ and a non-

decreasing continuous path from Y to Ŷ such that g(Ŷ)� g(Y) � 1
n log 2.

For any Y that is not a global minimum, we apply Claim J.1 for finitely many times (no more than n
times), then we will arrive at one global minimum Y ⇤. We connect all non-decreasing continuous
paths and get a non-decreasing continuous path from Y to Y ⇤. This finishes the proof.

J.2.1 Graph Preliminaries and Proof of Lemma 1

We present a few definitions from standard graph theory.
Definition J.1. (walk, path, cycle) In a directed graph G = (V,A), a walk W = (v0, e1, v1, e2,
. . . , vm�1, em, vm) is a sequence of vertices and edges such that vi 2 V, 8 i 2 {0, 1, . . . ,m} and

ei = (vi�1, vi) 2 A, 8 i 2 {1, . . . ,m}. If v0, v1, . . . , vm are distinct, we call it path (with length m).

If v0, v1, . . . , vm�1 are distinct and vm = v0, we call it a cycle.

30

Any v has a path to itself (with length 0), no matter whether there is an edge between v to itself or
not. This is because the degenerate walk W = (v) satisfies the above definition. The set of vertices
and edges in W are denoted as V (W) and A(W) respectively.
Definition J.2. (tree) A directed tree is a directed graph T = (V,A) with a designated node r 2 V ,

the root, such that there is exactly one path from v to r for each node v 2 V and there is no edge

from the root r to itself. The depth of a node is the length of the path from the node to the root (the

depth of the root is 0). A subtree of a directed graph G is a subgraph T which is a directed tree.

Proof of Lemma 1:
We slightly extend the definition of “walk” to allow infinite length. We present two observations.

Observation 1: Starting from any vertex v0 2 V (G), there is a unique walk with infinite length

W (v0) , (v0, e1, v1, e2, v2, . . . , vi, ei, vi+1, ei+1, . . .),

where ei is an edge in A(G) with tail vi�1 and head vi.

Proof of Observation 1: At each vertex vi, there is a unique outgoing edge ei = (vi, vi+1) which
uniquely defines the next vertex vi+1. Continue the process, we have proved Observation 1.

Observation 2: The walk W (v0) , (v0, e1, v1, e2, v2, . . . , vi, ei, vi+1, ei+1, . . .) can be
decomposed into two parts W1(v0) = (v0, e1, v1, e2, v2, . . . , vi0�1, ei0 , vi0), W2(v0) =
(vi0 , ei0+1, vi0+1, ei0+2, vi0+2, . . .), where W1(v0) is a path from v0 to vi0 (i.e. v0, v1, . . . , vi0
are distinct), and W2(v0) is the repetition of a certain cycle (i.e., there exists T such that vi+T = vi,
for any i � i0). This decomposition is unique, and we say the “first-touch-vertex” of v0 is vi0 .

Proof of Observation 2: Since the graph is finite, then some vertices must appear at least twice in
W (v0). Among all such vertices, suppose u is the one that appears the earliest in the walk W (v0),
and the first two appearances are vi0 = u and vi1 = u and i0 < i1. Denote T = i1 � i0. Then it is
easy to show W2(v0) is the repetitions of the cycle consisting of vertices vi0 , vi0+1, . . . , vi1�1, and
W1(v0) is a directed path from v0 to vi0 .

The first-touch-vertex u = vi0 has the following properties: (i) u 2 Ck for some k; (ii) there exists a
path from v to u; (iii) any paths from v to any vertex in the cycle Ck other than u must pass u. Note
that if u is in some cycle, then its first-touch-vertex is u itself.

As a corollary of Observation 2, there is at least one cycle. Suppose all cycles of G are
C1, C2, . . . , CK . Because the outdegree of each vertex is 1, these cycles must be disjoint, i.e.,
V (Ci) \ V (Cj) = ; and A(Ci) \A(Cj) = ;, for any i 6= j. Denote the set of vertices in the cycles
as

Vc =
K[

k=1

V (C1) [· · · [V (CK). (30)

Let u1, . . . , uM be the vertices of C1, . . . , Cm with indegree at least 2.

Based on Observation 2, starting from any vertex outside Vc there is a unique path that reaches Vc.
Combining all vertices that reach the cycles at um (denoted as Vm), and the paths from these vertices
to um, we obtain a directed subgraph Tm, which is connected with Vc only via the vertex um. The
subgraphs Tm’s are disjoint from each other since they are connected with Vc via different vertices.
In addition, each vertex outside of Vc lies in exactly one of the subgraph Tm. Thus, we can partition
the whole graph into the union of the cycles C1, . . . , CK and the subgraphs T1, . . . , TM .

We then show Tm’s are trees. For any vertex v0 in the subgraph Tm, consider the walk W (v0). Any
path starting from v0 must be part of W (v0). Starting from v0 there is only one path from v0 to um

which is W1(v0), according to Observation 2. Therefore, by the definition of a directed tree, Tm is
a directed tree with the root um. Therefore, we can partition the whole graph into the union of the
cycles C1, . . . , CK and subtrees T1, . . . , TM with disjoint edge sets; in addition, the edge sets of the
cycles are disjoint, and the root of Tl must be in certain cycle Ck. It is easy to verify the properties
stated in Lemma 1. This finishes the proof.
J.2.2 Proof of Claim J.1

We first prove the case for d � 2. Suppose the corresponding graph for Y is G, and G is decomposed
into the union of cycles C1, . . . , CK and trees T1, . . . , Tm. We perform the following operation: pick

31

an arbitrary tree Tm with the root um. The tree is non-empty, thus there must be an edge e with the
head um. Suppose v is the tail of the edge e. Now we remove the edge e = (v, um) and create a
new edge e0 = (v, v). The new edge corresponds to yv = xv. The old edge (v, um) corresponds
to yv = xum

(and a term h(f(xum
) � f(xv))) if um  n or yv = yum�n /2 {x1, . . . , xn} (and a

term h(f(yum�n)� f(xv))) if um > n. This change corresponds to the change of yv: we change
yv = xum

(if um  n) or yv = yum�n (if um > n) to ŷv = xv. Let ŷi = yi for any i 6= v, and
Ŷ = (ŷ1, . . . , ŷn) is the new point.

Previously v is in a tree Tm (not its root), now v is the root of a new tree, and also part of the new
cycle (self-loop) CK+1 = (v, e0, v). In this new graph, the number of vertices in cycles increases by
1, thus the value of g increases by � 1

n log 2, i.e., g(Ŷ)� g(Y) = 1
n log 2.

Since d � 2, we can find a path in Rd from a point to another point without passing any of the points
in {x1, . . . , xn}. In the continuous process of moving yv to ŷv, the function value will not change
except at the end that yv = xv. Thus there is a non-increasing path from Y to Ŷ , in the sense that
along this path the function value of g does not decrease.

The illustration of this proof is given below.

(a) Original graph (b) Modified graph, with improved function
value

Figure 26: Illustration of the proof of Claim J.1. For the figure on the left, we pick an arbitrary tree with the
head being vertex 9, which corresponds to y6 = y7. We change y7 to ŷ7 = x7 to obtain the figure on the right.
Since one more cycle is created, the function value increases by � 1

n log 2.

For the case d = 1, the above proof does not work. The reason is that the path from yv to ŷv may
touch other points in {x1, . . . , xn} and thus may change the value of g. We only need to make a
small modification: we move yv in R until it touches a certain xi that corresponds to a vertex in the
tree Tm, at which point a cycle is created, and the function value increases by at least 1

n log 2. This
path is a non-decreasing path, thus the claim is also proved.

J.3 Proof of Theorem 2

Obviously, g(Y) , �R(Y,X) = 1
n supf2C(Rd)

Pn
i=1[h(f(xi)�f(yi))] � h(0) (by picking f = 0).

Step 1: achieving optimal g(Y). We prove if {y1, . . . , yn} = {x1, . . . , xn}, then g(Y) = h(0).
Claim J.2. Assume h is concave. Then the function ⇠R(m) = sup(t1,...,tk)2ZO(m)

Pm
i=1 h(ti)

satisfies ⇠R(m) = mh(0), where the set ZO(m) = {t1, t2, . . . , tm 2 R :
Pm

i=1 ti = 0}.

The proof of this claim is obvious and skipped here. When {y1, . . . , yn} = {x1, . . . , xn}, we
can divide [n] into multiple cycles C1 [· · · [CK , each with length mk, and obtain �R(Y,X) =
1
n supf2C(Rd)

PK
k=1

Pmk

i=1[h(f(xi)� f(yi))] =
1
n

PK
k=1 ⇠R(mk) =

1
n

PK
k=1 mkh(0) = h(0).

Step 2: compute g(Y) when yi 2 {x1, . . . , xn}, 8i. Assume yi 2 {x1, . . . , xn}, 8i. We build a
directed graph G = (V,A) as follows (the same graph as in Appendix J.2). The set of vertices
V = {1, 2, . . . , n} represents x1, x2, . . . , xn. We draw a directed edge (i, j) 2 A if yi = xj . Note
that it is possible to have a self-loop (i, i), which corresponds to the case yi = xi.

According to Lemma 1, this graph can be decomposed into cycles C1, C2, . . . , CK and subtrees
T1, T2, . . . , TM . We claim that

�R(Y,X) =
1

n

KX

k=1

|V (Ck)|h(0) � h(0). (31)

32

The proof of the relation in Eq. (31) is similar to the proof of Eq. (22) used in the proof of Theorem 2,
and briefly explained below. One major part of the proof is to show that the contribution of the nodes
in the cycles is

PK
k=1 |V (Ck)|h(0). This is similar to Step 1, and is based on Claim J.2. Another

major part of the proof is to show that the contribution of the nodes in the subtrees is zero, similar to
the proof of Eq. (28). This is because we can utilize Assumption 4.4 to construct a sequence of f
values (similar to Eq. (26)) so that

f(yi)� f(xi) =

(
0, i 2

SK
k=1 V (Ck),

↵N , i 2
SM

m=1 V (Tm).
(32)

Here {↵N}1N=1 is a sequence of real numbers so that limN!1 h(↵N) = supt h(t) = 0. In the case
that h(1) = 0 like RS-GAN, we pick ↵N = N . In the case that h(a) = 0 for a certain finite number
a, we can just pick ↵N = a, 8N (thus we do not need a sequence but just one choice).

Since the expression of �R(Y,X) in Eq. (31) is a scaled version of the expression of �RS(Y,X)
(scale by � log 2

h(0)), the rest of the proof is the same as the proof of Theorem 2.

Step 3: function value for general Y and GMR. This step is the same as the proof of Theorem J.1.
For the value of general Y , we build an “augmented graph” and apply the result in Step 2 to obtain
g(Y). To prove GMR, the same construction as the proof of Theorem J.1 suffices.

K Results in Parameter Space

We will first state the technical assumptions and then present the formal results in parameter space. The
results become somewhat technical due to the complication of neural-nets. Suppose the discriminator
neural net is f✓ where ✓ 2 RJ and the generator net is Gw where w ⇢ RK .

Assumption K.1. (representation power of discriminator net): For any distinct vectors v1, . . . , v2n 2
Rd

, any b1, . . . , b2n 2 R, there exists ✓ 2 RJ
such that f✓(vi) = bi, i = 1, . . . , 2n.

Assumption K.2. (representation power of generator net in W) For any distinct z1, . . . , zn 2 Rdz

and any y1, . . . , yn 2 Rd
, there exists w 2 W such that Gw(zi) = yi, i = 1, . . . , n.

For any given Z = (z1, . . . , zn) 2 Rdz⇥n, and any 2 W ✓ RK , we define a set G�1(Y ;Z) as
follows: w 2 G�1(Y ;Z) iff Gw(Z) = Y and w 2 W .
Assumption K.3. (path-keeping property of generator net; duplication of Assumption 4.6): For any

distinct z1, . . . , zn 2 Rdz , the following holds: for any continuous path Y (t), t 2 [0, 1] in the space

Rd⇥n
and any w0 2 G�1(Y (0);Z), there is continuous path w(t), t 2 [0, 1] such that w(0) = w0

and Y (t) = Gw(t)(Z), t 2 [0, 1].

We will present sufficient conditions for these assumptions later. Next we present two main results on
the landscape of GANs in the parameter space.
Proposition K.1. (formal version of Proposition 1) Consider the separable-GAN problem

minw2RK 'sep(w), where 'sep(w) = sup✓
1
2n

Pn
i=1[h1(f✓(xi)) + h2(�f✓(Gw(zi)))] Suppose

h1, h2 satisfy the same assumptions of Theorem 1. Suppose Gw satisfies Assumption K.2 and

Assumption 4.6 (with certain W). Suppose f✓ satisfies Assumption K.1. Then there exist at least

(nn � n!) distinct w 2 W that are not global-min-reachable.

Proposition K.2. (formal version of Prop. 2) Consider the RpGAN problem minw2RK 'R(w),
where 'R(w) = sup✓

1
n

Pn
i=1[h(f✓(xi))� f✓(Gw(zi))]. Suppose h satisfies the same assumptions

of Theorem 2. Suppose Gw satisfies Assumption K.2 and Assumption 4.6 (with certain W). Suppose

f✓ satisfies Assumption K.1. Then any w 2 W is global-min-reachable for 'R(w).

We have presented two generic results that relies on a few properties of the neural-nets. These
properties can be satisfied by certain neural-nets, as discussed next. Our results largely rely on recent
advanced in neural-net optimization theory.

K.1 Sufficient Conditions for the Assumptions

In this part, we present a set of conditions on neural nets that ensure the assumptions to hold. We will
discuss more conditions in the next subsection.

33

Assumption K.4. (mildly wide) The last hidden layer has at least n̄ neurons, where n̄ is the number

of input vectors.

The assumption of width is common in recent theoretical works in neural net optimization (e.g.
[50, 73, 2]). For the generator network, we set n̄ = n; for the discriminator network, we set n̄ = 2n.

Assumption K.5. (smooth enough activation) The activation function � is an analytic function, and

the k-th order derivatives �(k)(0) are non-zero, for k = 0, 1, 2, . . . , n̄, where n̄ is the number of input

vectors.

The assumption of the neuron activation is satisfied by sigmoid, tanh, SoftPlus, swish, etc.

For the generator network, consider a fully neural network Gw(z) = WH�(WH�1 . . .W2�(W1z))
that maps z 2 Rdz to Gw(z) 2 Rd. Define Tk(z) = �(Wk�1 . . .W2�(W1z)) 2 Rdk where
dk is the number of neurons in the k-th hidden layer. Then we can write Gw(z) = WHTH(z),
where WH 2 Rd⇥dH . Let Z = (z1, . . . , zn) and let Tk(Z) = (Tk(z1), . . . , Tk(zn)) 2 Rdk⇥n,
k = 1, 2, . . . , H. Define W = {w = (W1, . . . ,WH) : TH(Z)is full rank}.

We will prove that under these two assumptions on the neural nets, the landscape of RpGAN is better
than that of SepGAN.
Proposition K.3. Suppose h1, h2, h sastify assumptions in Theorem 1 and Theorem 2. Suppose

Gw, f✓ satisfies Assump. K.5 and K.4 (n̄ = n for Gw, and n̄ = 2n for f✓). Then there exist

at least (nn � n!) distinct w 2 W that are not GMR for 'Sep(w). In contrast, any w 2 W is

global-min-reachable for 'R(w).

This proposition is the corollary of Prop. K.1 and Prop. K.2; we only need to verify the assumptions
in the two propositions. The following series of claims provide such verification.
Claim K.1. Suppose Assumptions K.4 and K.5 hold for the generator net Gw with distinct input

z1, . . . , zn. Then W = {(W1, . . . ,WH) : TH(Z) is full rank} is a dense set in RK
. In addition,

Assumption K.2 holds.

This full-rank condition was used in a few works of neural-net landscape analysis (e.g. [72]). In
GAN area, [7] studied invertible generator nets Gw where the weights are restricted to a subset of
RK to avoid singularities. As the set W is dense, intuitively the iterates will stay in this set for most
of the time. However, rigorously proving that the iterates stay in this set is not easy, and is one of
the major challenges of current neural-network analysis. For instance, [38]) shows that for very
wide neural networks with proper initialization along the training trajectory of gradient descent the
neural-tangent kernel (a matrix related to TH(Z)) is full rank. A similar analysis can prove that the
matrix TH(Z) stays full rank during training under similar conditions. We do not attempt to develop
the more complicated convergence analysis for general neural-nets here and leave it to future work.
Claim K.2. Suppose Assumptions K.4 and K.5 hold for the generator net Gw with distinct input

z1, . . . , zn. Then it satisfies Assumption 4.6 with W defined in Claim K.1.

Assumption K.1 can be shown to hold under a similar condition to that in Claim K.1.
Claim K.3. Consider a fully connected neural network f✓(z) = ✓H�(✓H�1 . . . ✓2�(✓1z)) that maps

u 2 Rd
to f✓(u) 2 R and suppose Assumptions K.4 and K.5 hold. Then Assumption K.1 holds.

The proofs of the claims are given in Appendix K.5.

With these claims, we can immediately prove Prop. K.3.

Proof of Prop. K.3: According to Claim K.2, K.1, K.3, the assumptions of Prop. K.3 imply the
assumptions of Prop. K.1 and Prop. K.2. Therefore, the conclusions of Prop. K.1 and Prop. K.2 hold.
Since the conclusion of Prop. K.3 is the combination of the the conclusions of Prop. K.1 and Prop.
K.2, it also holds. 2

K.2 Other Sufficient Conditions

Assumption K.3 (path-keeping property) is the key assumption. Various results in neural-net theory
can ensure this assumption (or its variant) holds, and we have utilized one of the simplest such results
in the last subsection. We recommend to check [80] which describes a bigger picture about various
landscape results. In this subsection, we briefly discuss other possible results applicable to GAN.

34

We start with a strong conjecture about neural net landscape, which only requires a wide final hidden
layer but no condition on the depth and activation.
Conjecture K.1. Suppose g✓ is a fully connected neural net with any depth and any continuous

activation, and it satisfies Assumption K.4 (i.e. a mildly wide final hidden layer). Assume `(y, ŷ) is

convex in ŷ, then the empirical loss function of a supervised learning problem
Pn

i=1 `(yi, g✓(xi)) is

global-min-reachable for any point.

We then describe a related conjecture for GAN, which is easy to prove if Conjecture K.1 holds.

Conjecture 1 (informal): Suppose Gw is a fully connected net satisfying Assump. K.4 (i.e. a mildly
wide final hidden layer). Suppose Gw and f✓ are expressive enough (i.e. Assump. K.2 and Assump.
K.1 hold). Then the RpGAN loss has a benign landscape, in the sense that any point is GMR for
'R(w). In contrast, the SepGAN loss does not have this property.

Unfortunately, we are not aware of any existing work that has proved Conjecture K.1, thus we are
not able to prove Conjecture 1 above for now. Venturi et al. [84] proved a special case of Conjecture
K.1 for L = 1 (one hidden layer), and other works such as Li et al. [50] prove a weaker version
of Conjecture K.1; see [80] for other related results. The precise version of Conjecture K.1 seems
non-trivial to prove.

We list two results on GAN that can be derived from weaker versions of Conjecture K.1; both results
apply to the whole space instead of the dense subset W .

Result 1 (1-hidden-layer): Suppose Gw is 1-hidden-layer network with any continuous activation.
Suppose it satisfies Assump. K.4 (i.e. a mildly wide final hidden layer). Suppose Gw and f✓ are
expressive enough (i.e. Assump. K.2 and Assump. K.1 hold). Then the RpGAN loss satisfies GMR
for any point. This result is based on Venturi et al. [84].

Result 2: Suppose Gw is a fully connected network with any continuous activation and any number
of layers. Suppose it satisfies Assump. K.4 (i.e. a mildly wide final hidden layer). Suppose Gw and
f✓ are expressive enough (i.e. Assump. K.2 and K.1 hold). Then the RpGAN loss has no sub-optimal
set-wise local minima (see [50, Def. 1] for the definition). This result is based on Li et al. [50].

Due to space constraint, we do not present the proofs of the above two results (combining them with
GANs is somewhat cumbersome). The high-level proof framework is similar to that of Prop. K.3.

K.3 Proofs of Propositions for Parameter Space

Proof of Proposition K.1. The basic idea is to build a relation between the points in the parameter
space to the points in the function space.

Denote Lsep(w; ✓) =
1
2n

Pn
i=1[h1(f✓(xi)) + h2(�f✓(Gw(zi)))], then 'sep(w) = sup✓ Lsep(w; ✓).

Denote Lsep(Y ; f) = 1
2n

Pn
i=1[h1(f(xi)) + h2(�f(yi))], and �(Y,X) = supf Lsep(Y ; f). Note

that in the definition of the two functions above, the discriminator is hidden in the sup operators, thus
we have freedom to pick the discriminator values (unlike the generator space which we have to check
all w in the inverse of Y).

Our goal is to analyze the landscape of 'sep(w), based on the previously proved result on the
landscape of �(Y,X). We first show that the image of 'sep(ŵ) is the same as that of �sep(Ŷ , X).

Define G�1(Y) , {w : Gw(zi) = yi, i = 1, . . . , n}. We first prove that

�sep(Ŷ , X) = 'sep(ŵ), 8 ŵ 2 G�1(Ŷ). (33)

Suppose �sep(Ŷ , X) = ↵. This implies that Lsep(Ŷ ; f)  ↵ for any f ; in addition, for any ✏ > 0

there exists f̂ 2 C(Rd) such that
Lsep(Ŷ ; f̂) � ↵� ✏. (34)

According to Assumption K.1, there exists ✓⇤ such that f✓⇤(xi) = f̂(xi), 8 i, and f✓⇤(u) =
f̂(u), 8 u 2 {y1, . . . , yn}\{x1, . . . , xn}. In other words, there exists ✓⇤ such that

f✓⇤(xi) = f̂(xi), f✓⇤(yi) = f̂(yi), 8 i. (35)

35

Then we have

Lsep(ŵ; ✓⇤(✏)) =
1
2n

nX

i=1

[h1(f✓⇤(xi)) + h2(�f✓⇤(Gŵ(zi)))]
(i)
=

nX

i=1

[h1(f✓⇤(xi)) + h2(�f✓⇤(ŷj))]

(ii)
=

1
2n

nX

i=1

[h1(f̂(xi)) + h2(�f̂(ŷi))] = Lsep(Ŷ ; f̂)
(iii)

� ↵� ✏.

In the above chain, (i) is due to the assumption ŵ 2 G�1(Ŷ) (which implies Gŵ(zj) = ŷj), (ii) is
due to the choice of ✓⇤. (iii) is due to (34).

Therefore, we have 'sep(ŵ) = sup✓ Lsep(ŵ; ✓) � Lsep(ŵ; ✓⇤(✏)) � ↵� ✏. Since this holds for any
✏, we have 'sep(ŵ) � ↵. Similarly, from Lsep(ŵ; ✓)  ↵ we can obtain 'sep(ŵ)  ↵. Therefore
'sep(ŵ) = ↵ = �sep(Ŷ , X). This finishes the proof of (33).
Define

Q(X) , {Y = (y1, . . . , yn) | yi 2 {x1, . . . , xn}, i 2 {1, 2, . . . , n}; yi = yj for some i 6= j}.

Any Y 2 Q(X) is a mode-collapsed pattern. According to Theorem 1, any Y 2 Q(X) is a strict
local minimum of �sep(Y,X), and thus Y is not GMR. Therefore ŵ 2 G�1(Y) where Y 2 Q(X)
is not GMR; this is because a non-decreasing path in the parameter space will be mapped to a
non-decreasing path in the function space, causing contradiction. Finally, according to Assumption
K.2, for any Y there exists at least one pre-image w 2 G�1(Y) \W . There are (nn � n!) elements
in Q(X), thus there are at least (nn � n!) points in W that are not global-min-reachable. 2

Proof of Proposition K.2. Similar to Eq. (33), we have 'R(w) = �R(Y,X) for any w 2 G�1(Y).
We need to prove that there is a non-decreasing path from any w0 2 W to w⇤, where w⇤ is a certain
global minimum. Let Y0 = Gw0(z1, . . . , zn). According to Thm. 2, there is a continuous path Y (t)
from Y0 to Y ⇤ along which the loss value �R(Y (t), X) is non-increasing. According to Assump.
4.6, there is a continuous path w(t) such that w(0) = ŵ, Y (t) = Gw(t)(Z), t 2 [0, 1]. Along
this path, the value 'R(w(t)) = �R(Y (t), X) is non-increasing, and at the end the function value
'R(w(1)) = �R(Y ⇤, X) is the minimal value of 'R(w). Thus the existence of such a path is proved.
2

K.4 A technical lemma

We present a technical lemma, that slightly generalizes [50, Proposition 1].
Assumption K.6. v1, v2, . . . , vm 2 Rd

are distinct, i.e., vi 6= vj for any i 6= j.

Lemma 2. Define TH(V) = (�(WH�1 . . .W2�(W1vi)))mi=1 2 RdH⇥m
. Suppose Assumptions K.4,

K.5 and K.6 hold. Then the set ⌦ = {(W1, . . . ,WH�1) : rank(TH(V)) < m} has zero measure.

This claim is slightly different from [50, Proposition 1], which requires the input vectors to have
one distinct dimension (i.e., there exists j such that v1j , . . . , vm,j are distinct); here we only require
the input vectors to be distinct. It is not hard to link “distinct vectors” to “vectors with one distinct
dimension” by a variable transformation.
Claim K.4. Suppose v1, . . . , vm 2 Rd

are distinct. Then for generic matrix W 2 Rd⇥d
, for the

vectors v̄i = Wvi 2 Rd, i = 1, . . . , n, there exists j such that v̄1j , . . . , v̄m,j are distinct.

Proof. Define the set ⌦0 = {u | u 2 R1⇥d, 9i 6= j s.t. uT vi = uT vj}. This is the union of d(d� 1)
hyperplanes ⌦ij , {u | u 2 R1⇥d, uT vi = uT vj}. Each hyperplane ⌦ij is a zero-measure set, thus
the union of them ⌦0 is also a zero-measure set. Let u be the first row of W , then u is generic vector
and thus not in ⌦0, which implies v̄11, . . . , v̄m,1 are distinct.

Proof of Lemma 2: Pick a generic matrix A 2 Rdv⇥dv , then v̄i = Avi 2 Rdv⇥1 has one distinct
dimension, i.e., there exists j such that v̄1j , . . . , v̄m,j are distinct. In addition, we can assume A is
full rank (since it is generic). Define

T̄H(V̄) = (�(WH�1 . . .W2�(W̄1v̄1)), . . . ,�(WH�1 . . .W2�(W̄1v̄m)) 2 RdH⇥m.

According to [50, Prop. 1], the set ⌦̄ = {(W̄1,W2,W3, . . . ,WH�1) : rank(T̄H(V̄)) < m} has
zero measure. With the transformation ⌘0(W̄1) = W̄1A�1, we have �(WH�1 . . .W2�(W̄1v̄i)) =

36

�(WH�1 . . .W2�(W1vi)), 8 i and thus T̄H(V̄) = TH(V). Define ⌘(W̄1,W2, . . . ,Wm) =
(W̄1A�1,W2, . . . ,Wm), then ⌘ is a homeomorphism between ⌦̄ and ⌦. Therefore the set
⌦ = {(W1, . . . ,WH�1) : rank(TH(V)) < m} has zero measure. 2

K.5 Proof of claims

Proof of Claim K.1: According to Lemma 2, W is a dense subset of RJ (in fact, ⌦ is defined for a
general neural network, and W is defined for the generator network, thus an instance of⌦). As a result,
there exists (W1, . . . ,WH�1) such that TH(Z) has rank at least n. Thus for any y1, y2, . . . , yn 2 Rd,
there exists WH such that WHTH(Z) = (y1, . . . , yn). 2

Proof of Claim K.2: For any continuous path Y (t), t 2 [0, 1] in the space Rd⇥n, any w0 2
G�1(Y (0)) and any ✏ > 0, our goal is to show that there exists a continuous path w(t), t 2 [0, 1]
such that w(0) = w0 and Y (t) = Gw(t)(Z), t 2 [0, 1].

Due to the assumption of w0 2 W , we know that w0 corresponds to a rank-n post-activation matrix
TH(Z). Suppose w0 = (W1, . . . ,WH) and TH(Z) = (TH(z1), . . . , TH(zn)) 2 RdH⇥n has rank n.
Since TH(Z) is full rank, for any path from Y (0) to Y (1), we can continuously change WH such that
the output of Gw(Z) changes from Y (0) to Y (1). Thus there exists a continuous path w(t), t 2 [0, 1]
such that w(0) = w0 and Y (t) = Gw(t)(Z), t 2 [0, 1]. 2

Proof of Claim K.3: This is a direct application of Lemma 2. Different from Claim K.2, here we
apply Lemma 2 to the discriminator network. 2

L Discussion of Wasserstein GAN

W-GAN is a popular formulation of GAN, so a natural question is whether we can prove a similar
landscape result for W-GAN. Consider W-GAN formulation (empirical version) minY �W(Y,X),
where

�W(Y,X) = max
|f |L1

1

n

nX

i=1

[f(xi)� f(yi)].

For simplicity we consider the same number of generated samples and true samples. It can be viewed
as a special case of RpGAN where h(t) = �t; it can also be viewed as a special case of SepGAN
where h1(t) = h2(t) = �t.

However, the major complication is the Lipschitz constraint. It makes the computation of the function
values much harder. For the case of n = 2, the function value of �W(Y,X) is provided in the
following claim.
Claim L.1. Suppose n = 2. Denote a1 = x1, a2 = x2, a3 = y1, a4 = y2. The value of �W(Y,X) is

max
u1,u2,u3,u42R

u1 + u2 � u3 � u4,

s.t. |ui � uj |  kai � ajk, 8i, j 2 {1, 2, 3, 4}.

This claim is not hard to prove, and we skip the proof here.

This claim indicates that computing �W(Y,X) is equivalent to solving a linear program (LP). Solving
LP itself is computationally feasible, but our landscape analysis requires to infer about the global
landscape of �W(Y,X) as a function of Y . In classical optimization, it is possible to state that
the optimal value of an LP is a convex function of a certain parameter (e.g. the coefficient of the
objective). But in our LP yi’s appear in multiple positions of the LP, and we are not aware of an
existing result that can be readily applied.

Similar to Kantorovich-Rubinstein Duality, we can write down the dual problem of the LP where
the objective is linear combination of kai � ajk. However, it is still not clear what to say about the
global landscape, due to the lack of closed-form solutions.

Finally, we remark that although W-GAN has a strong theoretical appeal, it did not replace JS-GAN
or simple variants of JS-GAN in recent GAN models. For instance, SN-GAN [67] and BigGAN [18]
use hinge-GAN.

37

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) image x 2 [�1, 1]H⇥W⇥3

128 ! h ⇥ w⇥ 512/c, dense, linear 3 ⇥ 3, stride 1 conv, 64/c

4 ⇥ 4, stride 2 deconv, 256/c, BN, ReLU 4 ⇥ 4, stride 2 conv, 128/c
3 ⇥ 3, stride 1 conv, 128/c

4 ⇥ 4, stride 2 deconv, 128/c, BN, ReLU 4 ⇥ 4, stride 2 conv, 256/c
3 ⇥ 3, stride 1 conv, 256/c

4 ⇥ 4, stride 2 deconv, 64/c, BN, ReLU 4 ⇥ 4, stride 2 conv, 512/c
3 ⇥ 3, stride 1 conv, 512/c

3 ⇥ 3, stride 1 conv, 3, Tanh h ⇥ w ⇥ 512/c ! s, linear

Table 7: CNN models for CIFAR-10 and STL-10 used in our exper-
iments on image Generation. h = w = 4, H = W = 32 for CIFAR-10.
h = w = 6, H = W = 48 for STL-10. c=1, 2 and 4 for the regu-
lar, 1/2 and 1/4 channel structures respectively. All layers of D use
LReLU-0.1 (except the final dense ‘’linear” layer).

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) x 2 [�1, 1]256⇥256⇥3

reshape ! 128 ⇥ 1 ⇥ 1 4 ⇥ 4, stride 2 conv, 32,

4 ⇥ 4, stride 1 deconv, BN, 1024 4 ⇥ 4, stride 2 conv, 64

4 ⇥ 4, stride 2 deconv, BN, 512 4 ⇥ 4, stride 2 conv, 128

4 ⇥ 4, stride 2 deconv, BN, 256 4 ⇥ 4, stride 2 conv, 256

4 ⇥ 4, stride 2 deconv, BN, 128 4 ⇥ 4, stride 2 conv, 512

4 ⇥ 4, stride 2 deconv, BN, 64 4 ⇥ 4, stride 2 conv, 1024

4 ⇥ 4, stride 2 deconv, BN, 32 dense ! 1

4 ⇥ 4, stride 2 deconv, 3, Tanh

Table 8: CNN model architecture for size 256 LSUN used in our
experiments on high resolution image generation. All layers of G
use ReLU (except one layer with Tanh); all layers of D use LReLU-
0.1.

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) image x 2 [�1, 1]32⇥32⇥3

dense, 4 ⇥ 4 ⇥ 256/c ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

BN, ReLU, 3 ⇥ 3 conv, 3 Tanh LReLU 0.1

Global sum pooling

dense ! 1

Table 9: Resnet architecture for CIFAR-10. c=1, 2 and 4 for the regular,
1/2 and 1/4 channel structures respectively.

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) image x 2 [�1, 1]48⇥48⇥3

dense, 6 ⇥ 6 ⇥ 512/c ResBlock down 64/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 128/c ResBlock down 256/c

ResBlock up 64/c ResBlock down 512/c

BN, ReLU, 3 ⇥ 3 conv, 3 Tanh ResBlock down 1024/c

LReLU 0.1

Global sum pooling

dense ! 1

Table 10: Resnet architecture for STL-10. c=1, 2 and 4 for the regular,
1/2 and 1/4 channel structures respectively.

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) image x 2 [�1, 1]32⇥32⇥3

dense, 4 ⇥ 4 ⇥ 128 BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BN, ReLU, 3 ⇥ 3 conv, 3 Tanh LReLU 0.1

Global sum pooling

dense ! 1

Table 11: BottleNeck Resnet models for CIFAR-10. BRes refers to
BottleNeck ResBlock. BRes (a, b, c) refers to the Bottleneck resblock
with (input, hidden and output) being (a, b, c).

(a) Generator (b) Discriminator

z 2 R128 ⇠ N (0, I) image x 2 [�1, 1]48⇥48⇥3

dense, 6 ⇥ 6 ⇥ 256 BRes down (3, 16, 32)

BRes up (256, 64, 128) BRes down (32, 16, 64)

BRes up (128, 32, 64) BRes down (64, 32, 128)

BRes up (64, 16, 32) BRes down (128, 64, 256)

BN, ReLU, 3 ⇥ 3 conv, 3 Tanh BRes down (256, 128, 512)

LReLU 0.1

Global sum pooling

dense ! 1

Table 12: BottleNeck Resnet models for STL-10.

RS-GAN generator learning rate

CIFAR-10 STL-10

CNN

No normalization 2e-4 5e-4
Regular + SN 5e-4 5e-4

channel/2 + SN 5e-4 5e-4
channel/4 + SN 2e-4 5e-4

ResNet

Regular+SN 1.5e-3 1e-3
channel/2 + SN 1.5e-3 1e-3
channel/4 + SN 1e-3 5e-4

BottleNeck 1e-3 1e-3

WGAN-GP Hyper-parameters

generator learning rate 1e-4
discriminator learning rate 1e-4
�1 0.5
�2 0.9
Gradient penalty � 10
D iterations per G iteration 5

Table 13: Learning rate for RS-GAN in each setting. Hyper-parameters used for WGAN-GP

38

(a) real data (b) JS-GAN + BatchNorm

(c) WGAN-GP (d) RS-GAN

(e) JS-GAN + Spectral Norm + Regular CNN (f) RS-GAN + Spectral Norm + Regular CNN

(g) JS-GAN + Spectral Norm + Channel/2 (h) RS-GAN + Spectral Norm + Channel/2

(i) JS-GAN + Spectral Norm + Channel/4 (j) RS-GAN + Spectral Norm + Channel/4

Figure 16: Generated CIFAR-10 samples with CNN.

39

(a) JS-GAN + Spectral Norm + Regular ResNet (b) RS-GAN + Spectral Norm + Regular ResNet

(c) JS-GAN + Spectral Norm + Channel/2 (d) RS-GAN + Spectral Norm + Channel/2

(e) JS-GAN + Spectral Norm + Channel/4 (f) RS-GAN + Spectral Norm + Channel/4

(g) JS-GAN + Spectral Norm + BottleNeck (h) RS-GAN + Spectral Norm + BottleNeck

Figure 17: Generated CIFAR-10 samples on ResNet.

40

(a) real data (b) JS-GAN + BatchNorm

(c) WGAN-GP (d) RS-GAN

(e) JS-GAN + Spectral Norm + Regular CNN (f) RS-GAN + Spectral Norm + Regular CNN

(g) JS-GAN + Spectral Norm + Channel/2 (h) RS-GAN + Spectral Norm + Channel/2

(i) JS-GAN + Spectral Norm + Channel/4 (j) RS-GAN + Spectral Norm + Channel/4

Figure 18: Generated STL-10 samples with CNN.

41

(a) JS-GAN + Spectral Norm + Regular ResNet (b) RS-GAN + Spectral Norm + Regular ResNet

(c) JS-GAN + Spectral Norm + Channel/2 (d) RS-GAN + Spectral Norm + Channel/2

(e) JS-GAN + Spectral Norm + Channel/4 (f) RS-GAN + Spectral Norm + Channel/4

(g) JS-GAN + Spectral Norm + BottleNeck (h) RS-GAN + Spectral Norm + BottleNeck

Figure 19: Generated STL-10 samples with ResNet.

42

(a) LSUN Church by JS-GAN (b) LSUN Tower by JS-GAN

(c) LSUN Church by RS-GAN (d) LSUN Tower by RS-GAN

Figure 20: Generated 256⇥ 256 Church and Tower Image by JS-GAN and RS-GAN.

43

	Introduction
	Difference of Population Loss and Empirical Loss
	Landscape Analysis of GANs: Intuition and Toy Results
	Main Theoretical Results
	Landscape Results in Function Space
	Landscape Results in Parameter Space
	Discussion of Implications

	Case Study of Two-Cluster Experiments
	Real Data Experiments
	Conclusion
	 Related Work
	Related Works on Local Minima and Mode Collapse

	2-Cluster Experiments: Details and More Discussions
	Result and Experiments for Imbalanced Data Distribution
	Imbalanced Data: Math Results for Two-Clusters
	Experiments

	Experiments of Bad Initialization
	Experiments of Regular Training: More Details and More Results
	Experiment Details and More Experiments with Logistic Loss
	Experiments with Hinge Loss
	Experiments with Least Square Loss

	Experiments on High Resolution Data
	Discussions on Empirical Loss and Population Loss (complements Sec. 2)
	Particle space or probability space?
	Empirical loss and population loss
	Generalization and overfitting of GAN

	Proofs for Section 3 (2-Point Case) and Appendix C (2-Cluster Case)
	Proof of Claim 3.1 and Corollary 3.1 (for JS-GAN)
	Proof of Claim 3.2 (for RS-GAN)
	Proofs for 2-Cluster Data (Possibly Imbalanced)

	Proof of Theorem 1 (Landscape of Separable-GAN)
	 Proof of Theorem 2 (Landscape of RpGAN)
	Warm-up Example
	Proof of Theorem J.1
	Graph Preliminaries and Proof of Lemma 1
	Proof of Claim J.1

	Proof of Theorem 2

	Results in Parameter Space
	Sufficient Conditions for the Assumptions
	Other Sufficient Conditions
	Proofs of Propositions for Parameter Space
	A technical lemma
	Proof of claims

	Discussion of Wasserstein GAN

