Appendix: Towards a Better Global Loss Landscape of GANs

The code is available at https://github.com/AilsaF/RS-GAN. This appendix consists of additional
experiments, related work, proofs, other results and various discussions.
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A Related Work

We provide a more detailed overview of related work in this section.

Global analysis in supervised learning. Recently, global landscape analysis has attracted much
attention. See Sun [81]], Sun et al. [80]], Bianchini and Gori [15] for surveys and [55} 57} 126,156, 138}
2,192, 127]] for some recent works. It is widely believed that wide networks have a nice loss landscape
and thus local minima are less of a concern (e.g., [60} 32} 150]). However, this claim only holds for
supervised learning, and it is not clear whether local minima cause training difficulties for GANs.

Single-mode analysis. For single-mode data, Feizi et al. [30] and Mescheder et al. [65] provide a
global analysis of GANs. They consider a single point 0 and a single Gaussian respectively. Feizi
et al. [30] differs from ours in a few aspects. First, they consider the single-mode setting which does
not have an issue of mode collapse. Second, they assume pqa.t, 1S a Gaussian distribution, while
we consider an arbitrary empirical distribution. Third, they analyze “quadratic-GAN,” which is not
common in practice, while we analyze commonly used GAN formulations (including JS-GAN).

Mode collapse. Mode collapse is one of the major challenges for GANs which received a lot of
attention. There are a few high-level hypotheses, such as improper loss functions [3| 5] and weak
discriminators [66} 78} 15} 152]]. Interestingly, RpGAN both changes the loss function and improves the
discriminator. The theoretical analysis of mode collapse is relatively scarce. Lin et al. [58]] makes a
key observation that two distributions with the same total variation (TV) distance to true distribution
do not exhibit the same degree of mode collapse. They proposed to pack the samples (PacGAN) to
alleviate mode collapse. This work is rather different from ours. First, they analyze the TV distance,
while we analyzed SepGANs and RpGANs. Second, their analysis is statistical, while our analysis is
about optimization. As for the empirical guidance, RpGAN and PacGAN are complimentary and can
be used together (suggested by the author of [41]). There are a few more works that discuss mode
collapse and/or local minima; we defer the discussion to Appendix

Theoretical studies of loss functions. The early work on GANs [35] built a link between the
min-max formulation and the J-S distance to justify the formulation. Arjovsky and Bottou [3] pointed
out some possible drawbacks of J-S distance, and proposed a new loss based on Wasserstein distance,
referred to as WGAN. Later, Arora et al. [S]] point out that both Wasserstein distance and J-S distance
are not generalizable, but they also argued that this is not too scary since people are not directly
minimizing these two distances but a class of metrics referred to as “neural-network distance.”

Convergence analysis. Many recent works analyze convergence of GANs and/or min-max opti-
mization, e.g., [23} 22,16} 34, 64} 188, 139, [79,190]]. These works often only analyze local stability or
convergence to local minima (or stationary points), making it different from our work. Lei et al. [48]
studied the convergence of WGAN, but restricted to 1-layer neural nets.

Other theoretical analysis. There are a few other theoretical analysis of GANS, e.g., [68,159, 29, |16}
8, 1511161} 48]]. Most of these works are not directly related to our work.

Other GAN Variants. There are many GAN variants, e.g., WGAN [4] 3] [36] and variants [86]
46, (11,24, 251, f-GAN [74], SN-GAN [67], self-attention GAN [89]], StyleGAN [43| [44]] and many
more [63} 169} 112,70} 211154} 49, [78, [74} 75, 166,137, 76, 10, 49]]. Our analysis framework (analyzing
global landscape of empirical loss) can potentially be applied to more variants mentioned above.

A.1 Related Works on Local Minima and Mode Collapse
We discuss a few related works on local minima and mode collapse, including Kodali et al. [45]], Li
and Malik [53] and Unterthiner et al. [83]] that are mentioned in the main text.

DRAGAN. Kodali et al. [45] suggested the connection between mode collapse and a bad equilibrium
based on the following empirical observation: a sudden increase of the gradient norm of the discrimi-
nator during training is associated with a sudden drop of the IS score. However, Kodali et al. [45]
don’t present formal theoretical results on the relation between mode collapse and a bad equilibrium.

IMLE. Li and Malik [53] proposed implicit maximum likelihood estimation (IMLE). The empirical
version of IMLE in the parameter space is the following:

min Y min la = Gu(z)|” ©)
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In other words, for each generated sample y; = G, (z;), the loss is the distance from y; to the
closest true sample z;. Interestingly, IMLE and RpGAN both couple the true data and the fake
data in the loss. The differences are two fold: first, IMLE does not have an extra discriminator fy,
while RpGAN has; second, IMLE compares y; with all ; (so as to find the nearest neighbor) while
RpGAN compares y; with an arbitrary x;. See Table Efor a comparison. Note that Li and Malik
[53] don’t present formal theoretical results on the landscape.

Table 3: Models that couple true data and fake data in the loss

Model name Empirical form of loss ' Form of coupling Optimization
RpGAN [41]] maxy Y, h(f(z;) — f(y;)) pairing min-max "
J
RaGAN " [41] maxy > k(L > f(xi)—f(y;)) | comparing with average min-max
j i=1
(max-)sliced-WGAN ‘ thlllagl S F(X)@ — F(Y)@)]>™|  pairing sorted output min-max
L<li=1
[24,125]
IMLE [53] S mingep [y — @il comparing with closest min
J
Coulomb-GAN 2y k(@i xs) + 22, 5 kWi, v5) noN-Zero-sum
(83 —23 7 i k(miy) all-pairs game "'

 We show the empirical form of the loss in the function space. Rigorously speaking, the provided form is the the loss for one mini-batch;
in practice, in different iterations of SGD we will use different samples of x;, y;. For the emprical loss in the parameter space, we shall
replace f by fo and y; by G4, (z5). " Besides the zero-sum game form (min-max form), RpGAN can be easily modified to a non-zero-
sum game form (“non-saturating version” proposed in [35]). ™ The precise expression of RaGAN (relativistic averaging GAN) shall be
> ha(s ey fo(mi) = fo(ys)) +22, ha(5 37—, fo(ys) — fo(x:)), butfor simplicity we only present one term in the table.
¥ Here F( X))y £ £ f(X)(ny and f(Y) (1) < -+ < f(Y)(n) are the sorted versions of f(x;)’s and f(y:)’s respectively.
V" Here k is the Coulomb kernel, defined as k(u,v) = W where u,v € RY, o < d — 2 and € > 0. The original
u—v|2+te

form of Coulomb-GAN is a non-zero-sum game, but it is straightforward to transfer the formulation to a pure minimization form since
the discriminator-minimization problem has a closed form solution (used in the proof of [83| Theorem 2]). We presented the transformed
minimization problem here. ~ ¥' Coulomb-GAN is presented as a non-zero-sum game, but as mentioned earlier it can be transformed to
a minimization problem. The original Coulomb-GAN uses a smoothing operator in the generator loss; in this empirical form, we omit the
smoothing operator for easier comparison (thus it is not the same as Coulomb-GAN). In the table, we show the resulting loss in the pure
minimization form. Unlike SepGAN and RpGAN that can be written as either min-max form or non-zero-sum game form, we point out
that there is no min-max form for Coulomb-GAN, since the design principle of Coulomb-GAN is very different from typical GANs.

Coulomb-GAN. Unterthiner et al. [83]] argued that mode collapse can be a local Nash equilibrium
in an example of two clusters (see [83, Appendix A.1]). They further proposed ColumbGAN and
claimed that every local Nash equilibrium is a global Nash equilibrium (see [83, Theorem 2]). Their
study is different from ours in a few aspects. First, they still consider the pdf p,, though restrict the
possible movement of p, (according to a continuity equation). In contrast, we consider the empirical
loss in particle space. Second, the bad landscape of JS-GAN is discussed in words for the 2-cluster
case [83, Appendix A.1], but not formally proved. In contrast, we prove rigorous result for the general
case. Third, they do not study parameter space (though with informal discussion). Fourth, they do
not present landscape-related experiments, such as the narrow-net experiments we have done.

Common idea: Coupling true data and fake data. Interestingly, similar to IMLE and RpGAN,
ColumbGAN also coupled the true data and fake data in the loss functions. RpGAN, RaGAN (a
variant of RpGAN considered in [41]), IMLE and ColumbGAN differ in two aspects: the specific
form of coupling (pairing, comparing with average, comparing with the closest, all possible pairs),
and the specific form of optimization (pure minimization, min-max, non-zero-sum game). See the
comparison in Table[3. It is interesting that all three lines of work choose to couple true data and
fake data to resolve the issue of mode collapse. We suspect it is hard to prove similar results on the
landscape of empirical loss for IMLE and Coulomb-GAN.

Relation to (max)-sliced Wasserstein GAN. We point out that the sliced Wasserstein GAN (sliced-
WGAN) [24] and the max-sliced Wasserstein GAN (max-sliced-WGAN) [25]] also couple the
true data and fake data. For any function f, denote f(X) = (f(z1),..., f(z,)) and f(Y) =
(f(y1)s---, f(yn)). The empirical version of the max-sliced Wasserstein GAN can be written as

min max Wa(f(X), f(Y))*. (10)

Here f is a neural net with codomain R, and W5 is the Wasserstein-2-distance. Denote f(X )(1) <
o < f(X)my and f(Y)(1y < -+ < f(Y)(n) as the sorted versions of f(z;)’s and f(y;)’s respec-
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Figure 7: Comparison of JS-GAN and RS-GAN for two different runs. First row: D loss; second row: fake data movement during training.

tively. Then Eq. is equivalent to

(max-)sliced-WGA :m};n‘}r‘laicl F(X) ) — F(Y) @))% (1)
F="i=t

This form is quite close to RoGAN (when h(t) = t2): the only differences are the sorting of
f(X), f(Y) and the extra constraint | f|;, < 1. The extra constraint |f|;, < 1 is due to unbounded h,
and can be removed if we use an upper bounded h (which leads to a sorting version of RpGAN). See
the comparison of max-sliced-WGAN with RpGAN and other models in Table 3]

Nash equilibria for Gaussian data. A very recent work Farnia and Ozdaglar [28]] shows that for a
non-realizable case (with a linear generator) Nash equilibria may not exist for learning a Gaussian
distribution. This setting is quite different from ours.

B 2-Cluster Experiments: Details and More Discussions

In this part, we present details of the experiments in Section [5]and other complementary experiments.

Experimental Setting. The code is provided in “GAN_2Cluster.py”. We sample 100 points from two
clusters of data near 0 and 4 (roughly 50 in each cluster). We use GD with momentum parameter 0.9
for both D and G. The default learning rate is (DIr, Glr) = (1072, 10~2). The default inner-iteration-
number for the discriminator and the generator are (Dlter, Glter) = (10, 10). The discriminator and
generator net are a 4-layer network (with 2 hidden layers) with sigmoid activation and tanh activation
respectively. The default neural network width (Dwidth, Gwidth) = (10, 5). We will also discuss the
results of other hyperparameters. The default number of training iterations is MaxlIter = 5000. We
use the non-saturating versions for both JS-GAN and RS-GAN.

Understanding the effect of mode collapse, by checking D loss evolution and data movement.
In the main text, we discussed that mode collapse can slow down training of JS-GAN. For easier
understanding of the training process, we add the visualization of the data movement (which is
possible since we are dealing with 1-dimensional data) in Figure[7] We use the y-axis to denote the
data position, and x-axis to denote the iteration. The blue curves represent the movement of all fake
data during training, and the red straight lines represent the position of true data (two clusters). The
training time may vary across different runs, but overall the time for JS-GAN is about 2-4 times
longer than that for RS-GAN.

Effect of width. The default width is (Dwidth, Gwidth) = (10, 5). We tested two other settings:
(20, 10) and (5, 3). For the wide-network setting, the convergence of both JS-GAN and RS-GAN are
much faster, but RS-GAN is still faster than JS-GAN in most cases; see Fig. @ For the narrow-network
setting, RS-GAN can recover two modes in all five runs, while JS-GAN fails in two of the five runs
(within 5k iterations). See Fig.[9]for one success case of JS-GAN and one failure case of JS-GAN. In
the failure case, JS-GAN completely gets stuck at mode collapse, and the D loss is stuck at around
0.48, consistent with our theory.

®Note that max-sliced-WGAN in Deshpande et al. [25] uses miny max,|<1,|g|, <1 Wa(vTg(X),vTg(Y))?, while sliced-
WGAN in Deshpande et al. [24] uses miny E, | =1 max|q, <1 W2 (v g(X),vT g(Y))?. InEq. (T0) we use f(u) to replace v g(u)

to simplify the expression; although technically, f and v g are not equivalent, this minor difference does not affect our discussion.
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Figure 8: Wide network (Dwidth, Gwidth) = (20, 10): JS-GAN and RS-GAN in two different runs. Compare to regular widths (Dwidth,
Gwidth) = (10, 5), both GANs converge faster. Anyhow, RS-GAN is still 2-3 times faster than JS-GAN.

1 1. 1 1.
DLoss DLoss DLoss
10 10 10 10
Zos Zos Zos Bos
s B B >
0.6 0.6 0.6 0.6
0.4 0.4 DLoss 0.4 04
G 1000 2000 3600 4600 5000 G 1000 2000 3000 4000 5600 G 1000 2000 3000 4000 5600 G 1000 2000 3000 4000 5000
iteration iteration iteration iteration
c 6 c © c © c 6
s s s s
Z — g a 2 2 —
g ~ g g V- g 7
s 2 s 2 s 2 s 2
g S g L _ g _
-2 0 1000 2000 3000 4000 5000 T“70 1000 2000 3000 4000 5000 T¢70 1000 2000 3000 4000 5000 T°70 1000 2000 3000 4000 5000
iteration iteration iteration iteration
(a) JS-GAN Ist run (b) JS-GAN 2nd run (c) RS-GAN st run (d) RS-GAN 2nd run

Figure 9: Narrow network setting: Comparison of JS-GAN and RS-GAN in two runs. RS-GAN is a few times faster than JS-GAN in general.
Compare to default widths (D width 10, G width 5), both GANs converge slower. In one case (b), JS-GAN gets stuck at mode collapse.

Other hyperparameters. Besides the width, the learning rates and (DlIter, Glter) will also affect the
training process. As for (Dlter, Glter), we use (10, 10) as default, but other choices such as (5, 2) and
(1,1) also work. As for learning rates, we use (0.01,0.01) as default, but smaller learning rates such
as (0.001,0.001) also work. Different from the default hyper-parameters, for some hyper-parameters,
the D loss of JS-GAN does not reach 0.48, indicating that the basin only attracts the iterates half-way.
Nevertheless, in most settings RS-GAN is still faster than JS-GAN.

C Result and Experiments for Imbalanced Data Distribution

In the main results, we assume z;’s are distinct. In this section, we allow z;’s to be in general
positions, i.e., they can overlap. The 2-point model can only approximate two balanced clusters.
Allowing z;’s to overlap, we are able to analyze imbalanced two clusters. We will show: (i) a
theoretical result for 2-cluster data; (ii) experiments on imbalanced 2-cluster data and MNIST.

C.1 Imbalanced Data: Math Results for Two-Clusters

Assume there are n true data points X = (21, ..., ;) in two modes with proportion o and 1 — «
respectively, where « > 0.5. More precisely, assume z; = g = -+ = Tpq and Tpat1 = -+ = T,
and denote two multi-sets X; = {x1, 22, ..., ZTnat and Xo = {&pat1,22,...,2,}. Denote Y =

(y1,-..,Yn) as the tuple of all generated points, and let ) be the multiset {y1, ..., yn }-
Claim C.1. Consider the JS-GAN loss defined in Eq. (1), where X is defined above. We have

¢33 (Y, X) = go(m1) + qr—a(m2), if |X1NY|=m1, | XoNY|=ma,

cm—l—m1 ( n )
—— log(an +m).
2n &

As a result, the global minimal loss is — log 2, which is achieved iff Y = X1 U Xb.

12
where g, (m) = %log(an) + ; logm — (12
n

Corollary C.1. Suppose Y = (1, ---,0n) satisfies | X1 N )>| =ny,|X2 N 37| =n — ny, where
Y ={01,...,0n} is the multiset of all §;’s, then Y is a strict local minimum. Moreover, if n1 # na,
then'Y is a sub-optimal strict local minimum.

The proofs of Claim [C.T]and Corollary [C.T]are given in Appendix
Denote m; £ |XoNY|, mo £ |A1NY)|. The value g (n) indicates the value of ¢(Y, X) at the mode

collapsed pattern (state 1a) where m; = n,mo = 0. Note that g, (n) = § log ;95 + %log %H is

a strictly decreasing function of a. When o = 1/2, go(n) = §log & + 3 log 2 ~ —0.4774; when

a = 2/3, go(n) = —0.5608. The more imbalanced the data are (larger ), the smaller g, (n), and
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Figure 10: Illustration of the landscape of JS-GAN for balanced two clusters with o = 0.5 (left) and imbalanced two clusters with o = 2/3
(right). Denote m; = |X;NY|,4 = 1,2. Here state 0, state la, state 1b, state 2 represent (m1, ma) = (0,0), (na,0), (na, 0),
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and g (an) ~ —0.46. Different from the 2-point-case landscape in Fig |5} there should be some intermediate patterns (satisfying mi <
n, mo = 0), but for simplicity we do not show them. From state 1a to state 2, Y can go through state 1b or go through state 0, but we only
show the path through state 1b. We view the gap between state 0 and state 1a as an approximation of the “depth” of the basin.
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Figure 11: Imbalanced 2-cluster result: comparison of JS-GAN in (a) and (b), and RS-GAN in (c) and (d). (a)
and (c): evolution of D loss; (b) and (d): data position movement during training.

further the deeper the basin. In Figure [I0, we compare the loss landscape of the balanced case
a = 1/2 and the imbalanced case o = 2/3.

We suspect that the deeper basin in the imbalanced case will make it harder to escape mode collapse
for JS-GAN. We then make the following prediction: for JS-GAN, mode collapse is a more severe
issue for imbalanced data than it is for balanced data. For RS-GAN, the performance does not change
much as data becomes more imbalanced. We will verify this prediction in the next subsections.

C.2 Experiments

2-Cluster Experiments. For the balanced case, the experiment is described in Appendix |B} Both
JS-GAN and RS-GAN can converge to the two-mode-distribution. For the imbalanced case where
o= %, with other hyper-parameters unchanged, JS-GAN falls into mode collapse while RS-GAN
generates the true distribution (2/3 in mode 1 and 1/3 in mode 2) (see Fig. E). The loss ¢5(Y, X)

ends up at approximately -0.56, which matches Claim [C.T!

MNIST experiments. To ease visualization, we create an MNIST sub-dataset only containing 5’s
and 7’s. We use the CNN structure of Tab. |Z and train for 30k iterations. For the balanced case, the
number of 5’s and 7’s are identical (i.e., ratio 1:1). Both JS-GAN and RS-GAN generate a roughly
equal number of 5’s and 7’s, as shown in Fig. ﬂ_T[a,b). For the imbalanced case with 4 times more 7’s
than 5’s (ratio 1:5), JS-GAN only generates 7’s, while RS-GAN generates 13 5’s among 64 generated
samples, aligning with the true data distribution (see Fig.[12{c,d)).

The above two experiments verify our earlier prediction that RS-GAN is robust to imbalanced data
while JS-GAN easily gets stuck at mode collapse for imbalanced data.

D Experiments of Bad Initialization

A bad optimization landscape does not mean the algorithm always converges to bad local minim A
‘bad’ landscape means is that there exists a “bad” initial point (the blue point in Fig.[T3[a)) that it will
lead to a ‘bad’ final solution upon training. In contrast, a good landscape is more robust to the initial
point: starting from any initial point (e.g., two points shown in Fig. [I3[b)), the algorithm can still find
a good solution. Therefore, bad optimization landscape of JS-GAN does not mean the performance of
JS-GAN is bad for any initial point, but it should imply that JS-GAN is bad for certain initial points.

Next, we will show experiments that support this prediction.

"Technically since we are not dealing with a pure minimization problem, we should say “the algorithm
converges to a bad attractor”. But for simplicity of illustration, we still call it “local minimum.”
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Figure 12: Balanced and Imbalanced MNIST setting: Comparison of JS-GAN and RS-GAN.

5-Gaussian Experiments. We consider a 2-dimensional 5-Gaussian distribution as illustrated in
Fig.[[4(a). We design a procedure to find an initial discriminator and generator. For JS-GAN or
RS-GAN, in some runs we obtain mode collapse and in some runs we obtain perfect recovery. Firstly,
for the runs achieving perfect recovery (Fig.[I4(b)) in JS-GAN and RS-GAN respectively, we pick
the generators at the converged solution, which we denote as Gyso and Grsg respectively. Secondly,
for the runs attaining mode collapse (Fig. [I4(c)) in JS-GAN and RS-GAN respectively, we pick
the discriminators at the converged solution, referred to as Djsg and Dgsg, Then we re-train both
JS-GAN and RS-GAN from (Djso, Giso) and (Dgso, Grso) respectively.

We define an evaluation metric ¥ = »"," | minj <;<q04 (a||z; — Ci|),

’ : B 4 JERINE 65 78 60 -
where C},’s are the cluster centers, « is a scalar and z;’s are 10 true
data samples. We repeat the experiment S = 50 times and compute " [

the average W. The larger the metric, the worse the generated points. PR S S
As shown in Fig.[T4]a), the metric ® is much higher for JS-GAN than generator Ir = discriminator Ir

for RS-GAN, for various learning rates Ir. Figure 15: MNIST experiment

MNIST Experiments. We use a similar strategy to find initial parameters for MNIST data. Fig. [15]
(also in Sec. [6) shows that RS-GAN generates much lower FID scores (30+ gap) than JS-GAN.

The two experiments verify our prediction that RS-GAN is more robust to initialization, which
supports our theory that RS-GAN enjoys a better landscape than JS-GAN.

E Experiments of Regular Training: More Details and More Results
In this section, we present details of the regular experiments in Sec.[6]and a few more experiments.

E.1 Experiment Details and More Experiments with Logistic Loss

Non-saturating version. Following the standard practice [33], if lim;, ., h(t) = 0, we use the
non-saturating version of RpGAN in practical training:

mginLD(Q;w) = %Zh(fo(ﬂﬁi)) — fo(Guw(zi))),
) ‘ (13)
n}li}nLg(w;@) S E Zh(fG(Gw(ZZ)) - fe(xl)))

For logistic and hinge loss, we use Eq. (13). For least-square loss, we use the original min-max
version (check Appendix [E.3]for more). We use alternating stochastic GDA to solve this problem.

Neural-net structures: We conduct experiments on two datasets: CIFAR-10 (32 x 32 size) and
STL-10 (48 x 48 size) on both standard CNN and ResNet. As mentioned in Sec.[f] we also conduct
experiments on the narrower nets: we reduce the number of channels for all convolutional layers in
the generator and discriminator to (1) half, (2) quarter and (3) bottleneck (for ResNet structure), The

\/\ N NV a
\/ ) \\\\// \\7/

(a) bad landscape with bad local minima (b) good landscape with multiple global minima

Figure 13: Left: for a bad landscape, a good initial point (red) leads to convergence to a global optima while a
bad one (blue) does not. Right: for a good landscape, two initial points both converge to global minima.
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Figure 14: Five Gaussian experiment. (a): ground truth. (b): generated data covers all five clusters. (c): mode
collapse happens and only two clusters get covered. (d) JS-GAN and RSGAN’s loss ¥ under different Ir
(generator Ir = discriminator Ir).

CIFAR-10 CIFAR-10+EMA STL-10+EMA
‘ ISt FID | IS 1 FID | ISt FID |

ResNet ! ! !
JS-GAN+SN 8.034+0.10 20.0610.188.414+0.09 17.79+0.439.1440.12 33.06
RS-GAN+SN 7.9440.09 19.79+£0.57 [ 8.37£0.10 17.7540.56|9.234+0.08 31.87

JS-GAN+SN+GD channel/2 |7.7740.08 23.364-0.46 |8.24+0.08 20.55+0.59|8.69+0.08 42.05
RS-GAN+SN+GD channel/2 | 7.761+0.07 21.63+0.51 |8.21£0.09 18.91£0.45|8.77+0.13 39.31
JS-GAN+SN+GD channel/4 |6.75+0.06 44.3944.38 |7.18£0.06 38.75+6.28|8.42+0.06 52.38
RS-GAN+SN+GD feature/4 |7.2040.07 31.4040.78 | 7.60£0.06 26.85+0.56|8.43+0.10 48.92
JS-GAN+SN+BottleNeck 7.51£0.07 27.33+1.05|7.9940.10 23.7140.86 |8.37+£0.08 47.97
RS-GAN+SN+BottleNeck  |7.5240.10 25.0540.35|8.06£0.11 21.29+0.22|8.484+0.06 44.60

Table 4: Repeat the experiments (logistic loss) in Tab. with at least three seeds.

architectures are shown in Tab. [7(CNN), Tab. [9] (ResNet for CIFAR) and Tab. [L0] (ResNet for STL)
and Tab.|11{(Bottleneck for CIFAR) and Tab. |12|(Bottleneck for STL).

Hyper-parameters: We use a batchsize of 64. For CIFAR-10 on ResNet we set 53 = 0 and 5, = 0.9
in Adam. For others, 51 = 0.5 and 52 = 0.999. We use Glter = 1 for both CNN and ResNet. We
also use DIter = 1 for CNN and DIter = 5 for ResNet. We fix the learning rate for the discriminator
(dlr) to be 2e-4. For RpGANSs, we find that the learning rate for the generator (glr) needs to be larger
than dIr to keep the training balanced. Thus we tune glr using parameters in the set 2e-4, Se-4, le-3,
1.5e-3. For SepGAN, we set glr = 0.0002 for SepGANs (JS-GAN,hinge-GAN) as suggested by
[67,[76] [ See Tab. for the learning rate of RS-GAN and hyper-parameters of WGAN-GP.

More details of EMA: In Sec. [6, we conjectured that the effect of EMA (exponential moving
average) [88] and RpGAN are additive. Suppose w(® is the generator parameter in ¢-th iteration of
one run, the EMA generator at the ¢ iteration is computed as follows wg\}[ A=D0 wg\ZAl )+ (1-B)w®,
where w](z?\,)[ A= w(©). Note that EMA is a post-hoc processing step, and does not affect the training
process. Intuitively, the EMA generator is closer to the bottom of a basin while the real training is
circling around a basin due to the minmax structure. We set 5 = 0.9999. As Tab. 4 shows, while
EMA improves both JS-GAN and RS-GAN, RS-GAN is still better than JS-GAN.

Results on Logistic Loss with More Seeds: Besides the result in Tab. [2, we run at least 3 extra
seeds for all experiments with ResNet structure on CIFAR-10 to show that the results are consistent
across different runs. We report the results in Tab. E and find RS-GAN is still better than JS-GAN
and the gap increases as the networks become narrower.

Samples of image generation: Generated samples obtained upon training on CIFAR-10 are given in
Fig.[I6]for CNN, Fig.[I7]for ResNet. Generated samples obtained upon training on STL-10 dataset
are given in Fig.[I8 for CNN, Fig.[I9 for ResNet. Instead of cherry-picking, all sample images are
generated from random sampled Gaussian noise.

8We tuned glr in the set 2e-4, Se-4, le-3, 1.5¢-3 and find that glr = 2e-4 performs the best in most cases for
SepGAN, so we follow the suggestion of 67, 76].
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CIFAR-10 CIFAR-10 + EMA
IS FID| FIDGap IS FID | FID Ga
| p p

ResNet + Hinge Loss ‘ ‘

Hinge-GAN 7.9240.08 21.30 8.4440.10 17.43
Hinge-GAN +GD channel/2 7.63£0.05 27.21 7.90£0.08 24.35
Hinge-GAN +GD channel/4 6.79+£0.09 37.51 7.39£0.07 34.45
Hinge-GAN +BottleNeck 7.161+0.10 33.24 7.914£0.09 26.56
Rp-Hinge-GAN 7.84£0.09 19.10 220 [8.214+0.09 17.19 0.24

Rp-Hinge-GAN +GD channel/2 | 7.7740.08 21.10  6.11 |8.34£0.11 19.19 5.17

Rp-Hinge-GAN +GD channel/4 | 7.21£0.11 29.41  8.10 |7.77+0.08 25.57  8.88

Rp-Hinge-GAN +BottleNeck |7.52+0.07 23.28 9.96 |8.05+£0.07 22.03 4.53
Table 5: Comparison of Hinge-GAN and Rp-Hinge-GAN. We also show the FID gap between Rp-Hinge-GAN
with Hinge-GAN (e.g. 2.20 = 21.30 — 19.10 and 9.96 = 33.24 — 23.28).

E.2 Experiments with Hinge Loss
Hinge loss has become popular in GANs 82,167, [18]. The empirical loss of hinge-GAN is

mein L‘g“g“‘(e; w)

>

% Z max(0,1 — Dy (x;)) + Zmax(o, 14 Do(Guw(zi)) |,

mlgn Lg“ge(u); 0) & —% Z Dy(Gw(2i)).
Note that Hinge-GAN applies the hinge loss for the discriminator, and linear loss for the generator.
This is a variant of SepGAN with hq (t) = ha(t) = — max(0,1 — t).
The Rp-hinge-GAN is RpGAN given in Eq. with h(t) = —max(0,1 — t):

min LS50 0) £~ 37 max(0, 1+ (fo (G (20)) = fo(@)),
rrtiyn Lgmngc(w; 0) £ % Z max(0, 1+ (fo(zi) — fo(Gw(2:))))-

We compare them on ResNet with the hyper-parameter settings in Appendix As Tab. [5|shows,
Rp-Hinge-GAN (both versions) performs better than Hinge-GAN. For narrower networks, the gap is
4 to 9 FID scores, larger than the gap for the logistic loss.

E.3 Experiments with Least Square Loss

We consider the least square loss. The LS-GAN [62]] is defined as follows:

min LS 0;0) 2 - |3 (alw) = P+ 3 fo(Gulzi)?

2n 2
a1l .
mui)n LLGS(IU? 0) = E Z(fQ(Gw(Zi)) - 1)2'

This is a non-zero-sum variant of SepGAN with hy (t) = —(1 — t)2, ha(t) = —t2.
Rp-LS-GAN addresses the following objectives:
min L (050) £ 3o () = fo(Gz0)) = 1),

i

(14)
min L (w;0) £ ~ L8 (00) = 3" (fo(wi) — folGulz)) — 1)

For least square loss h(t) = —(t — 1)2, the gradient vanishing issue due to h does not exist, thus we
can use the min-max version given in Eq. in practice. Our version of Rp-LS-GAN is actually
different from the version of Rp-LS-GAN in [41]] which is similar to Eq. with least square h.

In Tab.[6)we compare LS-GAN and Rp-LS-GAN on CIFAR-10 with CNN architectures detailed in
Tab.[7] As Tab.[6]shows, Rp-LS-GAN is slightly worse than LS-GAN in regular width, but is better
than LS-GAN (with 5.7 FID gap) when using 1/4 width.

F Experiments on High Resolution Data

There are two approaches to achieve a good landscape: one uses a wide enough neural net [73, 50],
and the other uses a large enough number of samples (approaching convexity of pdf space). As we
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Regular width channel/2 channel/4

IS FID FIDGap IS FID FIDGap IS FID FID Gap
LS-GAN 6.91£0.10 32.93 6.63+£0.08 37.83 5.69+0.10 48.63
Rp-LS-GAN | 7.094+0.07 34.78 -1.85 |6.944+0.04 3434 349 [6.22+0.10 42.86 5.77

Table 6: Comparison of LS-GAN and Rp-LS-GAN on CIFAR-10 with the CNN structure.

discuss in Sec. 2| (see also Appendix [G.T)), when the number of samples is far from enough for filling
the data space, the convexity (of pdf space) may vanish. A higher dimension of data implies a larger
gap between empirical loss and population loss, thus the non-convexity issue will become more
severe. Thus we conjecture that JS-GAN suffers more for higher resolution data generation.

We consider 256 x 256 LSUN Church and Tower datasets with CNN architecture in Tab.[8, For
RS-GAN, we set glr = 1e-3 and dlr = 2e-4 We train 100, 000 iterations with batchsize 64. The
generated images are presented in Fig. For both datasets, RS-GAN outperforms JS-GAN visually.

G Discussions on Empirical Loss and Population Loss (complements Sec. 2

As mentioned in Sec. |2} the pdf space view (the population loss) was first used in [35]], and became
quite popular for GAN analysis. See, e.g., [71} 140, 20]. In this part, we provide more discussions on
the relation of empirical loss and population loss in GANs.

G.1 Particle space or probability space?

Suppose p, = N(0,14,) (or other distributions) is the distribution of the latent variable z, and
Z = (z1,...,2,) are the samples of latent variables. During training, the parameter w of the
generator net G, is moving, and, as a result, both the pdf p, = G,,(p.) and the particles y; = G, (z;)
move accordingly. Therefore, GAN training can be viewed as either probability space optimization or
particle space optimization. The two views (pdf space and particle space) are illustrated in Figure T}

In the probability space view, an implicit assumption is that the pdf p, moves freely; in the particle
space view, we assume the particles move freely. Free-particle-movement implies free-pdf-movement
if the particles almost occupy the whole space (a one-mode distribution), as shown in Fig. 2T,
However, for multi-mode distributions in high-dimensional space, the particles are sparse in the space,
and free-particle-movement does NOT imply free-pdf-movement. This gap was also pointed out in
[83]]; here, we stress that the gap becomes larger for sparser samples (eiher due to few samples ore
high dimension). This forms the foundation for experiments in App.

To illustrate the gap between free-pdf-movement and free-particle-movement, we use an example of
learning a two-mode distribution pgata. Suppose we start from an initial two-mode distribution pg, as
shown Figure To learn pya¢a, we need to do two things: first, move the two modes of p, to roughly
overlap with the two modes of pgat. Which we call “macro-learning”; second, adjust the distributions
of each mode to match those of pgata, Which we call “micro-learning.” This decomposition is
illustrated in Fig. [Zand [E In micro-learning, the pdf can move freely, but in macro-learning, the
whole mode has to move together and cannot move freely in the pdf space.

< -
- - = - - - » - =
Figure 21: Illustration of the learning process of the single mode. Figure 22: Illustration of the process of learning a multi-mode distri-
The generated samples are moving, which corresponds to adjustment bution. We decompose this process into two parts in the next figure.
of the probability densities.
- =
XY Y. X%
(a) Macro-learning (b) Micro-learning

Figure 23: Decomposing learning a multi-mode distribution into macro-learning and micro-learning. Macro-learning refers to the movement
of the whole mode towards the underlying data mode. Micro-learning refers to the adjustment of the distribution within each mode. If
macro-learning fails, then an entire mode is missed in the generated distributions, which corresponds to mode collapse.
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G.2 Empirical loss and population loss

The population version of RpGAN [41]] is miny, ., ¢r E(Pg, Pdata), Where

¢R,E(Dg, Pdata) = Sup E(w,y)N(pgmdam)[h(f(z) - f(y)]- (15)
FeC(R?)

Suppose we sample x1,...,%, ~ Pdata and Y1,...,Yn ~ Dg, then % S h(f () = fluyi))] is
an approximation of B, ) (p, pauea) [2(f(2) — f(v))]. The empirical version of RpGAN addresses

miny ecgaxn ¢r (Y, X), where

n

or(Y,X) = sup — S [h(F(w) — Fu)))- (16)

fec(rd) M

Our analysis is about the geometry of ¢g (Y, X) in Eq. (16). In practical SGDA (stochastic GDA), at
each iteration we draw a mini-batch of samples and update the parameters based on the mini-batch.
The samples of true data x; are re-used multiple times (similar to SGD for a finite-sum optimization),
but the samples of latent variables z; are fresh (similar to on-line optimization). Due to the re-use of
true data, stochastic GDA shall be viewed as an online optimization algorithm for solving Eq.
where x;’s can be the same. Recall that in the main results, we have assumed that z;’s are distinct,
thus there is a gap between our results and practice. Extending our results to the case of non-distinct
x;’s requires extra work. This was done in Claim|[C.I]for the 2-cluster setting. But for readability we
do not further study this setting in the more general cases. We leave this to future work.

G.3 Generalization and overfitting of GAN

One may wonder whether fitting the empirical distribution can cause memorization and failure to
generate new data. Arora et al. [S]] proved that for many GANs (including JS-GAN) with neural nets,
only a polynomial number of samples are needed to achieve a small generalization error. We suspect
that a similar generalization bound can be derived for RpGAN.

We provide some intuition why fitting the empirical data distribution 5

via a GAN may avoid overfitting. Consider learning a two-cluster dis-

tribution as shown in Fig.[24] During training, we learn a generator that N
( ) ( )
N4 =

maps the latent samples z; to x;, thus fitting the empirical distribution.
If we sample a new latent sample z;, then the generator will map z; to
anew point x; in the underlying data distribution (due to the continuity
of the generator function). Thus the continuity of the generator (or the
restricted power of the generator) provides regularization for achieving generalization.

Figure 24: How to generate new point.

H Proofs for Section 3| (2-Point Case) and Appendix [C| (2-Cluster Case)

We now provide the proofs for the toy results (i.e., the case n = 2).

H.1 Proof of Claim[3.1)and Corollary3.1](for JS-GAN)

Proof of Claim We will compute values of ¢5s(Y,X) for all Y. Re-
call D can be any continuous function with range (0,1). Recall that ¢;5(Y,X) =
supp 5 [>or log(D(x;)) + Y1, log(1 — D(y;))] . Consider four cases. Denote a multiset
Y= {yl,yg}, and let m; = |y n {a:l}|,z S {1,2}.

Case 1 (state 1): m; = mqy = 1. Then the objective is

sup 3 | 3 Tou(D(en)) + 3 1o8(1 ~ Dlan) + 3 1op(Dlaz) + 3 log(1 ~ D(e=))] .

The optimal value is — log 2, which is achieved when D(z1) = D(22) = 3.

Case 2 (state la): {m1,m2} = {0,1}. WLOG, assume m; = 1,mq = 0, and y; = 1,y2 ¢
{z1,z2}. The objective becomes

s%p% E log(D(z1)) + %log(D(mz)) + %log(l — D(z1)) + %log(l - D(yg))] )
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The optimal value — log 2/2 is achieved when D(z1) = 1/2, D(x2) — 1 and D(y3) — 0.
Case 3 (state 1b): {mq,mo} = {0,2}. WLOG, assume y; = y» = x1. The objective becomes

sup 3 |3 0B(D(o0) + 1081~ D) + § log(D(w)|.

The optimal value § log & + 3 log 2 ~ —0.4774 is achieved when D(z1) = 1/3 and D(z3) — 1.

Case 4 (state 2): my = mao = 0, i.e., y1,y2 ¢ {21, 22}. The objective is:

111 1 1 1
sup 3 {5 log(D(z1)) + 5 log(D(x2)) + 3 log(1 — D(y1)) + 3 log(1 — D(yz))} .
D

These terms are independent, thus each term can achieve its supreme log 1 = 0. Then the optimal
value 0 is achieved when D(z1) = D(x2) — 1 and D(y1) = D(y2) — 0.

Proof of Corollary [3.1; Suppose ¢ is the minimal non-zero distance between two points of
T1,T2,Y1,Y2. Consider a small perturbation of Y as Y = (41 + €1,% + €2), where |¢;| < e.
We want to verify that

(Y, X) > (Y, X) ~ —0.48. a7

There are two possibilities. Possibility 1: ¢; = 0 or e = 0. WLOG, assume ¢; = 0, then we must
have €3 > 0. Then we still have y; = 1 = 2. Since the perturbation amount is small enough, we
have yo ¢ {z1,z2}. According to Case 2 above, we have ¢(Y, X) = —log2 ~ —0.35 > —0.48.
Possibility 2: ¢; > 0,e2 > 0. Since the perturbation amount €; and e, are small enough, we
have y; ¢ {x1,22},y2 ¢ {x1,22}. According to Case 4 above, we have ¢(Y, X) = 0 > —0.48.
Combining both cases, we have proved Eq. (I7). O

H.2 Proof of Claim [3.2](for RS-GAN)

This is the result of RS-GAN for n = 2. WLOG, assume 2; = 0,72 = 1. Denote grs(Y) =
_ 1 1 1 1 —

Ors (Y, X) = supsecmi) 3 198 Traprm—7G T 2 198 Treptm—rosy - Denote mi = [{y} N

{z;}|,7 = 1,2; note this definition is different from JS-GAN in App. Consider three cases.

Case 1: my = my = 1. If y; = 0,52 = 1, then grs(Y) = 3[log0.5 4+ log0.5] = —log2 ~
—0.6937. If y; = 1,y = 0, then

(V) = sup + 1o + 14 !
I T 2 T en(F(0) — 7)) T 2 T exp(F(1) - F0))
= sup 1log¥—}—llog7]:—log2.
teR |2 1+exp(t) 2 1+ exp(—t)

Case 2: {m1, ma2} = {0, 1}‘ WLOG, assume y; = 0, y2 # 1 (note that y5 can be 0). Then

grs(Y) > sup = log L + L log L

s 2z

" rer2 T 1+exp(f(0) = f(0)) 2 1+exp(f(1) — f(y2))
1 1 1

The value is achieved when f(1) — f(y2) — —oo.

Case 3: m; = mo = 0. Then

gRS(Y)>sup11g 11% !
cr2 C1+exp(f(0)— (yl)) 1+exp(f(1) = f(y2))
= sup lg;Jrllg;:
teRiper 2 O L4exp(ty) 2 ° 1+ exp(ts)

The value is achieved when f(1) — f(y2) — —oc and f(0) — f(y2) — —o0.

The global minimal value is — log 2, and the only global minima are {y1, y2} = {x1, z2}. In addition,
from any Y, it is easy to verify that there is a non-decreasing path from Y to a global minimum.
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H.3 Proofs for 2-Cluster Data (Possibly Imbalanced)
Proof of Claim|C.1} The proof is built on the proof of Claim 3.1]in Appendix [H.1}

We first consider a special case | X1 NY |=m, |X2NY|=0. This means that m generated points are in
mode 1, and the rest are in neither modes. The loss value can be computed as follows:

)

1 an
¢15(Y, X) =5 |anlog( =) +mlog(l - — =

an +m

=2 log(an) + % logm — log(an +m)) = ga(m).

2

In general, if |X1NY|=m, | XoNY |=ma, then ¢35 (Y, X) can be divided into three parts: the first part
is the sum of the terms that contain z; (including x;’s and ;s that are equal to z1), the second part is
the sum of the terms that contain x,, (including x;’s and y;’s that are equal to x,,), and the third part
is the sum of the terms that contain y;’s that are not in {«1, z,, }. Similar to Case 3 above, the value
of the first part is g, (m1 ), and the value of the second part is g1 (m2). Similar to the above special
case, the value of the third part is 0. Therefore, the loss value is ¢;55(Y, X) = qo(m1) + q1—a(m2).

It is easy to show that g, (m1) + ¢1_a(m2) > —log?2, and the equality is achieved iff m; =
na,me =n(l —a),ie, Y = UXy. O

Proof sketch of Corollary After a small enough perturbation, we must have m, £ [Ny <
n1,me = [X1NY| < ng. Since g (m) and g1, (m) are strictly decreasing functions of m, we have

AV, X) = ga(m1) + q1-a(m2) < ga(n1) + q1-a(n2) = QS(YaX)

The equality holds iff (my,ms) = (ny,n2), i.e., Y = Y. This means that if (ny, n) # (na, n(1 —
@)), then Y is a sub-optimal strict local minimum. O

We skip the detailed proof, since other parts are similar to the proof of Corollary [3.1]

I Proof of Theorem 1| (Landscape of Separable-GAN)

Denote F(D;Y) = 5= 3" [ha(f(2:)) + ha(—f(y;))] < 0 (since h;(t) < 0,4 = 1,2 for any ).

Step 1: Compute the value of ¢(-, X) for each Y. For any 4, denote M; = {j : y; = z;},m; =
|M;] >0,i=1,2,...,n. Thenmy + - -+ + m,, = n. Denote Q@ = M7 U M5 --- U M,,. Then

B, X) =5 sup D[ (£ () + ha(=F ()] = — sup <Z[h1(f1(w1:)) +miha(—f@)] + 30 hz(—f(ym)
d i=1 ’ i=1 JgQ
i) 1 “ ¢ i) 1 &
2 (; sup [ (t) 4 maha(—t)] + |2 sup hz(t)) e gé(mi) (182)

LS miE) = 1e).

Here (i) is because f(y;),j € Q are independent of h(x;)’s and thus can be any values; (ii) is
by the definition {(m) = sup,[h1(t) + mha(—t)] and Assumption |4.1|that sup, h2(t) = 0; (iii)
is due to the convexity of £ (note that £ is the supreme of linear functions). Furthermore, if there
is a certain m; > 1, then {(m;) + (m; — 1)€(0) = &(my;) > m;&(1) (according to Assumption
4.2)), causing (iii) to become a strict inequality. Thus the equality in (iii) holds iff m; = 1, Vi, i.e.,

Y1, Yn} = {21,..., 2, }. Therefore, we have proved that ¢(Y, X) achieves the minimal value
SEM)iff {yr, ..y} = {21, .. 20}

Step 2: Sufficient condition for strict local-min. Next, we show thatif Y satisfies mi +mo+-- -+
m,, = n then Y is a strict local-min. Denote § = miny. ||lxx — x]|- Consider a small perturbation of
YasY = (41,92, Un) = (y1+er, gatea, ... yn+en), where ||| < 6,Vjand 37, [le]|* > 0.
We want to prove ¢(Y, X) > ¢(Y, X).

Denote m; = |{j : y; = z;}|,i = 1,2,...,n. Consider an arbitrary j. Since y; € {z1,...,zn},
there must be some ¢ such that y; = x;. Together with ||§; — ;|| = |l¢;]| < 6 = ming ||zr — =],
we have §; ¢ ({x1,22,...,2,}\{z;}). In other words, the only possible point in {1, ..., x,} that

can coincide with ; is x;, and this happens only when €; = 0. This implies m; < m;, Vi. Since
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we have assumed ) [[¢; |> > 0, for at least one i we have m; < m,;. Together with Assumption
that &(m) is a strictly decreasing function in m € [0,n], we have ¢(Y, X) = L 31 £(m;) >
7 2im1 &(mi) = o(Y, X).

Step 3: Sub-optimal strict local-min. Finally, if Y satisfies that m; + mo + --- +m, = n and
my, > 2 for some k, then ¢(Y, X) > ££(0). Thus Y is a sub-optimal strict local minimum. Q.E.D.

Remark 1: £(m) is convex (it is the supreme of linear functions), thus we always have £(m) =
&(m) + (m — 1)€(0) > m&(1). Assump. states that the inequality is strict, thus it is slightly
stronger than the convexity of £. By Assump. 4.1} we also have h(t) + (m + 1)ha(—t) <
hi(t) + mhy(—t), thus £(n) < &(n —1) < --- < £(0). Assumption[d.3]states that the inequalities
are strict. This holds if the maximizer of hy(t) + mho(—t) does not coincide with the maximizer of
ha(t). Intuitively, if h(t) is “substantially different” from a constant function, then Assump. 4.2]and

Assump. [4.3]hold.

Remark 2: The upper bound 0 in Assumption[4.1]is not essential, and can be relaxed to any finite
numbers (change other two assumptions accordingly). We skip the details.

J  Proof of Theorem 2] (Landscape of RpGAN)

This proof is the longest one in this paper. We will focus on a proof for the special case of RS-
GAN. The proof for general RpGAN is quite similar, and presented in Appendix [J.3] Recall

drs (V. X) = sup; £ 370 108 e —o -
Theorem J.1. (special case of Theorem Efor RS-GAN) Suppose 1, o, ..., x, € R? are distinct.

The global minimal value of ¢prs(Y, X) is — log 2, which is achieved iff {x1, ..., xn} = {y1,- .., Yn}-
Furthermore, any point is global-min-reachable for the function.

Proof sketch. We compute the value of g(Y') = ¢rs(Y, X) for any Y, using the following steps:

(i) We build a graph with vertices representing distinct values of z;, y; and draw directed edges from
x; to y;. This graph can be decomposed into cycles and trees.

(i1) Each vertex in a cycle contributes —% log 2 to the value g(Y").

(iil) Each vertex in a tree contributes O to the value g(Y).

(iv) The value g(Y) equals —% log 2 times the number of vertices in the cycles.

The outline of this section is as follows. In the first subsection, we analyze an example as warm-up.
Next, we prove Theorem[J.T| The proofs of some technical lemmas will be provided in the following
subsections. Finally, in Appendix [J.3 we present the proof for Theorem

J.1  Warm-up Example

We prove that if {y1,¥2,...,yn} = {1,...,2,}, then Y is a global minimum of g(Y").

Suppose y; = ;). where (o(1),0(2),...,0(n)) is a permutation of (1,2,...,n). We
can divide {1,2,...,n} into finitely many cycles C1,Cy,...,Ck, where each cycle C}, =
(cr(1),cx(2), ... ,ck(my)) satisfies ¢ (j + 1) = o(ck(4)), 5 € {1,2,...,my}. Here e (my, + 1) is
defined as ¢ (1). Now we calculate the value of g(Y").

n K
1 1 O .1
gY = sup — log = —inf — 10g1+epryl 7f.CE2
) =sup 5 Vo8 T — ) 2 2 V(e () — f(@0))
1 K my . 1 K M
= —inf = ZZlog (1 + ef(zcwjﬂ))*f(zc;c(j)))) o _- Zianlog (1 + ef(mck(j“))*f(z%(”))
f nk:lj:1 ni3 f =
1 K mp—1
= ;tl,@,.l.l}tfmken« ; log (1 + exp(tj+1 —t;)) + log (1 + exp(t: — tmk)):|

K

iy 1

@ - ka log(1 4 exp(0)) = —log 2.
k=1
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Here (i) is because {1,2,...,n} is the combination of Cy, ..., Ck and i € C}, means that i = c(§)
for some j. (ii) is because C},’s are disjoint and f can be any continuous function; more specifically,
the choice of {f(z;) : i € Cx} is independent of the choice of {f(z;) : i € C;} for any k # [,
thus we can take the infimum over each cycle (i.e., put “inf” inside the sum over k). (iii) is because
Z;n;ll log(1 + exp(tj+1 —t;)) +log (1 + exp(t1 — t)) is a convex function of ¢1, ta, ..., ¢, and
the minimum is achieved att{ =ty = --- = ¢, = 0.

J.2  Proof of Theorem [J.1

This proof is divided into three steps. In Step 1, we compute the value of g(Y') ifall y; € {z1,...,z,}.
This is the major step of the whole proof. In Step 2, we compute the value of g(Y") for any Y. In
Step 3, we show that there is a non-decreasing continuous path from Y to a global minimum.

Step 1: Compute g(Y') that all y; € {x1,...,z,}. Define

Step 1.1: Build a graph and decompose it. We fix Y € R(X). We build a directed graph
G = (V, A) as follows. The set of vertices V = {1,2,...,n} represent z1,xa, ..., Z,. A directed
edge (i,7) € Aify; = x;. In this case, there is a term log(1 + exp(f(z;) — f(x;))) in g(Y). Itis
possible to have a self-loop (4, 7), which corresponds to the case y; = x;. By Eq. (19), we have

S vi)—F (@ ! @)~ F (i
g(y):_lgfazlog (1+ef<m £ n) - _l?fﬁ 3 log (1+€f( )= n). 20)
i=1 (1,5)€EA

Each y; corresponds to a unique x;, thus the out-degree of 4, denoted as outdegree(7), must be exactly
1. The in-degree of each ¢, denoted as indegree(7), can be any number in {0, 1,...,n}.

We will show that the graph G can be decomposed into the union of cycles and trees (see App.
for its proof, and definitions of cycles and trees). A graphical illustration is given in Figure 23]

Lemma 1. Suppose G = (V, A) is a directed graph and outdegree(v) = 1,Yv € V. Then:

(a) There exist cycles C1,Cs, ..., Ck and subtrees Ty, Ts, ..., Ty such that each edge v € A
appears either in exactly one of the cycles or in exactly one of the subtrees.

(b) The root of each subtree u,, is a vertex of a certain cycle Cl. In addition, each vertex of the graph
appears in exactly one of the following sets: V(C1),...,V(Ck),V(T1)\{u1}, ..., V(Tn)\{uas }-

(c) There is at least one cycle in the graph.

E C@ 0 >y

(a) Eg 1 for Lemmall| (b) Eg 2, with self-loop (c) Example graph for general
case
Figure 25: The first two figures are two connected component of a graph representing the case y; € {x1,...,n}, Vi. The first figure

contains 10 vertices and 10 directed edges. It can be decomposed into a cycle (1,2, 3,4) and two subtrees: one subtree consists of edge
(10, 4) and vertices 10, 4, and another consists of edges (8, 7), (9,7), (7,5), (6, 5), (5, 1). The second figure has one cycle being a self-
loop, and two trees attached to it. The third figure is an example graph of the case that some y; & {x1,..., 2z, }. In this example, n = 8
(so 8 edges), and all y;’s are in {x1, ..., x, } except yg, y7. The two edges (6, 9) and (6, 9) indicate the two terms h(f(ys) — f(x6))
and h(f(y7) — f(x7)) in g(Y'). They have the same head 9, thus yg = y7. The vertice 9 has out-degree 0, indicating that y¢ = y7 ¢
{z1,...,z,}. This figure can be decomposed into two cycles and three subtrees. Finally, adding a self-loop (9, 9) will generate a graph
where each edge has outdegree 1 (this is the reduction done in Step 2).

Denote &(y;, x;) = log (1 + ef(yi)*f(zi)). According to Lemma we have

—ng(Y 1pf2§ Yi, Ti) >1nf Z Z E(yi i) | & geye. 2D

k=14i€V(Cy)
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Step 1.2: Compute g.,.. We then compute gcyc. Since C}, is a cycle, we have X, £ {z; :i €
Cr} = {y; : i € Cx}. Since Cy’s are disjoint, we have X, N X; = 0, Vk # [. This implies that
f(z;), f(y;) for i in one cycle C}, are independent of the values corresponding to other cycles. Then
Jeyc can be decomposed according to different cycles:

Jeye = mf Z > log (1+exp(f(y:) — f(x:))) :Zir}f > log (1+exp(f(y:) — f(:))).

k=14ieV(Cy) k=1 " ieV(Cy)

Similar to Warm-up example 1, the infimum for each cycle is achieved when f(z;) = f(z;),Vi,j €
V(C}). In addition,
K
Jeye = —1log2 > [V(Cy)|. (22)
k=1
Step 1.3: Compute g(Y"). According to Eq. and Eq. (22), we have

K
—ng(Y) > [V(Ck)|log2. (23)

k=1
Denote F/(Y; f) = =2 3" log (1 + /W) =/()) then g(Y') = infy F(Y; f). We claim that for

any € > 0, there exists a continuous function f such that

K
—nF(Y;f) < |[V(Cr)|log2+e. (24)
k=1
Let IV be a large positive number such that
nlog (1 + exp(—N))) < e. (25)
Pick a continuous function f as follows.
0, i€ U, V(C),
N -depth(i), i€ l,,_; V(Tm)-

Note that the root w,, of a tree T}, is also in a certain cycle C}, thus the value f(z,, ) is defined twice
in Eq. (26)), but in both definitions its value is 0, thus the definition of f is valid. For any i € V(C}),
suppose y; = x;, thenboth ¢, j € V(C}) which implies f(y;) — f(x;) = f(x;) — f(x;) = 0. For any
i € V(T1)\{um}, suppose y; = x;, then by the definition of the graph (z, 7) is a directed edge of the
tree T,,,, which means that depth(¢) = depth(j) + 1. Thus f(y;) — f(z:) = f(z;) — f(x;) = —N.
In summary, for the choice of f in Eq. (26), we have

. K
flyi) = flai) = {O’N zig’fu‘l 1;((0;)) Q27
) m=1 mj-

Denote p = Y4, |V (Cy)| log 2. For the choice of f in Eq. (26), we have

—nF(Y;f) :ilog (1 + ef(yi)*f(mi))

=1

[Z Z log (1+ef(y‘) f(’“‘)) + Z Z log (1+ef(yi)f(ﬂfi))]

k=14ieV (Cy) m=14€V (T )\{um}

K M
@ [z EIIEURS S > log(HeN)]
1€V (Cg) m=14€V (Tm)\{um}
- &)
ZW (Cx) |log2+2 V(T \fl)log(lJre ) <p-+nlog (1+67N) Qere.
=1 k=1
(28)
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This proves Eq. (24). Combining the two relations given in Eq. and Eq. (23), we have

K
. 1
g(Y) = lrflfF(Y; = ; [V(Ck)|log2, VY € R(X). (29)
Step 2: Compute g(Y) for any Y.
In the general case, not all y;’s lie in {z1, . .., z, }. We will reduce to the previous case. Denote

H={i:y, €{x1,...,zn}}, H={j:y; ¢{o1,....zn}}.
Since y;’s in H° may be the same, we define the set of such distinct values of ;s as
You = {y € R : y = y;, for some j € HC}.

Let 7 = |You|, then there are total n + 7 distinct values in x1, ..., Zn, Y1, . - . , Yn. WLOG, assume
Y1,-- -, Yn are distinct (this is because the value of g(Y") does not change if we re-index x;’s and y;’s
as long as the subscripts of x;, y; change together), then

Y;)ut = {ylv e 7yﬁ}

We create artificial “true data” and “fake data” x,,4+1 = p411 = Y1,--+, Tnti = Yn+n = Yr. Define
FauC(Y’ f) = = Z?:Jrlm log (1 + ef(yi)_f(xi)) Jauc = — inff Fauc(K f) ClearIY7 Fauc(Ya f) =
nF(Y, f) —nlog2 and ng(Y) = gaue — nlog 2.

Consider the new configurations X = (x1,...,Zntn) and Y = (Y1,-.+,Yn+n). For the new
configurations, we can build a graph G with n 4 7 vertices and n + 7t edges. There are K self-loops
Ck+1,-..,Ck4r at the vertices corresponding to y1, ..., ys. Based on Lemma |l, we have: (a)
There exist cycles C1,Cs, ..., Cx,Ck 41, .. .,Ck4n and subtrees 11, Ts, . . ., Ty (with roots u,,’s)

s.t. each edge v € A appears in exactly one of the cycle or subtrees. (b) u,, is a vertex of a certain
cycle C where 1 < k < K + 7. (c) Each vertex of the graph appears in exactly one of the following
sets: V(C1),...,V(Cxn), V(T1)\{u1}, ..., V(Tar)\{uar}. According to the proof in Step 1, we

have gauc = ZkK;lﬁ [V(Ci)|log2 = Eszl |V (Cy)|log 2 4 72 log 2. Therefore,
K

ng(Y) = gane — nlog2 =Y |[V(Cy)|log2.
k=1

We build a graph G by removing the self-loops Cr+; = (y;,¥;),7 =1,...,7in G. The new graph
G consists of n + 7 vertices corresponding to x1, ...,y and y1, .. ., yn and n edges. The graph
can be decomposed into cycles C1,Cs, ..., Ck (since i cycles are removed from G) and subtrees
Ty,Ts,...,Th. The value ng(Y) = Zszl |V (Ck)|log 2, where Cj;’s are all the cycles of G.

Step 3: Finding a non-decreasing path to a global minimum. Finally, we prove that for any Y,
there is a non-decreasing continuous path from Y to one global minimal Y *. The following claim
shows that we can increase the value of Y incrementally. See the proof in Appendix

Claim J.1. For an arbitrary Y that is not a global minimum, there exists another Y and a non-

decreasing continuous path fromY to' Y such that g(Y) — g(Y) > Llog2.

For any Y that is not a global minimum, we apply Claim [I.T for finitely many times (no more than n
times), then we will arrive at one global minimum Y *. We connect all non-decreasing continuous
paths and get a non-decreasing continuous path from Y to Y *. This finishes the proof.

J.2.1 Graph Preliminaries and Proof of Lemma

We present a few definitions from standard graph theory.
Definition J.1. (walk, path, cycle) In a directed graph G = (V, A), a walk W = (vg, e1,v1, €2,

ey Um—1, €m, Um ) IS a sequence of vertices and edges such that v; € V.¥ i € {0,1,...,m} and
e;i = (vi—1,v;) € A,Vie{l,...,m}. Ifvg,v1,...,vn are distinct, we call it path (with length m,).
If vg,v1, ..., V0m—1 are distinct and v,, = vo, we call it a cycle.
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Any v has a path to itself (with length 0), no matter whether there is an edge between v to itself or
not. This is because the degenerate walk W = (v) satisfies the above definition. The set of vertices
and edges in W are denoted as V(W) and A(WW) respectively.

Definition J.2. (tree) A directed tree is a directed graph T = (V, A) with a designated node r € V,
the root, such that there is exactly one path from v to r for each node v € V' and there is no edge
from the root r to itself. The depth of a node is the length of the path from the node to the root (the
depth of the root is 0). A subtree of a directed graph G is a subgraph T which is a directed tree.

Proof of LemmalIk
We slightly extend the definition of “walk” to allow infinite length. We present two observations.

Observation 1: Starting from any vertex vg € V(G), there is a unique walk with infinite length

A
W(’Uo) = (’Uo, €1,V1,€2,V2,...,0U;,€4, 'Ui+1, 6i+1, e ),
where e; is an edge in A(G) with tail v;_; and head v;.

Proof of Observation 1: At each vertex v;, there is a unique outgoing edge e; = (v;, v;+1) which
uniquely defines the next vertex v, 1. Continue the process, we have proved Observation 1.

. A
Observation 2: The walk W(vg) = (vg,e1,v1,€2,0V9,...,0;,€;,Vit1,€i+1,--.) can be
decomposed mto two parts W1 (1}()) = ('Uo, €1,0V1,€2,V2,...,Vj5—1,€4y, ’UZ'O), W2 ('U()) =
(Vigs Cig+1, Vig+1s Cio+25 Vig+2s - - - ), Where Wi (vg) is a path from vy to v, (i.e. vg,v1,..., Vi,

are distinct), and W5 (vy) is the repetition of a certain cycle (i.e., there exists 7" such that v, 7 = v;,
for any ¢ > 4¢). This decomposition is unique, and we say the “first-touch-vertex” of vg is v;,.

Proof of Observation 2: Since the graph is finite, then some vertices must appear at least twice in
W (vp). Among all such vertices, suppose w is the one that appears the earliest in the walk W (vg),
and the first two appearances are v;, = v and v;, = w and ¢9 < %;. Denote T' = i1 — ¢g. Then itis
easy to show Ws(vy) is the repetitions of the cycle consisting of vertices v;,, Vig41, - - - , Vi; —1, and
W1 (vp) is a directed path from v to v;,.

The first-touch-vertex u = v;, has the following properties: (i) u € Cj, for some k; (ii) there exists a
path from v to u; (iii) any paths from v to any vertex in the cycle C}, other than » must pass u. Note
that if u is in some cycle, then its first-touch-vertex is wu itself.

As a corollary of Observation 2, there is at least one cycle. Suppose all cycles of G are
C1,C5,...,Ck. Because the outdegree of each vertex is 1, these cycles must be disjoint, i.e.,
V(C;) NV (C;) = 0 and A(C;) N A(C;) = 0, for any i # j. Denote the set of vertices in the cycles
as

K
V.=|JV(C)u---uV(Ck). (30)
k=1
Let uy,...,ups be the vertices of C1, ..., C), with indegree at least 2.

Based on Observation 2, starting from any vertex outside V. there is a unique path that reaches V..
Combining all vertices that reach the cycles at u,, (denoted as V;,,), and the paths from these vertices
to u,,, we obtain a directed subgraph 7T;,,, which is connected with V. only via the vertex u,,. The
subgraphs T,,’s are disjoint from each other since they are connected with V. via different vertices.
In addition, each vertex outside of V, lies in exactly one of the subgraph T,,,. Thus, we can partition
the whole graph into the union of the cycles C1, ..., Ck and the subgraphs 77, ..., T);.

We then show T7,,’s are trees. For any vertex vg in the subgraph 7, consider the walk W (vg). Any
path starting from vy must be part of W (vg). Starting from v there is only one path from vy to
which is W1 (vp), according to Observation 2. Therefore, by the definition of a directed tree, 7T}, is
a directed tree with the root u,,. Therefore, we can partition the whole graph into the union of the
cycles C1, ..., Ck and subtrees 71, . . ., Ty with disjoint edge sets; in addition, the edge sets of the
cycles are disjoint, and the root of 7; must be in certain cycle CY. It is easy to verify the properties
stated in Lemmal[T} This finishes the proof.

J.2.2  Proof of Claim [J.T

We first prove the case for d > 2. Suppose the corresponding graph for Y is GG, and G is decomposed
into the union of cycles C1, ..., Ck and trees 11, . .., T,,. We perform the following operation: pick
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an arbitrary tree 7,,, with the root w,,. The tree is non-empty, thus there must be an edge e with the
head w,,,. Suppose v is the tail of the edge e. Now we remove the edge ¢ = (v, u,,) and create a
new edge ¢/ = (v,v). The new edge corresponds to y, = ,. The old edge (v, u,,) corresponds
to y, = @, (and a term h(f(z,,, ) — f(zy))) if uy <noOry, = Yu,,—n ¢ {x1,...,2,} (and a
term h(f(Yy,,—n) — f(2v))) if uy, > n. This change corresponds to the change of y,,: we change
Yo = Ty, (f Uy, < n)ory, = yu, —n (f upy, > n) to g, = x,. Let §; = y; for any ¢ # v, and
Y = (1, ..., Yn) is the new point.

Previously v is in a tree T;,, (not its root), now v is the root of a new tree, and also part of the new
cycle (self-loop) Ck 11 = (v, €’,v). In this new graph, the number of vertices in cycles increases by

1, thus the value of g increases by — X log 2, i.e., g(Y) — g(Y) = + log2.

Since d > 2, we can find a path in R< from a point to another point without passing any of the points
in {z1,...,z,}. In the continuous process of moving y, to §,, the function value will not change
except at the end that y,, = x,,. Thus there is a non-increasing path from Y to Y, in the sense that
along this path the function value of g does not decrease.

The illustration of this proof is given below.

RO

° Ye = V7 °
(a) Original graph (b) Modified graph, with improved function
value

Figure 26: Illustration of the proof of Claim For the figure on the left, we pick an arbitrary tree with the
head being vertex 9, which corresponds to ys = y7. We change y7 to §j7 = x7 to obtain the figure on the right.
Since one more cycle is created, the function value increases by f% log 2.

For the case d = 1, the above proof does not work. The reason is that the path from y, to g, may
touch other points in {1, ..., z,} and thus may change the value of g. We only need to make a
small modification: we move ¥, in R until it touches a certain x; that corresponds to a vertex in the
tree 1,,,, at which point a cycle is created, and the function value increases by at least % log 2. This
path is a non-decreasing path, thus the claim is also proved.

J.3  Proof of Theorem

Obviously, g(Y) = ¢r (Y, X) = . supreoqe) 2oimy[1(f (1) — f(y:))] > h(0) (by picking f = 0).
Step 1: achieving optimal g(Y). We prove if {y1,...,yn} = {21,..., 25}, then g(Y) = h(0).
Claim J.2. Assume h is concave. Then the function {g(m) = Supq,  4)ez0(m) 2oie P(ti)
satisfies Eg(m) = mh(0), where the set ZO(m) = {t1,t2,... . tm € R: D" & =0}

The proof of this claim is obvious and skipped here. When {y1,...,yn} = {21,...,2,}, We
can divide [n] into multiple cycles Cy U - - - U Ck, each with length my, and obtain ¢r (Y, X) =

+SUD feo(ra) S S (i) — flya)] = 2 S0 €R(my) = L S0 myh(0) = h(0).

Step 2: compute g(Y) when y; € {z1,...,2,},Vi. Assume y; € {z1,...,2,},Vi. We build a
directed graph G = (V, A) as follows (the same graph as in Appendix . The set of vertices
V ={1,2,...,n} represents 1, o, . .., z,. We draw a directed edge (i,j) € Aif y; = x;. Note
that it is possible to have a self-loop (4, 7), which corresponds to the case y; = x;.

According to Lemma [T, this graph can be decomposed into cycles C1,Cs,...,Ck and subtrees
T1,T5, ..., Thy. We claim that

K

O (Y, X) = = S [VCOIMO) 2 h(0). G

k=1
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The proof of the relation in Eq. is similar to the proof of Eq. used in the proof of Theorem 2]
and briefly explained below. One major part of the proof is to show that the contribution of the nodes

in the cycles is Zle |V (Cf)|h(0). This is similar to Step 1, and is based on Claim Another
major part of the proof is to show that the contribution of the nodes in the subtrees is zero, similar to
the proof of Eq. (28). This is because we can utilize Assumption [4.4/to construct a sequence of f
values (similar to Eq. (26)) so that

. K
Flys) — flzs) = {ZN i 2 8’&1 ‘;(gﬂ)) (32)
) m=1 m)-

Here {an }3_, is a sequence of real numbers so that limpy_,o h(an) = sup, A(t) = 0. In the case
that h(co) = 0 like RS-GAN, we pick oy = N. In the case that h(a) = 0 for a certain finite number
a, we can just pick ay = a, VN (thus we do not need a sequence but just one choice).

Since the expression of ¢r(Y, X) in Eq. (31) is a scaled version of the expression of ¢rs(Y, X)

(scale by — 1;;(%) ), the rest of the proof is the same as the proof of Theoreml

Step 3: function value for general Y and GMR. This step is the same as the proof of TheoremJ.1.
For the value of general Y, we build an “augmented graph” and apply the result in Step 2 to obtain
g(Y). To prove GMR, the same construction as the proof of Theorem@ suffices.

K Results in Parameter Space

We will first state the technical assumptions and then present the formal results in parameter space. The
results become somewhat technical due to the complication of neural-nets. Suppose the discriminator
neural net is fy where # € R” and the generator net is G, where w C RX

Assumption K.1. (representation power of discriminator net): For any distinct vectors vy, . .. ,Vay, €
RZ, any by, . .., ba, € R, there exists 6 € R such that fg(v;) = b;, i =1,...,2n.
Assumption K.2. (representation power of generator net in W) For any distinct 21, . . ., z, € R%

and any y1, . .., yn € R%, there exists w € W such that G, (2;) = yi,i = 1,...,n

For any given Z = (z1,...,2,) € R%*" and any € W C R¥X, we define a set G™1(Y; Z) as
follows: w € G=Y(Y; Z)iff G,,(Z) =Y and w € W.

Assumptlon K.a3. ¢ path keeping property of generator net; duplication of Assumption [Z) For any
distinct z1, . . . , z, € R, the following holds: for any continuous path Y (t),t € [0, 1] in the space
R and any wy € G=Y(Y(0); Z), there is continuous path w(t),t € [0,1] such that w(0) = wy
and Y (t) = Gw(t)(Z),t € [0,1].

We will present sufficient conditions for these assumptions later. Next we present two main results on
the landscape of GANSs in the parameter space.

Proposition K.1. (formal version of Proposztzon D Consider the separable-GAN problem
Wity Puop (W), Where Puop(w) = supy 2 S (i (fo(2)) + ha(—fo (G (2)))] Suppose
hi1, he satisfy the same assumptions of Theorem |l |j Suppose G, satisfies Assumption [K.2] and
Assumption (with certain W). Suppose fy satisfies Assumption[K.1| Then there exist at least
(n™ — n!) distinct w € W that are not global-min-reachable.

Proposition K.2. (formal version of Prop. |Z) Consider the RoGAN problem min ,cpx or(w),

where pg (w) = supg + >1"  [h(fo(x:)) — fo(Guw(z:))]. Suppose h satisfies the same assumptions
of Theorem[2} Suppose G., satisfies Assumption [IQ and Assumption 4.6 (with certain W). Suppose
fo satisfies AsmmpnonE Then any w € W is global-min-reachable for pr (w).

We have presented two generic results that relies on a few properties of the neural-nets. These
properties can be satisfied by certain neural-nets, as discussed next. Our results largely rely on recent
advanced in neural-net optimization theory.

K.1 Sufficient Conditions for the Assumptions

In this part, we present a set of conditions on neural nets that ensure the assumptions to hold. We will
discuss more conditions in the next subsection.

33



Assumption K.4. (mildly wide) The last hidden layer has at least n. neurons, where n is the number
of input vectors.

The assumption of width is common in recent theoretical works in neural net optimization (e.g.
[50, 173} 12]). For the generator network, we set n = n; for the discriminator network, we set n = 2n.

Assumption K.5. (smooth enough activation) The activation function o is an analytic function, and
the k-th order derivatives o(*) (0) are non-zero, fork = 0,1,2,... 7, where 1 is the number of input
vectors.

The assumption of the neuron activation is satisfied by sigmoid, tanh, SoftPlus, swish, etc.

For the generator network, consider a fully neural network G, (2) = Wgo(Wg_1 ... Wao(W;2))
that maps z € R% to G, (z) € R Define T},(z) = c(Wi_1... Wao(W;2)) € R¥* where
dy, is the number of neurons in the k-th hidden layer. Then we can write G,,(2) = WyTg(z),
where Wy € R Let Z = (21,...,2,) and let Ti(Z) = (Ti(21), ..., Tk(zn)) € RIX",
k=1,2,...,H Define W = {w = (W1,...,Wy) : Ty(Z)is full rank}.

We will prove that under these two assumptions on the neural nets, the landscape of RpGAN is better
than that of SepGAN.

Proposition K.3. Suppose hi, ho, h sastify assumptions in Theorem[I and Theorem 2. Suppose
Gy, fo satisfies Assump. and [K4) (7 = n for Gy, and i = 2n for fg). Then there exist
at least (n"™ — n!) distinct w € W that are not GMR for psep(w). In contrast, any w € W is
global-min-reachable for pr (w).

This proposition is the corollary of Prop. and Prop. we only need to verify the assumptions
in the two propositions. The following series of claims provide such verification.

Claim K.1. Suppose Assumptions|[K.4 and hold for the generator net G, with distinct input
21,y 2n. Then W = {(W1,...,Wgx) : Tu(Z) is full rank} is a dense set in R¥. In addition,
Assumption|K.2 holds.

This full-rank condition was used in a few works of neural-net landscape analysis (e.g. [72]). In
GAN area, [[7] studied invertible generator nets G,, where the weights are restricted to a subset of
RX to avoid singularities. As the set W is dense, intuitively the iterates will stay in this set for most
of the time. However, rigorously proving that the iterates stay in this set is not easy, and is one of
the major challenges of current neural-network analysis. For instance, [38]) shows that for very
wide neural networks with proper initialization along the training trajectory of gradient descent the
neural-tangent kernel (a matrix related to Ty (2)) is full rank. A similar analysis can prove that the
matrix T (Z) stays full rank during training under similar conditions. We do not attempt to develop
the more complicated convergence analysis for general neural-nets here and leave it to future work.

Claim K.2. Suppose Assumptions|[K.4 and hold for the generator net G, with distinct input
Z1,.. ., zn. Then it satisfies Assumption {.6lwith W defined in Claim[K.1

Assumption[K.T|can be shown to hold under a similar condition to that in Claim

Claim K.3. Consider a fully connected neural network fo(z) = 0go(0g—1 . ..020(012)) that maps
u € R to fo(u) € R and suppose Assumptions@and K.5 hold. Then Assumption|K.I holds.

The proofs of the claims are given in Appendix
With these claims, we can immediately prove Prop.

Proof of Prop. [K.3: According to Claim [K.2] [K.1} [K.3| the assumptions of Prop. [K.3|imply the
assumptions of Prop. [K.T and Prop. Therefore, the conclusions of Prop. and Prop. [K:2 hold.
Since the conclusion of Prop. [K.3]is the combination of the the conclusions of Prop. and Prop.
[K.2] it also holds. O

K.2 Other Sufficient Conditions

Assumption [K.3] (path-keeping property) is the key assumption. Various results in neural-net theory
can ensure this assumption (or its variant) holds, and we have utilized one of the simplest such results
in the last subsection. We recommend to check [80] which describes a bigger picture about various
landscape results. In this subsection, we briefly discuss other possible results applicable to GAN.

34



We start with a strong conjecture about neural net landscape, which only requires a wide final hidden
layer but no condition on the depth and activation.

Conjecture K.1. Suppose gy is a fully connected neural net with any depth and any continuous
activation, and it satisfies Assumption@( i.e. a mildly wide final hidden layer). Assume ((y,q) is
convex in 1, then the empirical loss function of a supervised learning problem -, ((y;, go(z;)) is
global-min-reachable for any point.

We then describe a related conjecture for GAN, which is easy to prove if Conjecture [K.I|holds.

Conjecture 1 (informal): Suppose G, is a fully connected net satisfying Assump. [K.4/(i.e. a mildly
wide final hidden layer). Suppose G, and fy are expressive enough (i.e. Assump. and Assump.
[KT]hold). Then the RpGAN loss has a benign landscape, in the sense that any point is GMR for
©r (w). In contrast, the SepGAN loss does not have this property.

Unfortunately, we are not aware of any existing work that has proved Conjecture thus we are
not able to prove Conjecture 1 above for now. Venturi et al. [[84] proved a special case of Conjecture
for L = 1 (one hidden layer), and other works such as Li et al. [50]] prove a weaker version
of Conjecture see [80]] for other related results. The precise version of Conjecture seems
non-trivial to prove.

We list two results on GAN that can be derived from weaker versions of Conjecture both results
apply to the whole space instead of the dense subset W.

Result 1 (1-hidden-layer): Suppose G, is 1-hidden-layer network with any continuous activation.
Suppose it satisfies Assump. [K.4{(i.e. a mildly wide final hidden layer). Suppose GG, and fy are
expressive enough (i.e. Assump. and Assump. [K.T]hold). Then the RpGAN loss satisfies GMR
for any point. This result is based on Venturi et al. [84]].

Result 2: Suppose G, is a fully connected network with any continuous activation and any number
of layers. Suppose it satisfies Assump. (i.e. a mildly wide final hidden layer). Suppose G, and
fo are expressive enough (i.e. Assump. ganthold). Then the RpGAN loss has no sub-optimal
set-wise local minima (see [50, Def. 1] for the definition). This result is based on Li et al. [50].

Due to space constraint, we do not present the proofs of the above two results (combining them with
GANSs is somewhat cumbersome). The high-level proof framework is similar to that of Prop.

K.3 Proofs of Propositions for Parameter Space

Proof of Proposition [K.1. The basic idea is to build a relation between the points in the parameter
space to the points in the function space.

Denote Loep (w;6) = 2 S0 [y (fo(2)) + ha(—fo (G (2:)))]: then puep(w) = sup Laep (w3 ).
Denote Lsep (Y5 f) = 5= Sy [ha(f(2:)) + hao(—f(y:))], and ¢(Y, X) = supy Lsep(Y; f). Note
that in the definition of the two functions above, the discriminator is hidden in the sup operators, thus
we have freedom to pick the discriminator values (unlike the generator space which we have to check
all w in the inverse of Y)).

Our goal is to analyze the landscape of ¢gep(w), based on the previously proved result on the
landscape of ¢(Y, X). We first show that the image of @ (10) is the same as that of Gep (Y, X).

Define G™1(Y) £ {w: Gu(2) = yi,i = 1,...,n}. We first prove that
Dsep(V; X) = pucp (1), V10 € GH(Y). (33)

Suppose quep()A/, X) = «. This implies that Lsep(f/; f) < « for any f; in addition, for any € > 0
there exists f € C(R?) such that
Lip(Yif) > a—e. (34)

According to Assumption K.ll there exists 0* such that fy-(z;) = f(x;), V i, and fo(u) =

fw),Yue {y1,...,yn}\{21,..., 2, }. In other words, there exists 8* such that

fo- (@) = f(x2), fo-(yi) = Flwi), V. (35)
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Then we have
Loep (10307 (¢ Z[m (for (1)) + ha(— for (G (2)))] 2 Z [ha(fo- (2:)) + ha(— fo= (4;))]

i) 1 — 4 IR oy D
© > (@) + ha(~f @) = Luen(V ) = a—c.
i=1

In the above chain, (i) is due to the assumption w € G‘l(f’) (which implies G (2;) = g;), (ii) is
due to the choice of 6*. (iii) is due to (34).
Therefore, we have @gep, (W0) = supy Lsep(W; 0) > Lsep(W; 6*(€)) > o — €. Since this holds for any
€, we have @gep (1) > a. Similarly, from Leep(w;0) < o we can obtain gep, (@) < a. Therefore
Peep () = @ = peep(Y, X). This finishes the proof of .

Define
QX)2{Y = (y1,...,yn) | wi € {z1,...,xn},i € {1,2,...,n};y; = y; for some i # j}.

Any Y € Q(X) is a mode-collapsed pattern. According to Theorem[ any Y € Q(X) is a strict
local minimum of (bsep(Y X), and thus Y is not GMR. Therefore & € G~(Y) where Y € Q(X)
is not GMR; this is because a non-decreasing path in the parameter space will be mapped to a
non-decreasing path in the function space, causing contradiction. Finally, according to Assumption
for any Y there exists at least one pre-image w € G~1(Y) N W. There are (n™ — n!) elements
in Q(X), thus there are at least (n™ — n!) points in WV that are not global-min-reachable. O

Proof of Proposition @ Similar to Eq. (33), we have g (w) = ¢r(Y, X) for any w € G1(Y).
We need to prove that there is a non-decreasing path from any wy € W to w*, where w* is a certain
global minimum. Let Yy = Gy, (21, - - -, 2n). According to Thm. [2| there is a continuous path Y (¢)
from Y} to Y* along which the loss value ¢r (Y (t), X) is non-increasing. According to Assump.
|4;6‘, there is a continuous path w(t) such that w(0) = 0, Y(t) = G,)(Z),t € [0,1]. Along
this path, the value pgr(w(t)) = ¢r(Y (¢), X) is non-increasing, and at the end the function value
er(w(1)) = ¢r(Y™*, X) is the minimal value of pg (w). Thus the existence of such a path is proved.
O

K.4 A technical lemma

We present a technical lemma, that slightly generalizes [50, Proposition 1].
Assumption K.6. v, 02, ..., v, € R are distinct, i.e., v; # v; for any i # j.

Lemma 2. Define Ty (V) = (0(Wy_1 ... Wao(Wyiv;)))™, € RIEX™ Suppose Assumptionsl]ﬂ]
[K.5 and[K.6 hold. Then the set @ = {(Wy, ..., Wg_1) : rank(Tg (V) < m} has zero measure.

This claim is slightly different from [50, Proposition 1], which requires the input vectors to have
one distinct dimension (i.e., there exists j such that vy, ..., v,, ; are distinct); here we only require
the input vectors to be distinct. It is not hard to link “distinct vectors” to “vectors with one distinct
dimension” by a variable transformation.

Claim K.4. Suppose v1, ... v, € R? are distinct. Then for generic matrix W € R¥4, for the
vectors U; = Wu; e R4 4 =1,. .. ,n, there exists j such that v1;, ..., U, ; are distinct.

Proof. Define the set Qo = {u | u € R4 3i £ j s.t. uTv; = uTv;}. This is the union of d(d — 1)
hyperplanes ;; = {u | u € R**? vTv; = uTv;}. Each hyperplane €;; is a zero-measure set, thus
the union of them (Q is also a zero-measure set. Let u be the first row of W, then u is generic vector
and thus not in £y, which implies v11, . . ., U,,,1 are distinct. ]

Proof of Lemma |2} Pick a generic matrix A € R%*%_ then 5; = Av; € R%*! has one distinct
dimension, i.e., there exists j such that ¥y, ..., U, ; are distinct. In addition, we can assume A is
full rank (since it is generic). Define

TH(V) = (O’(WH_l N WQO’(Wl’Dl)), ey O'(WH_1 N WQO’(Wl’L_)m)) S Rdem.

According to [50, Prop. 1], the set Q = {(Wy, Wo, W3, ..., Wy _1) : rank(Ty(V)) < m} has
zero measure. With the transformation 1o (W1) = W1 A~L, we have c(Wy_1 ... Woo(W13;)) =
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o(Wr_1...Wao(Wiv;)), V i and thus Ty (V) = Ty (V). Define n(Wy, Wa,...,W,,) =
(W1 A=Y Wa, ..., W,,), then n is a homeomorphism between €2 and 2. Therefore the set
Q={(Wy,...,Wg_1) : rank(Tg(V)) < m} has zero measure. O

K.5 Proof of claims

Proof of Claim [E According to Lemma W is a dense subset of R” (in fact, (2 is defined for a
general neural network, and WV is defined for the generator network, thus an instance of 2). As a result,
there exists (W1, ..., Wg_1) such that Ty (Z) has rank at least n. Thus for any 1,92, . . ., yn € RY,
there exists Wy such that Wy Ty (Z) = (y1,-.-,Yn). O

Proof of Claim @ For any continuous path Y (¢),¢ € [0,1] in the space R?*", any wy €
G~1(Y(0)) and any € > 0, our goal is to show that there exists a continuous path w(t),t € [0,1]
such that w(0) = wg and Y (t) = G,y (2),t € [0,1].

Due to the assumption of wy € W, we know that w corresponds to a rank-n post-activation matrix
Ty (Z). Suppose wo = (Wi, ..., Wg)and Ty (Z) = (Tg(21), ..., T (2,)) € R* X" has rank n.
Since Ty (Z) is full rank, for any path from Y (0) to Y'(1), we can continuously change Wy such that
the output of G,,(Z) changes from Y (0) to Y (1). Thus there exists a continuous path w(t), ¢ € [0, 1]
such that w(0) = wg and Y (t) = Gy (Z),t € [0,1]. O

Proof of Claim [K.3} This is a direct application of Lemmal2. Different from Claim[K.2| here we
apply Lemma 2] to the discriminator network. O

L Discussion of Wasserstein GAN

W-GAN is a popular formulation of GAN, so a natural question is whether we can prove a similar
landscape result for W-GAN. Consider W-GAN formulation (empirical version) miny ¢w (Y, X),

where
n

1
dw (Y, X) = max — Y [f(@:) — f(ws)].
i=1
For simplicity we consider the same number of generated samples and true samples. It can be viewed
as a special case of RpGAN where h(t) = —t; it can also be viewed as a special case of SepGAN
where hq(t) = ha(t) = —t.

However, the major complication is the Lipschitz constraint. It makes the computation of the function
values much harder. For the case of n = 2, the function value of ¢w (Y, X) is provided in the
following claim.

Claim L.1. Suppose n = 2. Denote a1 = x1,a2 = T2,a3 = Y1,a4 = Yo. The value of pw (Y, X) is

max Uy + Uy — U3z — Uy,
u1,u2,usz,us€R

st u; — gl < la; — |, Vi, j € {1,2,3,4}.

This claim is not hard to prove, and we skip the proof here.

This claim indicates that computing ¢w (Y, X)) is equivalent to solving a linear program (LP). Solving
LP itself is computationally feasible, but our landscape analysis requires to infer about the global
landscape of ¢w (Y, X) as a function of Y. In classical optimization, it is possible to state that
the optimal value of an LP is a convex function of a certain parameter (e.g. the coefficient of the
objective). But in our LP y;’s appear in multiple positions of the LP, and we are not aware of an
existing result that can be readily applied.

Similar to Kantorovich-Rubinstein Duality, we can write down the dual problem of the LP where
the objective is linear combination of |la; — a;||. However, it is still not clear what to say about the
global landscape, due to the lack of closed-form solutions.

Finally, we remark that although W-GAN has a strong theoretical appeal, it did not replace JS-GAN
or simple variants of JS-GAN in recent GAN models. For instance, SN-GAN [67] and BigGAN [18]
use hinge-GAN.
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(a) Generator (b) Discriminator

[—1, 1]H*Wx3
)

z € R128 ~ N(0, 1) image © €

128 — h X w X 512/c, dense, linear 3 X 3, stride 1 conv, 64/c

4 X 4, stride 2 deconv, 256/c, BN, ReLU 4 X 4, stride 2 conv, 128/c

3 X 3, stride 1 conv, 128/c

4 X 4, stride 2 deconv, 128/c, BN, ReLU 4 X 4, stride 2 conv, 256/c

3 X 3, stride 1 conv, 256/c

4 X 4, stride 2 deconv, 64/c, BN, ReLU 4 X 4, stride 2 conv, 512/c

3 X 3, stride 1 conv, 512/c

(a) Generator (b) Discriminator
z € RY28 ~ N(0,1)

reshape — 128 X 1 X 1

z € [~1, 1]256)(256)(3

4 X 4, stride 2 conv, 32,

4 X 4, stride 1 deconv, BN, 1024 4 X 4, stride 2 conv, 64

4 X 4, stride 2 deconv, BN, 512 4 X 4, stride 2 conv, 128

4 X 4, stride 2 deconv, BN, 256 4 X 4, stride 2 conv, 256

4 X 4, stride 2 deconv, BN, 128 4 X 4, stride 2 conv, 512

4 X 4, stride 2 deconv, BN, 64 4 X 4, stride 2 conv, 1024

3 X 3, stride 1 conv, 3, Tanh h X w X 512/c — s, linear

4 X 4, stride 2 deconv, BN, 32 dense — 1

Table 7: CNN models for CIFAR-10 and STL-10 used in our exper-
iments on image Generation. h =w =4, H=W = 32 for CIFAR-10.
h=w=6, H=W =48 for STL-10. c=1, 2 and 4 for the regu-
lar, 1/2 and 1/4 channel structures respectively. All layers of D use
LReLU-0.1 (except the final dense “’linear” layer).

(a) Generator (b) Discriminator

2 € R « AF(0, ) [—1,1]32%32x3

dense, 4 X 4 X 256/c

image x €

ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 256/c ResBlock down 128/c

BN, ReLU, 3 X 3 conv, 3 Tanh LReLU 0.1

Global sum pooling

dense — 1

Table 9: Resnet architecture for CIFAR-10. c=1, 2 and 4 for the regular,
1/2 and 1/4 channel structures respectively.

(a) Generator (b) Discriminator

2 € R128 & N(O, 1) [—1,1)32%32x3

dense, 4 X 4 x 128

image x €

BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BRes up (128, 64, 128) BRes down (64, 32, 64)

BN, ReLU, 3 X 3 conv, 3 Tanh LReLU 0.1

Global sum pooling

dense — 1
Table 11: BottleNeck Resnet models for CIFAR-10. BRes refers to
BottleNeck ResBlock. BRes (a, b, c) refers to the Bottleneck resblock
with (input, hidden and output) being (a, b, c).

RS-GAN generator learning rate

CIFAR-10  STL-10
No normalization 2e-4 Se-4
Regular + SN Se-4 Se-4
CNN Channel/2 + SN Se-4 Se-d
channel/4 + SN 2e-4 Se-4
Regular+SN 1.5e-3 le-3
ResNet channel/2 + SN 1.5e-3 le-3
et Channel/4 + SN le-3 Se-4
BottleNeck le-3 le-3

4 X 4, stride 2 deconv, 3, Tanh
Table 8: CNN model architecture for size 256 LSUN used in our
experiments on high resolution image generation. All layers of G
use ReLU (except one layer with Tanh); all layers of D use LReLU-
0.1.

(a) Generator (b) Discriminator

2 € R28 « A(0, 1) [—1,1]48%48x3

dense, 6 X 6 X 512/c

image x €

ResBlock down 64/c

ResBlock up 256/c ResBlock down 128/c

ResBlock up 128/c ResBlock down 256/c

ResBlock up 64/c ResBlock down 512/c

BN, ReLU, 3 X 3 conv, 3 Tanh ResBlock down 1024/c

LReLU 0.1

Global sum pooling

dense — 1

Table 10: Resnet architecture for STL-10. c=1, 2 and 4 for the regular,
1/2 and 1/4 channel structures respectively.

(a) Generator (b) Discriminator
z € RY28 ~ N(0, 1)

dense, 6 X 6 X 256

image x € [—1,1]48X48X3

BRes down (3, 16, 32)

BRes up (256, 64, 128) BRes down (32, 16, 64)

BRes up (128, 32, 64) BRes down (64, 32, 128)

BRes up (64, 16, 32) BRes down (128, 64, 256)

BN, ReLU, 3 X 3 conv, 3 Tanh BRes down (256, 128, 512)

LReLU 0.1

Global sum pooling

dense — 1

Table 12: BottleNeck Resnet models for STL-10.

WGAN-GP Hyper-parameters

generator learning rate le-4
discriminator learning rate le-4
B1 0.5
B2 0.9
Gradient penalty A 10
# D iterations per G iteration 5

Table 13: Learning rate for RS-GAN in each setting. Hyper-parameters used for WGAN-GP
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(i) JS-GAN + Spectral Norm + Channel/4 (j) RS-GAN + Spectral Norm + Channel/4
Figure 16: Generated CIFAR-10 samples with CNN.
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(g) JS-GAN + Spectral Norm + BottleNeck
Figure 17: Generated CIFAR-10 samples on ResNet.
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(1) JS-GAN + Spectral Norm + Channel/4 (j) RS-GAN + Spectral Norm + Channel/4
Figure 18: Generated STL-10 samples with CNN.

41



(g) JS-GAN + Spectral Norm + BottleNeck (h) RS GAN + Spectral Norm + BottleNeck

Figure 19: Generated STL-10 samples with ResNet.
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(c) LSUN Church by RS-GAN
Figure 20: Generated 256 x 256 Church and Tower Image by JS-GAN and RS-GAN.
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