
We thank the reviewers for their appreciation of our work and helpful feedback. Here, we address open questions.1

[Reviewer 7] Reproducibility of hardware: Following figure shows a systolic tensor core architecture containing2

multiple BBFP dot product units. Each dot product unit has a significantly lower circuit footprint compared to3

conventional float due to the shared exponent. The math per bounding-box is mostly performed in fixed-point format4

and the cost of dynamic scaling is amortized over n (block size). We’ll amend the camera-ready with more details.5

[Reviewer 7 and 1] Conversion to BBFP: the axis along which exponent is shared is always the inner dimensions6

of a matrix multiply: for A×B we have shared exponents along the rows of A and the columns of B. If the inner7

dimension is not dividable by the bounding box size, we pad the last bounding box with zero.8

[Reviewer 3 and 2] Comparison with FlexPoint, INT8, INT4, and AdaptivFloat: As discussed in the paper,9

leveraging shared exponent to lower hardware cost is not a new idea. However, there is a very large search space of10

designs across bit-width, exponent selection policy, block granularity, bounding box policy—coupled with hardware11

implementation—that makes BBFP non-obvious. In this paper, we showed how using a balanced fine-grained approach12

can provide a robust recipe that works across various models. Due to the low user-friction of BBFP format and its13

high performance, this datatype has been adopted by different teams and deployed in large-scale production. FlexPoint14

coarse-grained approach, however, results in significant accuracy drops (in presence of outliers) and incur a high-friction15

pass to recover accuracy. We evaluated the accuracy versus MAC density trade-off for different benchmarks in Figures 116

and 5. This comparison includes industry-standard datatypes (bfloat16, INT8, and INT4). Different datatypes’ circuitry17

is compared in Table 1. We’ll append Table 1 to include float8, float4, and posits in the revision. Overall, float818

has 1.57× and 3.46× more area overhead compared to BBFP16 and BBFP12, respectively. As for comparison with19

AdaptiveFloat, in ResNet50-ImageNet with an average of 4 bits (sign plus mantissa), BBFP preserves 96.7% of the20

baseline accuracy whereas AdaptivFloat preserves 95.2%. Also, BBFP uses a uniform bit-width for all layers whereas21

AdaptivFloat adjusts the bit-width per layer, making it more complicated on hardware. Finally, AdaptivFloat reports up22

to 1.14× area improvement compared to INT8 whereas BBFP has a 4× lower overhead.23

[Reviewer 3 and 2] Fine-tuning process and calibration: Quantization involves discretization processes such as24

rounding and truncation that result in null gradients. The idea of straight-through estimator is to replace the gradient of25

those operators with identity matrix. We’ll elaborate more in the revision. Integer-based inference requires calibration26

due to their fixed dynamic range—tensors must be scaled to the proper range to be represented. BBFP does not require27

this type of calibration as it already has a scaling exponent. As for bounding-box selection, all experiments in section 428

including Tables 3, 4, and Figure 5 have been performed with a fixed bounding box size of 16 (no calibration involved).29

[Reviewer 2] Elaboration on Figure 1: BBFP12 has 4-bit sign-magnitude mantissas and an 8-bit shared exponent.30

BBFP12 dot-product circuitry is comparable to INT4. Unlike BBFP, INT format follows a two’s complement represen-31

tation. Two’s complement MAC costs more in area/energy compared to a sign-magnitude MAC of the same bit-width.32

We’ll make the notation more explicit in the revision. MAC energy/area cost are measured based on a topographical33

synthesis of these MAC units on TSMC 16nm FF+. Power simulations are based on an input toggle rate of 50% with34

50% static probability @1GHz. Figure 1 accuracy numbers are for Resnet50-ImageNet.35

[Reviewer 1] Non-matmul operations and support for strided and atrous convolution: BBFP is designed to36

improve dot product performance. All vector operations such as sigmoid, activation functions, point-wise addition are37

performed in-situ on HW in float16 (with conversions to BBFP supported automatically on HW). Any operation that38

can be broken down into dot products (including strided/dilated convs) is supported by BBFP. Scatter/gather is one way39

of reshaping the input data for strided/dilated convs (SRAM address striding and crossbar are other alternatives).40

[Reviewer 1] Zero representation: Zero is represented by having all mantissa bits being 0 for a given value (shared41

exponent can be any value). BBFP mantissas do not have an implicit leading bit and all mantissa bits are explicitly42

represented. BBFP does not have a representation for NaN/Inf, but this does not impact DNN inference accuracy.43

[Reviewer 7 and 2] KL Divergence and QNSR: The KL divergence from BBFP to float32 is computed after computing44

the pertinent normalized histogram of values in each encoding format. KL divergence is defined as KL(P ‖ Q) =45 ∑
x∈X P (x) log

(
P (x)
Q(x)

)
. We will replace QNSR with QSNR in the revised paper to avoid negative values.46


