
Model Selection in Contextual Stochastic Bandit
Problems

Aldo Pacchiano⇤

UC Berkeley
My Phan⇤

University of Massachusetts
Yasin Abbasi-Yadkori

DeepMind
Anup Rao

Adobe

Julian Zimmert
Google Research

Tor Lattimore
DeepMind

Csaba Szepesvári
DeepMind and University of Alberta

Abstract

We study bandit model selection in stochastic environments. Our approach relies
on a master algorithm that selects between candidate base algorithms. We develop
a master-base algorithm abstraction that can work with general classes of base
algorithms and different type of adversarial master algorithms. Our methods rely
on a novel and generic smoothing transformation for bandit algorithms that permits
us to obtain optimal O(

p
T ) model selection guarantees for stochastic contextual

bandit problems as long as the optimal base algorithm satisfies a high probability
regret guarantee. We show through a lower bound that even when one of the base
algorithms has O(log T ) regret, in general it is impossible to get better than ⌦(

p
T )

regret in model selection, even asymptotically. Using our techniques, we address
model selection in a variety of problems such as misspecified linear contextual
bandits [13], linear bandit with unknown dimension [8] and reinforcement learning
with unknown feature maps. Our algorithm requires the knowledge of the optimal
base regret to adjust the master learning rate. We show that without such prior
knowledge any master can suffer a regret larger than the optimal base regret.

1 Introduction

In a bandit model selection problem, given a set of base algorithms, the learner aims to adapt in an
online fashion to the best base that is the most suitable for the current environment. Maillard and
Munos [15] are perhaps the first to address the bandit model-selection problem, with a variant of
EXP4 master algorithm that works with UCB or EXP3 base algorithms. These results are improved
by Agarwal et al. [2]. Agarwal et al. [2] combine the base algorithms using an online mirror descent
master (CORRAL) that sends importance weighted rewards to the base algorithms, thus requiring
each base algorithm to be individually modified to be compatible with the master. For example, to
use UCB as a base, we would need to manually re-derive UCB’s confidence interval and modify its
regret analysis to be compatible with importance weighted feedback. Instead, we introduce a generic
smoothing wrapper method that can be applied to base algorithms without substantial modification.

There are works on model selection in settings such as in linear bandits with unknown dimension or
structure [8, 6]. Apart from strong assumptions, those works are limited to a specific model-selection
problem. A general and efficient method to combine multiple base algorithms is missing.

Contributions. We focus on bandit model-selection in stochastic environments. Our contributions
are as follows:

⇤Equal contribution.
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• We introduce a general "smoothing" wrapper so that any contextual base algorithm can be compat-
ible with the CORRAL [2] and EXP3.P masters [5]. This is more general than the approach of
Agarwal et al. [2] where each base algorithm needs to be individually modified to satisfy certain
stability condition. Our modification of the CORRAL algorithm has another important difference:
instead of importance weighted feedback, the original rewards are sent to the base algorithms. The
resulting model selection strategy can be readily used with almost any base algorithm developed
for stochastic environments. When the optimal base regret is known, the CORRAL master achieves
optimal regret guarantees. Under certain conditions when the optimal base regret is unknown
EXP3.P can achieve better performance.

• We demonstrate the generality and effectiveness of our method by showing how it seamlessly
improves existing results or addresses open questions in a variety of problems. We show appli-
cations in adapting to the misspecification level in contextual linear bandits [13], adapting to the
unknown dimension in nested linear bandit classes [8], tuning the data-dependent exploration rate
of bandit algorithms, and choosing feature maps in reinforcement learning. Moreover, our master
algorithm can simultaneously perform different types of model selection. For example, we show
how to choose both the unknown dimension and the unknown mis-specification error at the same
time. This is in contrast to algorithms that specialize in a specific type of model selections such as
detecting the unknown dimension [8].

• In the stochastic domain, an important question is whether a model selection procedure can inherit
the O(log T ) regret of a fast stochastic base algorithm. We show a lower bound for the model
selection problem that scales as ⌦(

p
T ), which implies that our result is minimax optimal. Our

master algorithm requires knowledge of the best base’s regret to achieve the same regret. We show
that this condition is unavoidable in general: there are problems where regret of the best base scales
as O(T x) for an unknown x, and the regret of any master algorithm scales as ⌦(T y) for y > x.

2 Problem statement

Let �a denotes the delta distribution at a. For an integer n, we use [n] to denote the set {1, 2, . . . , n}.
We consider contextual stochastic bandit problems: Let A ✓ Rd be a set of actions. Let S be
the set of all subsets of A and let DS be a distribution over S. At time t, the learner observes an
action set At (which could be infinite) sampled from DS . The learner chooses policy ⇡t, which
takes an action set X 2 S as an input and outputs a distribution over X . The learner selects action
at ⇠ ⇡t(At) and receives a reward rt such that rt = f(At, �at) + ⇠t where ⇠t is 1-subGaussian
random noise and f(X ,⇡) denotes the expected reward of applying policy ⇡ on action set X . The
fixed action case At = A and the linear contextual bandit problem with IID contexts are special
cases of this setting. For linear contextual bandits, there are k actions and a linearly parameterized
policy ⇡ maps from the space of d ⇥ k matrices to [k]: in round t and given context xt 2 Rd⇥k,
⇡✓(xt) = argmax

i2[k] x
>
t,i
✓, where xt,i denotes the i�th column of xt. Letting it = ⇡✓(xt), the

reward is given by rt = x>
t,it

✓⇤ + ⇠t where ✓⇤ 2 Rd is an unknown parameter vector.

We are interested in designing an algorithm with small regret, defined as

R(T ) = max
⇡⇤2⇧

E

"
TX

t=1

f(At,⇡
⇤)�

TX

t=1

f(At,⇡t)

#
. (1)

We assume there are M candidate base algorithms and a master algorithm M that selects one of
the base algorithms in each round. Let {pi1, . . . , piT } be the (random) probabilities that M chooses
base i during the game and let p

i
= mint pit. If base Bi satisfies a high probability regret bound

Ui(T, �) when played in an environment E , we call E a Ui�compatible environment for Bi. We
do not require E to be Ui compatible w.r.t all input base algorithms. We want to design a master
algorithm that satisfies regret R(T )  O(Ui⇤(T, �)); We are interested in competing with the best
performing compatible base i⇤. For the rest of the paper we use i to denote the optimal base i⇤.

3 Main results

We consider the following abstraction in Algorithms 1 and 2. Base algorithms only play their chosen
action, receive rewards and update their policy when selected by the master. Base algorithms keep a
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counter s, keeping track of the number of times they have been invoked. For any base algorithm Bj ,
⇡s,j is the policy Bj uses at state s. Let st,j denote the state of base j at time t. If t1 < t2 are two
consecutive times when base j is chosen by the master, then the base has policy ⇡st1,j ,j at time t1
and policy ⇡st2,j ,j at times t1 + 1, . . . , t2 where st2,j = st1,j + 1

Algorithm 1 Master Algorithm
Input: Base Algorithms {Bj}

M

j=1
for t = 1, · · · , T do

Play base jt.
Receive feedback rt = rt,jt from Bjt

Update itself using rt
end for

Algorithm 2 Base Algorithm Bj

Initialize state counter s = 1
for t = 1, · · · , T do

Receive action set At ⇠ DS

Choose action at,j ⇠ ⇡s,j(At)
if selected by master then

Play action at,j
Receive feedback rt,j = f(At, �at,j )+⇠t
Send rt,j to the master
Compute ⇡s+1,j using rt,j
s s+ 1

end if
end for

To analyze the regret of the master w.r.t. the optimal base Bi, we add and subtract terms
{f(At,⇡st,i,i)}

T

t=1 and use a regret decomposition similar to the one used by Agarwal et al. [2]:

R(T ) = E

"
TX

t=1

f(At,⇡
⇤)� f(At,⇡t)

#

= E

"
TX

t=1

f(At,⇡st,i,i)� f(At,⇡t)

#

| {z }
I

+E

"
TX

t=1

f(At,⇡
⇤)� f(At,⇡st,i,i)

#

| {z }
II

(2)

Term I is the regret of the master with respect to the optimal base, and term II is the regret of
the optimal base with respect to the optimal policy ⇡⇤. Analysis of term I is largely based on
existing analysis of CORRAL and EXP3.P. To bound term II, we provide a smoothing transformation
(Section 5, Algorithm 3) that converts any base algorithm with high probability bound U(T, �) to
one with high probability instantaneous regret bound ut =

U(t,�)
t

at time t , which is decreasing if
U(T, �) is concave. Since ut is decreasing, term II is the largest when base i is selected the least
often (pi

t
= p

i
8t). In this case base i will be played roughly Tp

i
times, and will repeat its decisions

in intervals of length 1
p
i

, resulting in the following bound:

Lemma 3.1 (informal). If regret of the optimal base is bounded by U⇤(T, �) with probability at least
1�� when it runs alone, then we have that E [II]  O

⇣
E
h

1
p
i

U⇤(Tp
i
, �) log T

i
+ �T (log T + 1)

⌘
.

We demonstrate the effectiveness of our smooth transformation by deriving regret bounds with two
master algorithms: CORRAL (introduced by Agarwal et al. [2] and reproduced in Appendix B) and
EXP3.P (Theorem 3.3 in [5]), a simple algorithm that ensures each base is picked with at least a
(horizon dependent) constant probability p.
Theorem 3.2 (informal version of Theorem 5.3). If U⇤(T, �) = O(c(�)T↵) for some function
c : R! R and constant ↵ 2 [1/2, 1), the regrets of EXP3.P and CORRAL are:

Known ↵ and c(�) Known ↵, Unknown c(�)

EXP3.P Õ
⇣
T

1
2�↵ c(�)

1
2�↵

⌘
Õ
⇣
T

1
2�↵ c(�)

⌘

CORRAL Õ (T↵c(�)) Õ
⇣
T↵c(�)

1
↵

⌘

CORRAL has optimal regret when ↵ and c(�) are known. However when c(�) is unknown and
c(�) > T

(1�↵)↵
2�↵ (which is T 1/6 if ↵ = 1/2 or ↵ = 1/3), then EXP3.P has better regret because

Õ
⇣
T

1
2�↵ c(�)

⌘
< Õ

⇣
T↵c(�)

1
↵

⌘
.
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Lower bounds. Theorem 6.2 shows that if the regret of the best base is O(T x), in the worst case a
master algorithm that does not know x can have regret ⌦(T y) with y > x. Theorem 6.1 shows that
in general it is impossible for any master algorithm to achieve a regret better than ⌦(

p
T ) even when

the best base has regret O(log(T )). When the regret of the best base is O(
p
T ), CORRAL with our

smoothing achieves the optimal O(
p
T ) regret.

The detailed description of the smoothing procedure and the analysis are postponed to Section 5.
First, we show some applications of our main result in the next section. All algorithms presented
in the next section are compatible with the smoothing procedure, and all regret bounds are direct
applications of Theorem 3.2.

4 Applications

4.1 Misspecified Contextual Linear Bandit

We consider the misspecified linear bandit problem. The learner selects an action at 2 At and
receives a reward rt such that |E[rt] � a>

t
✓|  ✏⇤ where ✓ 2 Rd is an unknown parameter vector

and ✏⇤ is the misspecification error. For this problem, [20] and [13] present variants of LinUCB that
achieve a high probability Õ(d

p
T + ✏⇤

p
dT ) regret bound. Both algorithms require knowledge of

✏⇤, but [13] show a regret bound of the same order without the knowledge of ✏⇤ for the version of the
problem with a fixed action set At = A. Their method relies on G-optimal design, which does not
work for contextual settings. It is an open question whether it is possible to achieve the above regret
without knowing ✏⇤ for problems with changing action sets.

In this section, we show a Õ(d
p
T + ✏⇤

p
dT ) regret bound for linear bandit problems with changing

action sets without knowing ✏⇤. For problems with fixed action sets, we show an improved regret that
matches the lower bound of [12].

Given a constant E so that |✏⇤|  E, we divide the interval [1, E] into an exponential grid G =
[1, 2, 22, ..., 2log(E)]. We use log(E) modified LinUCB bases, from either Zanette et al. [20] or
Lattimore et al. [13], with each base algorithm instantiated with a value of ✏ in the grid.
Theorem 4.1. For the misspecified linear bandit problem described above, the regret of CORRAL
with learning rate ⌘ = 1p

Td
applied with modified LinUCB base algorithms with ✏ 2 G, is upper

bounded by Õ(d
p
T + ✏⇤

p
dT ). When the size k action sets are fixed and

p
k > d, the regret of

CORRAL with ⌘ = 1p
Td

applied with one UCB base and one G-optimal base algorithm [13] is upper

bounded by Õ
⇣
min

⇣
k

d

p
T , d
p
T + ✏⇤

p
dT

⌘⌘
.

This result matches the following lower bound that shows that it is impossible to achieve
Õ(min(

p
kT , d

p
T + ✏⇤

p
dT )) regret:

Lemma 4.2 (Implied by Theorem 24.4 in [12]). Let R⌫(T ) denote the cumulative regret at time T
on environment ⌫. For any algorithm, there exists a 1-dimensional linear bandit environment ⌫1 and
a k-armed bandit environment ⌫2 such that R⌫1(T ) ·R⌫2(T ) � T (k � 1)e�2.

Experiment (Figure 1). Let d = 2. Consider a contextual bandit problem with k = 50 arms, where
each arm j has an associated vector aj 2 Rd sampled uniformly at random from [0, 1]d. We consider
two cases: (1) For a ✓ 2 Rd sampled uniformly at random from [0, 1]d, reward of arm j at time t is
a>
j
✓ + ⌘t, where ⌘t ⇠ N(0, 1), and (2) There are k parameters µj for j 2 [k] all sampled uniformly

at random from [0, 10], so that the reward of arm j at time t is sampled from N(µj , 1). We use
CORRAL with learning rate ⌘ = 2p

Td
and UCB and LinUCB as base algorithm. In case (1) LinUCB

performs better while in case (2) UCB performs better. Each experiment is repeated 500 times.

4.2 Contextual Bandits with Unknown Dimension

Linear Contextual Bandit. We consider the contextual linear bandit problem studied by Foster
et al. [8]. In this problem, each action a 2 At is a D-dimensional feature map, but only the first d⇤
elements of the parameter vector are nonzero. Here, d⇤ is unknown and possibly much smaller than
D. [8] consider the special case when the number of actions k is finite and require a lower bound
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(a) Arms with linear rewards. (b) Arms with non-linear rewards.
Figure 1: CORRAL with UCB and LinUCB bases. Shaded regions denote the standard deviations.

on the average eigenvalues of the co-variance matrices of all actions. We provide the first sublinear
regret for this problem when the action set is infinite. Further, we have no eigenvalue assumptions
and our regret does not scale with the number of actions k.

We use LinUCB with each value of d 2 [1, 2, 22, ..., 2log(D)] as a base algorithm for CORRAL and
EXP3.P. We also consider the case when both the optimal dimension d⇤ and the misspecification
✏⇤ are unknown: we use M = log(E) · log(D) modified LinUCB bases (see Section 4.1) for each
value of (✏⇤, d⇤) in the grid [1, 2, 22, ..., 2log(E)]⇥ [1, 2, 22, ..., 2log(D)]. We obtain the regret bounds
summarized in the following table:

Linear contextual bandit Misspecified
linear contextual bandit

Unknown d⇤ Unknown d⇤ and ✏⇤Finite action sets Infinite action sets

Foster et al. [8] Õ(T 2/3
k
1/3

d
1/3
⇤ ) or

Õ(k1/4
T

3/4 +
p
kTd⇤)

N/A N/A

EXP3.P Õ(d
1
2
⇤ T

2
3 ) Õ(d⇤T

2
3 ) Õ(T

2
3 d⇤ + ✏⇤

p
dT )

CORRAL Õ

⇣
d⇤

p
T

⌘
Õ

⇣
d
2
⇤
p
T

⌘
Õ

⇣p
Td

2
⇤ + ✏⇤

p
dT

⌘

With our approach, it is possible to combine different types of master and base algorithms, which
provides much more flexibility compared to approaches specializing in a specific type of model
selection. To the best of our knowledge, this is the first result that provides these types of guarantees.

Nonparametric Contextual Bandit. [9] consider non-parametric stochastic contextual bandits.
At time t and given a context xt 2 RN , the learner selects arm at 2 [k] and observes the reward
fat(xt) + ⇠t, where ⇠t is a 1-sub-Gaussian random variable and fj denotes the mean reward function
of arm j. It is assumed that the contexts arrive in an IID fashion. [9] obtain a Õ

⇣
T

1+N
2+N

⌘
regret

for this problem. Similar to Foster et al. [8], we assume that only the first n⇤ context features are
relevant for an unknown n⇤ < N . It is important to find n⇤ because T

1+n⇤
2+n⇤ ⌧ T

1+N
2+N . We have

a model selection strategy that adapts to this unknown quantity: for each value of n in the grid
[b0, b1, b2, ..., blogb(N)] for some b > 1, we use the algorithm of Guan and Jiang [9] as a base, and
perform model selection with CORRAL and EXP3.P with these base algorithms.

Foster et al. [8] EXP3.P CORRAL
Nonparametric contextual bandit

Unknown n⇤
N/A Õ

⇣
T

1+bn⇤
2+bn⇤ + 1

3(2+bn⇤)

⌘
Õ
⇣
T

1+2bn⇤
2+2bn⇤

⌘

4.3 Tuning the exploration rate of ✏-greedy

For a given positive constant c, the ✏-greedy algorithm pulls the arm with the largest empirical average
reward with probability 1� c/t, and otherwise pulls an arm uniformly at random. Let ✏t = c/t. It
can be shown that the optimal value for ✏t is min{1, 5k

�2
⇤t
} where �⇤ is the smallest gap between the

optimal arm and the sub-optimal arms [12]. With this exploration rate, the regret scales as eO(
p
T )

for k = 2. We would like to find the optimal value of c without the knowledge of �⇤. We obtain
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such result by applying CORRAL to a set of ✏-greedy base algorithms each instantiated with a c in
[1, 2, 22, ..., 2log(kT )].

Theorem 4.3. The regret of CORRAL using ✏-greedy base algorithms defined on the grid is bounded
by Õ(T 1/2) when k = 2.

Figure 2: CORRAL with ✏-Greedy bases with dif-
ferent exploration rates. 2

Experiment (Figure 2). Let there be two
Bernoulli arms with means 0.5 and 0.45. We use
18 ✏-greedy base algorithms differing in their
choice of c in the exploration rate ✏t = c/t. We
take T = 50, 000, ⌘ = 20/

p
T and ✏’s to lie on

a geometric grid in [1, 2T ]. Each experiments is
repeated 50 times.

4.4 Reinforcement Learning

We consider the case of linear MDPs (see As-
sumption A in [11] for a definition). The learner
has access to multiple feature maps one of which
is aligned with the true dynamics of the MDP.

Theorem 4.4. Let M = (S,A, H,P, r) be a
linear MDP parametrized by an unknown fea-
ture map {�⇤ : S ⇥R ! Rd

}. Let {�i(s, a)}Mi=1 be a family of feature maps with �i(s, a) 2 Rd

and satisfying �⇤
2 {�i(s, a)}Mi=1. The regret of CORRAL with ⌘ = M

1/2

T 1/2d3/2H3/2 using LSVI-UCB

base algorithms is: R(T )  Õ

⇣p
Md3H3T

⌘
.

Figure 3: ✏-Greedy vs UCRL2 vs PSRL in the
River Swim environment [19].

We also observe that in practice, smoothing RL
algorithms such as UCRL and PSRL and using
a CORRAL master on top of them can lead to
improved performance. A longer discussion is
in Appendix A.

5 Base Smoothing
5.1 Non-increasing instantaneous regret

We introduce a two step "smoothing" procedure
(Algorithm 3) which, given an algorithm Bj with
concave (in t) cumulative high probability (see
Definition 5.2) regret bound Uj(t, �), constructs
a smoothed algorithm B̃j with an instantaneous
regret bound uj(t, �) = U(t, �)/t. If U(t, �) is
concave, u(t, �) will be non-increasing in t.

Algorithm B̃j works as follows. We have two steps in each round s. In step 1, we play Bj . In step 2,
at state s, we pick a time step q in [1, 2, .., s] uniformly at random, and re-play the policy made by Bj

at time q. Since the policy of Bj at each round [1, 2, ...s] is chosen with probability 1/s to be played
at step 2, and Bj satisfies a high probability upper bound (Definition 5.1), the expected instantaneous
regret of step 2 at round s is at most U(s, �)/s with high probability (Lemma D.1 ) which allows
us to control term II in Eq.2 via Theorem 5.2 (Appendix F.3). We use the superscript (1) and (2) to
distinguish Step 1 and Step 2’s action sets, policies, actions and rewards. Since the instantaneous
regret of Step 2 is 1/s times the cumulative regret of Step 1, the cumulative regret of Step 2 over S
states is bounded roughly by

P
S

s=1 1/s ⇡ log(S) times that of step 1.

2The shaded areas around UCB and CORRAL are the std. The shaded areas around the ✏-greedy bases are
0.1 of std. For small ✏, ✏-greedy has a very high variance because it either commits to the optimal arm or the
sub-optimal arm at the beginning, so plotting the whole std would make the plot unreadable.
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Algorithm 3 Smoothed Algorithm
Input: Base Algorithms Bj ; Output: Produce a smoothed base B̃j

Let ⇡s,j be the policy of Bj in state s; Let ⇡̃(1)
s,j

, ⇡̃(2)
s,j

be the policies of B̃j in state s.
Initialize state counter s = 1.

1: for t = 1, · · · , T do
2: if selected by master then

3:

Receive action set A(1)
t
⇠ DS

Let ⇡̃(1)
s,i

= ⇡s,i from Bi.
Step 1 Play action a(1)

t,j
⇠ ⇡̃(1)

s,j
(A(1)

t
); Receive feedback r(1)

t,j
= f(A(1)

t
, �

a
(1)
t,j
) + ⇠(1)

t

Calculate ⇡s+1,j of Bj using r(1)
t

.
Receive action set A(2)

t
⇠ DS .

Sample q ⇠ Uniform(0, · · · , s); Let ⇡̃(2)
s,i

= ⇡q,i from Bi.
Step 2 Play action a(2)

t,j
⇠ ⇡̃(2)

s,j
(A(2)

t
); Receive feedback r(2)

t,j
= f(A(2)

t
, �

a
(2)
t,j
) + ⇠(2)

t

4: Send smoothed reward r(2)
t,j

as both the rewards of Step 1 and Step 2 to the master.
5: s s+ 1
6: else
7: for 2 steps do
8: Receive action set At ⇠ DS .
9: Choose action a(2)

t,j
⇠ ⇡̃(2)

s,i
(At).

10: end for
11: end if
12: end for

Definition 5.1 ((U, �, T )�Boundedness). Let U : R ⇥ [0, 1] ! R+. We say an algorithm B is
(U, �, T )�bounded if with probability at least 1 � � and for all rounds t 2 [1, T ], the cumulative
pseudo-regret is bounded above by U(t, �):

P
t

l=1 f(Al,⇡⇤)� f(Al,⇡l)  U(t, �).

Definition 5.2 ((U, �, T (2))�Smoothness). Let U : R⇥ [0, 1]! R+. We say a smoothed algorithm
B̃ is (U, �, T (2))�smooth if with probability 1�� and for all rounds t 2 [T ], the conditional expected
instantaneous regret of Step 2 is bounded above by U(t, �)/t:

EAt⇠DS [r
(2)
t

|Ft�1] 
U(t, �)

t
, 8t 2 [T ]. (3)

Here Ft�1 denotes the sigma algebra of all randomness up to the beginning of round t.

In Appendix D we show that several algorithms such as UCB, LinUCB, ✏-greedy and EXP3 are
(U, �, T )-bounded for appropriate functions U . In Propositon 5.1 we show that if Bj is bounded, then
B̃j is both bounded and smooth:

Proposition 5.1. If U(t, �) > 8
q
t log( t

2

�
), �  1p

T
and Bj is (U, �, T )�bounded, then B̃j is

(6U log(T ), �, T )�bounded and (5U, �, T (2))�smooth.

5.2 Regret Analysis

Term I. Note that we only send the smoothed reward of Step 2 to the master while the base plays and
incurs regrets from both Step 1 and Step 2. We show in Appendix E that this does not affect the regret
of the master significantly. For CORRAL with learning rate ⌘, E [I]  O

⇣p
MT + M lnT

⌘
+ T⌘

⌘
�

E
h

1
p
i

i

40⌘ lnT
. For EXP3.P with exploration rate p, E [I] < O(

p
MT + 1

p
+MTp).

Term II. Term II is the regret of the base i when it only updates its state when selected. We assume
smoothed base algorithm B̃i satisfies the smoothness and boundedness in Definitions 5.1 and 5.2.
Note that when a smoothed base repeats its policy while not played, it repeats the next Step 2 policy
(Algorithm 3) whose instantaneous regret is non-increasing.
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Since the Step 2’s conditional instantaneous regret (Definition 5.2) has a non-increasing upper bound,
selecting B̃i with probability p

i
at every time step will result in the largest upper bound on its regret

because the base is updated the least often. In this case the base will be updated every 1/p
i

time-steps
and the regret upper bound will be roughly 1

p
i

Ui(Tp
i
, �).

Theorem 5.2. We have that E [II]  O

⇣
E
h

1
p
i

Ui(Tp
i
, �) log T

i
+ �T (log T + 1)

⌘
. Here, the

expectation is over the random variable p
i
. If U(t, �) = t↵c(�) for some ↵ 2 [1/2, 1) then,

E [II]  Õ

⇣
T↵c(�)E

h
1

p1�↵
i

i
+ �T (log T + 1)

⌘
.

Total Regret. Adding Term I and Term II gives us the following worst-case bound for CORRAL
(maximized over p

i
and with a chosen ⌘) and EXP3.P (with a chosen p):

Theorem 5.3. If a base algorithm is (U, �, T )-bounded for U(T, �) = T↵c(�) and some ↵ 2 [1/2, 1)
and the choice of � = 1/T , the regret is upper bounded by:

EXP3.P CORRAL
General Õ

⇣p
MT +MTp+ T

↵
p
↵�1

c(�)
⌘

Õ

⇣p
MT + M

⌘ + T⌘ + T c(�)
1
↵ ⌘

1�↵
↵

⌘

Known ↵

Known c(�) Õ

⇣p
MT +M

1�↵
2�↵ T

1
2�↵ c(�)

1
2�↵

⌘
Õ

⇣p
MT +M

↵
T

1�↵ +M
1�↵

T
↵
c(�)

⌘

Known ↵

Unknown c(�) Õ

⇣p
MT +M

1�↵
2�↵ T

1
2�↵ c(�)

⌘
Õ

⇣p
MT +M

↵
T

1�↵ +M
1�↵

T
↵
c(�)

1
↵

⌘

6 Lower bound

In stochastic environments, algorithms such as UCB can achieve logarithmic regret bounds. Our
model selection procedure however has a O(

p
T ) overall regret. In this section, we show that in

general it is impossible to obtain a regret better than ⌦(
p
T ) even when one base has 0 regret.

Theorem 6.1. There exists an algorithm selection problem, such that the regret for any time T is
lower bounded by R(T ) = ⌦

⇣ p
T

log(T )

⌘
.

Proof sketch. The two base algorithms are constructed such that one base algorithm has 0 regret and
the gap between the algorithms closes at a rate of ⇥(1/(

p
t log(t))). We show that at this rate, any

master will have a constant probability of misidentifying the optimal algorithm even after observing
infinite pulls. Hence the regret of the master is of order ⌦

⇣P
T

t=1 1/(
p
t log(t))

⌘
= ⌦̃(

p
T ).

CORRAL needs knowledge of the best base’s regret to achieve the same regret. The following lower
bound shows that this requirement is unavoidable:

Theorem 6.2. Let there be two base algorithms where the best base has regret Õ(T x) for some
0 < x < 1. If we don’t know x and we don’t know the reward of the best arm, then the regret of the
master algorithm can be ⌦(T y) with y > x.

Proof sketch. Let there be two base algorithms, and let R1 and R2 be their regrets incurred when
called by the model selection strategy. If R1 = o(R2), we can construct the bases such that they both
have zero regret after the learner stops selecting them. Therefore their regret when running alone are
R1 and R2, and the learner has regret of the same order as R2, which is higher than the regret of the
better base running alone (R1). If however R1 ⇡ R2, since the learner doesn’t know the optimal arm
reward, we create another environment where the optimal arm reward is different, so that in the new
environment the regrets are no longer equal.
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