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Abstract

Emergentism and pragmatics are two research fields that study the dynamics of
linguistic communication along substantially different timescales and intelligence
levels. From the perspective of multi-agent reinforcement learning, they correspond
to stochastic games with reinforcement training and stage games with opponent
awareness. Given that their combination has been explored in linguistics, we
propose computational models that combine short-term mutual reasoning-based
pragmatics with long-term language emergentism. We explore this for agent com-
munication referential games as well as in Starcraft II, assessing the relative merits
of different kinds of mutual reasoning pragmatics models both empirically and
theoretically. Our results shed light on their importance for making inroads towards
getting more natural, accurate, robust, fine-grained, and succinct utterances.

1 Introduction

In many linguistic theories (Zipf, 1935; Lewis, 1969; Grice, 1975), language is viewed as a special
kind of social coordination system, in which multiple agents make interdependent decisions of how
to express and comprehend messages in order to successfully communicate real-world information.
Drawing on advances in artificial intelligence, recent work considers referential games (Lazaridou
et al., 2018) to model language learning from raw sensory input, adopting techniques from computer
vision, language processing, and multi-agent reinforcement learning. Considering agent communica-
tion issues in multi-agent learning not only benefits the coordination of agents for tasks with common
objectives, but also manifests properties of human linguistics and suggests a potential path towards
more intelligent natural language processing techniques (Lazaridou et al., 2018).

However, in traditional linguistics, language is studied along different timescales and different levels
of deliberation, while recent work on referential games only focuses on long-term language evolution,
i.e., modeling how long-term habits develop. In this work, we propose integrated models that consider
not only long-term evolution but also short-term equilibrium finding. On the one hand, agents are
expected to conform to evolved language habits; on the other hand, in a separate pragmatic stage
after the long-term evolution, they are expected to make rational decisions within a particular context
so as to communicate more successfully. Our models achieve both of these goals, drawing on
psychological game theory (Battigalli et al., 2019), where the payoffs reflect prior beliefs about the
strategies, instead of just the final outcome.

Contributions. Our key contributions can be summarized as follows:
• We propose a new computational framework that more comprehensively models language dynamics

at different timescales. While previous work on referential games considers long-term language
evolution (also known as emergentism in linguistics), our model additionally incorporates a
subsequent procedure of opponent-aware pragmatic reasoning.
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• To this end, we consider action costs of speakers and listeners that can account for several notions
of pragmatics, including a game-theoretic pragmatics version that allows us to assess the limits of
rational deliberation.

• We conduct a series of experiments that evaluate the relative merits of different pragmatic models,
showing that they can improve the empirical communication accuracy both in typical referential
game settings (Lazaridou et al., 2018) and in a StarCraft II simulation (Wang et al., 2019b).

2 Background and Related work

2.1 Linguistic Background

Language system dynamics is studied at several distinct time scales (Lewis, 2014). Cultural language
systems mostly emerge and evolve along long time scales and can be considered a steady prior in
short term pragmatics, where language strategies of interlocutors reach temporary equilibria.1

Pragmatics. Pragmatics has the shortest timescale and pertains to conscious rational and cooperative
actions of humans (Korta and Perry, 2020). While the term has numerous definitions in linguistics,
logic, and philosophy, in general, key aspects include reasoning about the interlocutors’ intentions and
the ambiguities beyond the expressions, according to the contexts of the conversation (Trask, 1999;
Grice, 1975). Computational models have often been influenced by the early work on signaling games
(Lewis, 1969) and related incomplete information games theories (Fudenberg and Tirole, 1991). Later
works (Parikh, 2001) established more comprehensive models. They mostly considered variants
of disambiguation problems, e.g., scalar implicatures (Rothschild, 2013), politeness implicatures
(Clark, 2011), irony, debating (Glazer and Rubinstein, 2006), negotiation (Cao et al., 2018), referring
expression generation (Orita et al., 2015), and rhetoric phenomena (Kao et al., 2014a,b). More
recently, empirical models have been proposed to simulate realistic human pragmatic behavior
(Goodman and Frank, 2016; Smith et al., 2013; Khani et al., 2018; Andreas and Klein, 2016; Shen
et al., 2019; Achlioptas et al., 2019; Tomlin and Pavlick, 2019; Cohn-Gordon et al., 2018, 2019),
revealing practical uses of pragmatics. Zaslavsky et al. (2020) and Wang et al. (2019a) formalized
pragmatics models from information and optimization theoretical viewpoints, but did not take game
theoretical equilibria into consideration.

Evolution and emergentism. Emergence and evolution has the longest timescale and is a more ha-
bitual psychological process. In recent years, research on emergent communication (Lazaridou et al.,
2018; Wang et al., 2019b; Zaïem and Bennequin, 2019) has regained popularity using multi-agent
reinforcement learning (MARL) settings such as referential games. On the one hand, a commu-
nication system helps for multi-agent tasks with complex environments and reward mechanisms
(Foerster et al., 2016a,b, 2019), especially when the agents can only partially observe the world state.
On the other hand, the emergent languages themselves may exhibit functions and characteristics of
human languages. For example, when the world state keeps changing and the vocabulary is a limited
resource, certain phenomena of language can be observed, such as semantic drift and compositionality
(Choi et al., 2018; Lee et al., 2018; Cao et al., 2018; Evtimova et al., 2018; Havrylov and Titov, 2017;
Lowe et al., 2019).

2.2 Multi-Agent Reinforcement Learning

MARL allows multiple agents to learn coordination strategies in uncertain and dynamic environments,
and recently has witnessed vigorous progress in both value-based (Tan, 1993; Rashid et al., 2018) and
policy-based (Foerster et al., 2018) methods. Learning language or communication provides effective
interaction channels for learning agents, and is an important area of modern AI research (Foerster et al.,
2016a; Singh et al., 2019; Das et al., 2019; Lazaridou et al., 2017). Inspired by the theory of mind
(TOM) (Goldman, 2012), opponent modeling enables agents to model the anticipated movements of
others and holds promise for addressing problems such as non-stationarity (Hernandez-Leal et al.,
2017) in a scalable way. One basic method of opponent modeling is policy reconstruction, which
predicts action probabilities of a target agent by assuming specific model structures and learning the
model parameters based on observed actions. A variant is recursive reasoning, which introduces

1Of course, in reality, the cached equilibria from repeated interactions also conversely give rise to changes on
the long term timescale, but we leave this for future work.
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human-like thinking by simulating higher-order belief sequences as in I think that you think that I
think... (Albrecht and Stone, 2018).

While reinforcement learning is widely used in dialogue systems and NLP (Yang et al., 2020),
incorporating MARL into NLP is now as well a vibrant and promising avenue (Li and Bowling,
2019; Vered et al., 2019). Concurrently with our work, Lazaridou et al. (2020) explores simple
pragmatics for reranking the outputs of generic language models on task-specific conditions, but does
not consider game theory. From the viewpoint of MARL, long timescales correspond to stochastic
games with random state (historic environment/context) transitions. Short timescales correspond to
stage games, i.e., for each state, we regard the game as a stateless game; the target and distractors
remain the same for each short-term instance, in which agents’ emergent parameters (hereinafter
PS0

and PL0
) can be seen as steady priors for (multi-round) pragmatic reasoning methods like best

responses.

3 Pragmatic Models for Referential Games

3.1 Long-Term and Short-Term Referential Games
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Figure 1: Long-term training & baseline testing.

Inspired by the timescales of language dynamics
and their computational frameworks, we define
two kinds of referential game scenarios, namely
long-term games and short-term games.

In a long-term game setting, we follow the train-
ing framework of Lazaridou et al. (2018) to ob-
tain an emergent language system. Figure 1
illustrates the structures of the interlocutors and
the training process. For each instance, a can-
didate set of objects ci ∈ C is provided to both
agents, but only the speaker knows the true tar-
get c. The speaker perceives this target using a
CNN and obtains a feature vector u. The listener
similarly obtains feature vectors zi for each ci.
The speaker’s LSTM then encodes u into a prob-
ability distribution over messages such that a
message m can be sampled and sent to the lis-
tener, who decodes m into z via its own LSTM

and computes the similarity with each zi. A softmax on the similarities produces a distribution for
the choice t among the candidates. Both agents obtain a reward R, which is 1 if t matches c, or 0 oth-
erwise. Based on this reward, they update their CNN and LSTM parameters using the REINFORCE
algorithm (Williams, 1992), by maximizing R logPS0

(m | c) and R logPL0
(t | m,C), respectively.

In every time-step, if the reward is positive, then the outputs of the agents’ policies are encouraged;
otherwise, they are discouraged.

After this long-term training, we can regard the emergent networks PS0
for the speaker and PL0

for the listener as fixed (or as slowly-changing) habit priors. We subsequently rely on them as the
basis for the following test phase, during which agents may conjecture with regard to each other’s
habits in order to successfully communicate. However, they cannot rely on pre-defined rules to
reach agreement, apart from generic principles such as game theory. The baseline test method, as
considered in previous work, is to simply take the arg-max m and t from the two respective prior
distributions. However, in this paper, we propose the subsequent methods of refining this.

3.2 One-Sided Pragmatic Models

SampleL. Andreas and Klein (2016) proposed a framework in which the speaker has a mental model
of the listener. Supposing c is the target, the speaker considers several possible messages but finally
picks argmaxm PS0(m|c)λPL0(c|m)1−λ. Here λ represents to what extent the speaker appreciates
the message’s consistency with their prior habit. The listener then samples t for this message m from
PL0

.
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Figure 2: Short-term test using one-sided (left) and two-sided (right) pragmatics.

ArgmaxL. A variant of SampleL is when, instead of sampling, the listener simply picks arg-max t.
In this case, the speaker should pick argmaxm PS0

(m|c) s.t. argmaxt PL0
(t|m) = c. If none of the

messages lead to a correct listener decision, the speaker sends argmaxm PS0
(m|c).

3.3 Two-Sided Pragmatic Models

One-sided pragmatic models equip the speaker with a greater degree of interlocutor awareness,
enabling it to account for the listener’s thought processes and thereby improve communication
accuracy. However, the listener merely follows its pre-existing habits. When the candidate objects
are similar, we observe that different high-probability messages tend not to make much difference for
the listener’s decision. The speaker may have to deviate strongly from its habits to lead the listener to
a correct choice.

In the real world, both interlocutors normally have a mental model of each other and both adjust
their prior strategies accordingly. There have been a number of mathematical frameworks that
model the process of mutual conjectures. In general, starting from PL0 and PS0 , one can consider
iteratively updating the agent strategies as PSk+1

(m|t) ∝ [PLk
(t|m)/cost(m)]α and PLk+1

(t|m) ∝
[PSk+1

(m|t)P (t)]β , for all possible t ∈ {ci} and related m. In our setting, we define the cost of a
message as the reciprocal of the speaker’s prior. Additionally, P (t) are identical across candidates.
The parameters α and β reflect the uncertainty of the belief distribution.

RSA Model. When α and β are small, the new probabilities tend to be evenly distributed. If we
set them as 1, we obtain an instance of a Rational Speech Act model (RSA) (Khani et al., 2018;
Goodman and Frank, 2016): PSk+1

(m|t) ∝ PLk
(t|m)PS0

(m|t) and PLk+1
(t|m) ∝ PSk+1

(m|t).
IBR Model. If, in contrast, α and β are infinitely large, the new probabilities will be a peak
distribution and we obtain an instance of an Iterated Best Response model (IBR) (Franke, 2009):
PSk+1

(m|t) = δ[m−argmaxm PLk
(t|m)PS0(m|t)] and PLk+1

(t|m) = δ[t−argmaxt PSk+1
(m|t)].

Under this framework, SampleL (λ = 0.5) is equivalent to using IBR’s S1 and L0 as action strategies.

3.3.1 Psychological Game Theoretic Pragmatics Model

We propose an additional option based on psychological game theory (Battigalli et al., 2019) and
the Games of Partial Information (GPI) model (Parikh, 2001), where each agent’s actions result
directly from game equilibria instead of iterated reasoning. The payoff of a pair of speaker and
listener strategies is determined by whether they can bring about successful communication and their
consistency with prior language habits, i.e., how “natural” the final actions are. Compared to the
other two-sided models, we expect a better integration of long-term priors and short-term rationality
under this explicit game theory framework.

Strategies and payoffs. Suppose that for a test instance, the candidate set is C = {c1, c2, ..., c|C|}.
For each ci ∈ C, similar to the models above, the speaker proposes a set of messages with non-trivial
probabilities Mi = {mi1,mi2, ...,mi|Mi|}. The set of all possible messages is M∪ =

⋃|C|
i=1Mi =

{m1,m2, ...,m|M∪|}. We define the speaker’s strategy space, in which each strategy consists of
messages to be sent for each candidate and takes the form s = (msc1

,msc2
, ...,msc|C|

) where
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msci
∈Mi. We likewise define a listener’s strategy space, in which each strategy consists of choices

of candidates for each proposed message and has the form l = (clm1
, clm2

, ..., clm|M∪|
).

We then consider whether a pair of speaker strategy s and listener strategy l, in the respective
forms given above, could match if they can bring about accurate communication for each candidate:
∀i ∈ {1, 2, ..., |C|}, lmsci

= i. If they do not match, then Pay(s, l) = (0, 0); otherwise the payoffs
correspond to how consistent their strategies are with language habits, Pay(s, l) = (PS(s), PL(l)).
Here, the psychological game payoffs are defined as PS(s) =

∏|C|
i=1 PS0

(msci
|ci) and PL(l) =∏|M∪|

j=1 PL0
(clmj

|mj , C). Note that we assume the strategies to be pure ones, instead of mixed
distributions. For our game settings, due to the monotonicity relationships between the strategies and
their payoffs, pure strategies are sufficient to achieve optimal solutions.

Equilibrium selection. We can reasonably adopt the following action selection protocols that can be
considered common knowledge shared by the interlocutors without pre-negotiation.

• First build the game payoff table as described above, such that we can then obtain the set of all its
Nash equilibria E = {(s1, l1), (s2, l2), ...}. If the set is empty, the agents act randomly. If there
is only one equilibrium, then the agents select it. However, it turns out that when the candidate
objects are similar, there tend to be multiple equilibria and the selection is challenging.

• In such circumstances, if there is a Pareto equilibrium, then the agent selects it. If the algorithm
stops here, we refer to it as the GameTable model.

• If there is no Pareto equilibrium, it is still possible to determine what a message represents. Note
that in such a sequential game, the speaker’s message itself contains information about the speaker’s
strategy. If a message m always corresponds to one specific candidate ct among all equilibrium
speaker strategies that include it, i.e., ∃m(∀s ∈ E(m ∈ s → m = msct

)), then its occurrence
must represent ct. If ct happens to be the target, then the speaker can determine to use this message
and the listener can understand it. We refer to this as GameTable-sequential.

• For both GameTable and GameTable-sequential, it may occur that the model cannot determine the
selection. In this case, the agents randomly select their actions.

The complexity is O(|M∪||C|) for RSA/IBR and O(|M∪||C||C||M∪|) for game theoretic models, but
there are typically no scalability concerns in our pragmatics context, since the message set size |M∪|
is usually small. Note that investigating scalability to large |M∪| may be important in other natural
language cases, and the incremental methods of Cohn-Gordon et al. (2018, 2019) can be applied to
game theoretic models in each time step in an unrolling procedure, which may make them tractable.

4 Experiments

4.1 Experimental Setup

We generated MuJoCo-like objects using PyBullet (Coumans and Bai, 2016–2020), with 8 possible
colors and 5 possible shapes, at random locations on a color-changing background. The training set
consists of 3,000 such objects and the test set contains 1,000. Each training and testing instance has a
candidate set of 2 objects. For training, objects are repeatedly sampled as target or distractor from the
3,000 instances, with different position and orientation each time. The long-term training processes
1,000,000 instances. Note that agents have different viewpoints on the target, so that they do not learn
to communicate simply by comparing pixel-wise information. Instead, they are expected to learn to
encode and decode the object features from individual CNN outputs. In order to reduce the training
time, we invoke two separately pretrained AlexNet CNNs. These do not share parameters, so the
CNN outputs for the same object will differ between the two agents. To encourage exploring more
policies, agent actions are sampled from PS0 and PL0 and these distributions are also penalized by
an entropy term if they are not sufficiently evenly distributed at an early stage. Following the setting
with the best baseline performance in Lazaridou et al. (2018), messages have a maximum length of 5
symbols and the alphabet size is 17.

For one testing epoch, each of the 1,000 test objects serves as the target once, while distractors in
each round are sampled randomly. Similar to Lazaridou et al. (2018), the emergent language system
mainly captures color information about the objects, as well as some of the location signals. The
messages in Table 3 show the lexicon–object mapping. Virtually identical messages are produced
for candidates with the same or even just similar colors (e.g., red and magenta), which makes them
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Table 1: Performance of different short-term pragmatic models. SP and LP represent when an instance
results in successful communication.

Test set Overall Challenge
Model Acc±sd SP±sd LP±sd Acc±sd SP±sd LP±sd

Original 85.7 N/A N/A N/A N/A N/A
Baseline 90.1±0.9 0.53±0.00 0.97±0.00 53.0±2.6 0.56±0.02 0.80±0.01
SampleLλ0 90.1±1.1 0.26±0.00 0.97±0.01 54.8±2.9 0.23±0.02 0.79±0.01
SampleLλ0.5 89.2±1.1 0.53±0.00 0.97±0.01 53.9±4.5 0.55±0.02 0.77±0.01
ArgmaxL 90.6±0.9 0.53±0.00 0.97±0.00 56.6±2.5 0.53±0.02 0.79±0.01
RSA_2rnd 91.9±0.9 0.53±0.00 0.95±0.00 55.9±1.9 0.54±0.01 0.66±0.05
IBR_2rnd 95.5±0.6 0.51±0.00 0.96±0.01 80.6±2.8 0.43±0.02 0.78±0.01
RSA_cnvg 93.1±0.8 0.53±0.00 0.95±0.01 62.0±2.1 0.54±0.01 0.67±0.05
IBR_cnvg 95.6±0.5 0.51±0.00 0.96±0.01 80.6±2.8 0.43±0.02 0.78±0.01
GameTable 94.9±0.6 0.51±0.00 0.95±0.00 74.6±2.0 0.47±0.01 0.72±0.03
GameTable-s 98.8±0.1 0.49±0.00 0.93±0.01 94.0±0.6 0.36±0.01 0.68±0.03

hard to disambiguate and cause most of the false predictions of the baseline. To show how pragmatic
models help in such cases, in addition to the original overall test set, we separately pay attention to a
challenging subset of around 200 instances, where the candidate’s colors are the same or similar. We
run the overall test set and the challenging set for 5 epochs each for every kind of pragmatic model
and record the accuracy metrics in Table 1. We also care about the consistency of the pragmatic
actions with the long-term priors, assessed by computing prior probabilities of speaker messages and
listener choices for the instances with successful communication, recording them as the SP and LP
values in Table 1. All the pragmatic models involve generating message proposal sets for objects.
We take the highest probability messages that sum up to 75% and filter out the trivial long tail ones.
On AWS t3.xlarge (4 CPU 16G Memory), the training takes about 1 day and the total time to test all
methods takes about 1 hour.

4.2 Results

Baselines. Given the results in Table 1, an initial observation is that our baseline communication
accuracy exceeds that of Lazaridou et al. (2018). This may stem from our use of pretrained CNNs,
while the original paper trained them during the long-term game. While this baseline language system
approaches the limit of training performance, on the challenging disambiguation test set, however,
the baseline accuracy drops to nearly 50%, indicating that similarly colored candidates cannot be
distinguished using literal language meanings. This is similar to ambiguity issues in natural language
(de Melo et al., 2012; Li et al., 2017), including also scalar implicatures.

One-sided pragmatics. One-sided pragmatics models are also regarded as benchmarks. The
SampleL results suggest that one-sided pragmatics models succeed when the speaker considers
the listener’s model carefully enough. However, the improvements in communication accuracy are
not substantial. For SampleL with λ = 0, the improvement is moreover achieved at the cost of
significantly violating the speaker’s prior beliefs. We conjecture that when the candidates are similar,
their proposed messages are similar, and the listener generates similar PL0(t|m) for each message.
Thus, few proposed messages ultimately lead to a major difference in the listener’s choice. In fact,
we found that the speaker sometimes sent useful new messages, but the listener was not sufficiently
sensitive to recognize them. This suggests that two-sided models may be favorable.

RSA and IBR. We considered hierarchy depths of 2 (S0−L0−S1−L1−S2) to model a human-like
bounded rationality, as well as unlimited depth hierarchies until strategy convergence to assess its
potential limits. Table 1 manifests that the 2-round IBR model reaches convergence. This suggests that
a human-like bounded rationality may be sufficient in this task scenario. RSA has a low performance,
which implies that for this game, deterministic rationality proves advantageous over probabilistic
decision making. According to Zaslavsky et al. (2020), while keeping β = 1, each recursion step k
amounts to maximizing αEc,m|c∼PSk

[logPLk
(c|m) + logPS0

(m|c)] +HPSk
(M |C). Here, the first

item is the expectation of speaker utilities (corresponding to Acc and SP) over the object candidates
and the speaker messages conditioned on them. The second item is the conditional entropy of the
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Table 2: Pragmatics communication accuracy using virtual interlocutors.

Virtual Opponent S-Fide L-Fide ArgmaxL RSA IBR GT GTs
Exact copy 100.0% 100.0% 56.6±2.5 62.0±2.1 80.6±2.8 74.6±2.0 94.0±0.6
Training 100k rnd 96.6% 97.0% 53.0±2.3 54.3±1.4 68.6±1.6 58.1±2.2 69.9±1.8

messages: a larger entropy means less precise messages. For RSA (α = 1), the first item has less
importance, so we obtain a low performance and the decisions are probabilistic. For larger α, the
performance improves and the decisions are deterministic. This may explain why IBR performs
better.

IBR and GameTable. IBR and GameTable are two ways to achieve an equilibrium state of mutual
conjectures. Hence, it is natural to find that they obtain similarly high accuracy on the overall test set.
For the challenge test set, IBR has a better accuracy than GameTable, but a lower speaker payoff. The
reason is that the IBR speaker and listener always set their strategies as the best response according
to each other, so the amount of irrational choices is minimized. In comparison, GameTable is not
guaranteed to have a Pareto optimal equilibrium, leading to a slightly lower accuracy. At the same
time, the communication success and the consistency with the prior beliefs are explicitly specified in
GameTable’s payoffs, so if there is a Pareto equilibrium, then both are guaranteed. In contrast, the
iterated calculations in IBR sometimes diverge from the initial priors, considering that best responses
are a form of non-linear transformation. Some potentially optimal actions are set directly to zero in
initial rounds because they are not the best choice at that time.

GameTable-sequential. Among all the frameworks, GameTable-sequential always obtains the
highest accuracy. Since agents cannot find a Pareto solution to handle all scenarios, they decide to
prefer communication success while sacrificing consistency. The game is then less about achieving a
Gricean conversation and more about just achieving a consensus, so we observe a low speaker payoff.
Thus, GameTable-sequential serves as an upper bound for pragmatic communication accuracy under
the short-term game assumptions.

4.3 Robustness for Virtual Opponent Models

In classic pragmatic frameworks, it is often assumed that interlocutors know about each other very
well. For example, the prior probabilites PS0 and PL0 are considered shared knowledge. However, in
practice, game information may be incomplete and one’s assumptions about the other interlocutor
may diverge from reality. Each person learns their own language model and reasons about others
based on their own mental model. To check how this affects pragmatics, we assume agents S and L
first respectively learn to speak and listen as before, so we obtain PS0

and PL0
, S has its own listener

model PL′
0

and L has its own speaker model PS′
0
. We then train PS′

0
and PL′

0
by communicating with

and simulating outputs of PS0 and PL0 regarding game instances. In the end, PS′
0

is similar to PS0

but not exactly the same, and similarly for the listener model. This amounts to policy reconstruction
methods from the perspective of theory of mind and opponent modeling. During testing, S and L try
to communicate using pragmatic frameworks, each using their own model as the virtual interlocutor
model. The results for this are given in Table 2. “Fide" here describes the average fidelity when a
virtual model simulates the real one, which is computed as the cosine similarity between the output
distributions of the models on the same input. We observe that although the fidelities are fairly high
after training, their minor differences substantially hamper the pragmatic performance. GameTable is
most susceptible to this, while IBR and GameTable-sequential are fairly robust.

4.4 Language Inspection

Table 3 inspects the messages. For this, we traversed the test set and obtained all possible messages
and their significant corresponding target features (color and location). After the long-term training,
the emergent language system reveals potential characteristics of compositionality. Table 3 shows
that the first two digits (prefixes) of the messages principally relate to color, as well as occasionally
some location information. The third digits (suffixes) reveal key location information. Here, a plain
font represents mappings found using the baseline framework, while bold font represents the new
mappings found using the game-theoretic pragmatic framework, in which some location and color
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Table 3: Illustration of the main lexicons that occurred. Baseline lexicons in plain font. New lexicons
from GameTable-sequential in bold font. The backgrounds are removed to make images overlap
better.

okccc okdcc okncc dkccc dkhcc dodcc dcccc dnhcc dnccc nidcc niccc nkccc nkicc

features become distinguishable, thus aiding in the more challenging disambiguation tasks. For
example, after baseline training, almost all yellow and white targets are expressed by the speaker as
okccc. After the pragmatics computation, it expresses some white targets as okdcc and some right
hand side yellow objects as okncc. In essence, these new messages and their unique meanings are
explored and trained during the long-term training phase. However, they provide little benefit when
using the baseline or one-sided framework. Only the two-sided frameworks are able to discover the
feasibility of exploiting these potential messages.

5 Case Study: Pragmatics between StarCraft II Allies

For further analysis, we consider an additional setting based on the StarCraft game series. StarCraft
unit micromanagement involves fine-grained control of individual units and their communication
has recently attracted substantial research interest due to its high degree of control complexity and
environmental stochasticity. A recent work called NDQ (Wang et al., 2019b) provides a framework for
centralized training with decentralized execution for allies in StarCraft II games2. Each ally agent is
modelled by a deep recurrent Q-network (DRQN), which takes in its local observation–action history
and emits action–value pairs at each time step. Since the battle result serves as global feedback for all
allies, NDQ trains a mixer network and assigns appropriate credit for each ally at the training phase.
A unique aspect of this work is that agents also learn to communicate with each other using succinct
and expressive messages. During the training process, agents gradually learn to drop messages that
cannot reduce the uncertainty in the decision-making process of other agents.

In NDQ, at time step t, agent i encodes its action–observation history τ ti as a real-valued embedding
f(τ ti ). To send it to others, the agent samples a raw message sr(f) ∼ N (f, σI). The agent then
drops useless bits in the raw message to form a succinct message s(f). The process of generating
s(f) from τ can be regarded as the speaker process. Specifically, NDQ uses specially designed
loss functions to force useless bits to be near the origin of the message encoding space, so that the
distance from the origin is used as the dropping standard deciding which bits cannot reduce the
uncertainty of decisions of other agents. In the listener process, other agents directly receive the
trimmed message and feed it into their DRQNs. In our work, we attempt to use pragmatics to further
improve the message succinctness and resist message drop. We notice that f(τ ti ) usually does not
deviate substantially from f(τ t−1i ), so it is reasonable to assume f(τ ti ) ∼ N (f(τ t−1i ), I). Moreover,
the initial configurations in all episodes are similar in a StarCraft Multi-Agent Challenge map, so
f(τ0i ) ∼ N (µi, I), where µi represents the average embedding value of agent i at time 0. This kind
of prior distribution amounts to the limited candidate set in short-term referential game settings, and
we can adjust both sides, i.e., the speaker and listener strategies, based on the following principles.

(1) If there is no message drop, the listener l should reconstruct f from s, so ∀f, l(s(f)) = f , which
is a requirement for both the speaker and the listener. (2) To better resist message drop, the speaker
should seek to reduce the amount of information of s(f) and the expected loss of element values
within it, which motivates minimizing−H(s(f))+

∫
f
p(f)||s(f)||1 df . Note for each pair of speaker

and listener strategy, linear scaling of the message values yields an infinite number of equivalent

2We use the setup introduced by Samvelyan et al. (2019). We consider combat scenarios where the enemy
units are controlled by StarCraft II’s built-in AI (at difficulty level 7), and each of the ally units is controlled by a
learning agent. At each time step, each agent chooses one action from a discrete action space consisting of the
following actions: noop, move[direction], attack[enemy_id], and stop. Under the control of these actions,
agents move and attack in a continuous state space. A global reward that is equal to the total damage dealt on the
enemy units is given at each timestep. Killing each enemy unit and winning a combat entail extra bonuses of 10
and 200, respectively.
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Figure 3: StarCraft II resistance against message dropping. Tested on the SC2 map 1o2r_vs_4r,
featuring 1 Overseer and 2 Roaches fight against 4 Reapers.

solutions, so we constrain det(cov(s(f))) to 1. Then it is easy to find an equilibrium solution
s(f) = f − E(f) and l(s(f)) = s(f) + E(f). This means s(f) is white Gaussian noise with the
largest entropy and smallest L1-norm given det(cov(s(f))) = 1. Note that in this game setting, we
focus on the improvement regarding succinctness brought by pragmatics, so the consistency with
prior language habits is not important. In addition, agents do not need to bother with equilibrium
selection, since they can easily agree using this simple pre-defined equilibrium. Our overall game
setting and the agent networks are exactly the same as in Wang et al. (2019b).

We ran 30 million training steps and update the model by sampling 8 episodes from a replay buffer in
each step. The training was conducted on an AWS g4dn.xlarge GPU (NVIDIA T4 Tensor Core GPU)
instance and took about 20 hours. For evaluation, we drop message bits randomly and average battle
win rates under different drop rates over 100 random seeds. 16 episodes are tested for each seed. In
Figure 3, we present the performance comparison on map 1o2r_vs_4r, along with 95% confidence
intervals. We observe that, as the dropping rate increases, pragmatics shows its advantage. We also
obtain a form of division of labour. For example, at time step 0, the message (0,0,0) corresponds to
different pragmatic meanings for different agents.

6 Conclusion

This paper proposes novel computational models incorporating opponent-aware short-term pragmatics
reasoning into long-term emergent language systems, inspired by interdisciplinary work in multi-
agent reinforcement learning and computational linguistics. The experimental results suggest that
under our referential game settings, two-sided pragmatics models outperform one-sided ones by
finding ways to exploit the potential of the language to a greater extent. Empirically speaking,
IBR achieves significant communication accuracy with a practically viable procedure for humans,
where typically two-level reasoning is sufficient. This accords with the conclusions from cognitive
science, though IBR occasionally fails with sub-optimal actions. Our advanced game-theoretic model
provides new upper limits for communication accuracy, outperforming the classic model. We further
show that the model can be applied to communication between StarCraft II allies, allowing them to
communicate more efficiently and thereby mitigating the effects of message drop. Our novel model
shows robustness under challenging settings, opening up important paths for future research. Our
code is freely available online. 3

Broader Impact

This paper studies fundamental principles of communication, attempting to shed light on conditions
under which pragmatic reasoning can enable agents to communicate more efficiently in challenging
circumstances. Our interdisciplinary work draws novel connections between several distinct branches
of linguistics, as well as multi-agent reinforcement learning and game theory. We believe it is
important to develop models of agents endowed with communicative abilities that not only allow for
the long-term emergence of linguistic patterns but also incorporate interlocutor awareness (theory of
mind) and game theory. Recent work using language to achieve common objectives and cognitive
studies show that feedback is paramount for language learning (Zaïem and Bennequin, 2019). Thus,

3https://fringsoo.github.io/pragmatic_in2_emergent_papersite/
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these sorts of models could be important for studying how to go beyond regular data-driven training
of (neural) language models. In the long run, this sort of research has the potential to enable chatbots
or other forms of virtual personal assistants endowed with more empathy and better awareness of the
state of mind of the person they are interacting with. This might also allow them to better adapt to the
needs of underrepresented social groups and different personalities.
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