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Abstract

This paper proposes near-optimal algorithms for the pure-exploration linear bandit
problem in the fixed confidence and fixed budget settings. Leveraging ideas from
the theory of suprema of empirical processes, we provide an algorithm whose
sample complexity scales with the geometry of the instance and avoids an explicit
union bound over the number of arms. Unlike previous approaches which sample
based on minimizing a worst-case variance (e.g. G-optimal design), we define an
experimental design objective based on the Gaussian-width of the underlying arm
set. We provide a novel lower bound in terms of this objective that highlights its
fundamental role in the sample complexity. The sample complexity of our fixed
confidence algorithm matches this lower bound, and in addition is computationally
efficient for combinatorial classes, e.g. shortest-path, matchings and matroids,
where the arm sets can be exponentially large in the dimension. Finally, we propose
the first algorithm for linear bandits in the the fixed budget setting. Its guarantee
matches our lower bound up to logarithmic factors.

1 Introduction

The pure exploration stochastic multi-armed bandit (MAB) problem has received attention in recent
years because it offers a useful framework for designing algorithms for sequential experiments. In
this paper, we consider a very general formulation of the pure exploration MAB problem, namely,
pure exploration (transductive) linear bandits [12] : given a set of measurement vectors X ⊂ Rd, a
set of candidate items Z ⊂ Rd, and an unknown parameter vector θ ∈ Rd, an agent plays a sequential
game where at each round she chooses a measurement vector x ∈ X and observes a stochastic
random variable whose expected value is x>θ. The goal is to identify z∗ ∈ arg maxz∈Z z

>θ. This
problem generalizes many well-studied problems in the literature including best arm identification
[11, 21, 23, 25, 6], Top-K arm identification [22, 28, 9], the thresholding bandit problem [27],
combinatorial bandits [10, 13, 8, 5, 20], and linear bandits where X = Z [30, 33, 31].

The recent work of [12] proposed an algorithm that is within a log(|Z|) multiplicative factor of
previously known lower bounds [30] on the sample complexity. This term reflects a naive union
bound over all informative directions {z∗ − z : z ∈ Z \ {z∗}}. Although one might be inclined to
dismiss log(|Z|) as a small factor, in many practical problems it can be extremely large. For example,
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in Top-K log(|Z|) = Θ(k log(d)) which would introduce an additional factor of k that does not
appear in the upper bounds of specialized algorithms for this class [22, 8, 25]. As another example, if
Z consists of many vectors pointing in nearly the same direction, log(|Z|) can be arbitrarily large,
while we show that the true sample complexity does not depend on log(|Z|). Finally, in many
applications of linear bandits such as content recommendation |Z| can be enormous and thus the
factor log(|Z|) can have a dramatic effect on the sample complexity.

The high-level goal of this paper is to study how the geometry of the measurement vectors X and
the candidate items Z influences the sample complexity of the pure exploration transductive linear
bandit problem in the moderate confidence regime. We appeal to the fundamental TIS-inequality [19]
which describes the deviation of the suprema of a Gaussian process from its expectation, leading us to
propose an experimental design based on minimizing the expected suprema. We make the following
contributions. First, we show a novel lower bound for the non-interactive oracle MLE algorithm,
which devises a fixed sampling scheme using knowledge of θ. While this non-interacting lower bound
is not a lower bound for adaptive algorithms, it is suggestive of what union bounds are necessary
and can be a multiplicative dimension factor larger than known adaptive lower bounds. Second, we
develop a new algorithm for the fixed confidence setting (defined below) that nearly matches the
performance of this oracle algorithm. Moreover, this algorithm recovers many of the state-of-the-art
sample complexity results for combinatorial bandits as special cases. Third, applied specifically to
the combinatorial bandit setting, we develop a practical and computationally efficient algorithm. We
include experiments that show that our algorithm outperforms existing algorithms, often by an order
of magnitude. Finally, we show that our techniques extend to the fixed budget setting where we
provide the first fixed budget algorithm for transductive linear bandits. This algorithm matches the
lower bound up to a factor that in most standard settings is bounded by log(d).

2 Preliminaries

In the (transductive) linear bandit problem, the agent is given a set X ⊂ Rd and a set of items
Z ⊂ Rd. At each round t, an algorithm A selects a measurement Xt ∈ X which is measurable with
respect to the history Ft−1 = (Xs, Ys)s<t and observes a noisy observation Yt = X>t θ + η where
θ ∈ Rd is the unknown model parameter and η is independent mean-0 Gaussian noise1. We assume
that argmaxz∈Zz

>θ = {z∗}, and the goal is to identify z∗. We consider two distinct settings.

Definition 1. Fixed-Confidence: Fix X ,Z,Θ ⊂ Rd. An algorithm A is δ-PAC for (X ,Z,Θ) if 1)
the algorithm has a stopping time τ wrt (Ft)t∈N and 2) at time τ it makes a recommendation ẑ ∈ Z
and for all θ ∈ Θ it satisfies Pθ(ẑ = z∗) ≥ 1− δ.

Definition 2. Fixed-Budget: Fix X ,Z,Θ ⊂ Rd and a budget T . An algorithm A for fixed-budget
returns a recommendation ẑ ∈ Z after T rounds.

Linear bandits is popular for applications such as content recommendation, digital advertisements, and
A/B testing. For instance, in content recommendation X = Z ⊂ Rd may be sets of feature vectors
describing songs (e.g., beats per minute, genre, etc.) and θ ∈ Rd may represent an individual user’s
preferences over the song library. An important sub-class of linear bandits is known as combinatorial
bandits which is a focus of this work.

Combinatorial Bandits: In the combinatorial bandit setting, X = {e1, . . . , ed} (where ei is the
i-th canonical basis vector) and Z ⊂ {0, 1}d. We will sometimes overload notation by treating Z as
a collection of sets, e.g., for z ∈ Z writing i ∈ z iff e>i z = 1. We next give some examples of the
combinatorial bandit setting.
Example 1 (MATROID). M = (S, I) is a matroid where S is a set of ground elements and I ⊂ 2S is
a collection of independent sets. This setting includes best arm identification, Top-K arm identification,
identifying the minimum spanning tree with largest expected reward in a graph, and other important
applications (see [7] for a list of applications).

Example 2 (MATCHING). For a balanced bipartite graph with d edges and 2
√
d vertices let Z

denote the set of
√
d! perfect bipartite matchings. The goal is to identify the matching z ∈ Z that

maximizes θ>z.
1Our results still apply in the case where the noise is sub-Gaussian, but for simplicity here we assume that

the noise is Gaussian (see the Supplementary Material).
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In some of these settings, |Z| is exponential in the dimension d. For example, in the problem of
finding a best matching in a bipartite graph, |Z| = (

√
d)!. In this setting a naive evaluation of

argmaxz∈Zz
>θ by enumerating Z becomes impossible even if θ were known. For such problems,

we assume access to a linear maximization oracle

ORACLE(w) = arg max
z∈Z

z>w, (1)

which is available in many cases, including matroids, MATCHING, and identifying a shortest path in a
directed acyclic graph (DAG). We will characterize the computational complexity of an algorithm in
terms of the number of calls to the maximization oracle.

3 Review of Gaussian Processes

We now discuss how our work departs from previous approaches to the pure exploration linear
bandit problem. Consider for a moment a fixed design where n ≥ d measurements x1, . . . , xn were
decided before observing any data, and subsequently for each 1 ≤ i ≤ n we observe yi = x>i θ + ηi
with ηi ∼ N (0, 1). In this setting the maximum likelihood estimator (MLE) is given by ordinary
least squares as θ̂ = (

∑n
i=1 xix

>
i )−1

∑n
i=1 yixi. Substituting the value of yi into this expression,

we obtain θ̂ = θ +
(∑n

i=1 xix
>
i

)−1/2
η in distribution where η ∼ N (0, Id). After collecting

{(xi, yi)}ni=1 and computing θ̂, the most reasonable estimate for z∗ = arg maxz∈Zz>θ is just
ẑ = arg maxz∈Zz>θ̂. The good event that ẑ = z∗ occurs if and only if (z∗ − z)>θ̂ > 0 for
all z ∈ Z \ {z∗}. Since θ̂ is a Gaussian random vector, for each z ∈ Z , (z∗ − z)>(θ̂ − θ) ∼
N (0, (z∗ − z)>

(∑n
i=1 xix

>
i

)−1
(z∗ − z)). If we apply a standard sub-Gaussian tail-bound with a

union bound over all z ∈ Z \ {z∗}, then we have with probability greater than 1− δ that

(z∗ − z)>θ̂ ≥ (z∗ − z)>θ −
√

2‖z∗ − z‖2A−1 log(|Z|/δ) (2)

for all z ∈ Z \ {z∗} simultaneously, where we have taken A =
∑n
i=1 xix

>
i and used the notation

‖x‖2W = x>Wx for any square W . Thus, we conclude that if n and {x1, . . . , xn} are chosen such

that maxz∈Z
2‖z∗−z‖2

(
∑n
i=1

xix
>
i

)−1 log(|Z|/δ)

((z∗−z)>θ)2 > 1 then with probability at least 1− δ we will have that

(z∗ − z)>θ̂ > 0 for all z ∈ Z \ {z∗} and consequently, ẑ = z∗. This simple argument is the core of
all approaches to pure exploration linear bandits until this paper [30, 23, 33, 12]. However, applying
a naive union bound over all z ∈ Z can be extremely weak and does not exploit the geometry of Z
that induces many correlations among the random variables (z∗ − z)>(θ̂ − θ).

At the heart of our approach is the following concentration inequality for the suprema of a Gaussian
process (Theorem 5.8 in [2]).
Theorem 1 (Tsirelson-Ibragimov-Sudakov Inequality [19]). Let S ⊂ Rd be bounded. Let (Vs)s∈S
be a Gaussian process such that E[Vs] = 0 for all s ∈ S. Define σ2 = sups∈S E[V 2

s ]. Then, for all
u > 0,

P(| sup
s∈S

Vs − E sup
s∈S

Vs| ≥ u) ≤ 2 exp

(
−u2

2σ2

)
.

Setting S = Z , we can apply this to the Gaussian process Vz := (z∗ − z)>(θ̂ − θ) = (z∗ −
z)>(

∑n
i=1 xix

>
i )−1/2η where, again, η ∼ N (0, Id). We then have with probability at least 1− δ

(z∗ − z)>θ̂ ≥ (z∗ − z)>θ − Eη

[
sup

z∈Z\{z∗}
(z∗ − z)>A−1/2η

]
−
√

2 sup
z∈Z
‖z∗ − z‖2A−1 log( 1

δ )

for all z ∈ Z \ {z∗} simultaneously. This bound naturally breaks into two components. The second-
term is the high-probability term, and as the discussion above implies, naturally motivates the experi-
mental design objective minx1,···xn maxz∈Z\{z∗}‖z∗ − z‖2(∑n

i=1 xix
>
i )−1 from past works on linear-

bandit pure exploration. The first term, Eη∼N(0,Id)

[
supz∈Z\{z∗}(z∗ − z)

> (∑n
i=1 xix

>
i

)−1/2
η
]

is
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the Gaussian-width of the set {
(∑n

i=1 xix
>
i

)−1/2
(z∗ − z)}z∈Z\{z∗} [32]. This term represents the

penalty we pay for the union bound over the possible values of Z and reflects the underlying geometry
of our arm set. For moderately sized values of δ ∈ (0, 1) such as the science-stalwart δ = 0.05, the
Gaussian width term can be substantially larger than the high probability term. Analogous to above,
this motivates choosing x1, · · · , xn to minimize the Gaussian width term.

Relaxation to Continuous Experimental Designs. In practice, optimizing over all finite sets of
X of size n to minimize an experimental design objective is NP-hard. Define ∆ := {λ ∈ R|X | :∑
i λi = 1, λi ≥ 0} to be the simplex over elements X and define A(λ) =

∑
x∈X λxxx

> where
λ ∈∆ denotes a convex combination of the measurement vectors. Defining the design that minimizes
the high probability term motivates the definition

ρ∗ := inf
λ∈∆

ρ∗(λ) where ρ∗(λ) := sup
z∈Z\{z∗}

‖z∗ − z‖2A(λ)−1

(θ>(z∗ − z))2
.

On the other hand, minimizing the Gaussian width term motivates the definition

γ∗ := inf
λ∈∆

γ∗(λ) where γ∗(λ) := Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2.

While the above suggests the importance of the quantities ρ∗ and γ∗, we will show later how they are
intrinsic to the problem hardness. For now, we point out that these quantities are easily relatable.
Proposition 1. There exists universal constants c, c′ > 0 such that for any X and Z we have

cρ∗ − infz 6=z∗ infλ∈∆

‖z∗−z‖2A(λ)−1

(θ>(z∗−z))2 ≤ γ∗ ≤ min(c′ log(|Z|)ρ∗, dρ∗).

Typically, infz 6=z∗ infλ∈∆

‖z∗−z‖2A(λ)−1

(θ>(z∗−z))2 � ρ∗, in which case ρ∗ . γ∗. While there are instances
where γ∗ = Θ(dρ∗), the upper bound is not necessarily tight.
Proposition 2. There exists an instance of transductive linear bandits where γ∗ ≥ cdρ∗, and a
separate instance for which γ∗ ≤ c′ log(d)ρ∗ where c, c′ > 0 are universal constants.

4 Towards the true sample complexity

This section formally justifies the quantities ρ∗ and γ∗ defined above. The following result holds for
any X and Z and was first proven in this generality in [12], extending [30, 29, 8].
Theorem 2 (Lower bound for any adaptive algorithm [12]). For any δ ∈ (0, 1), any δ-PAC algorithm
wrt (X ,Z,Rd) with stopping time τ satisfies Eθ[τ ] ≥ log( 1

2.4δ )ρ∗.

Mirroring the approaches developed in [24, 8, 14], it is possible to develop an algorithm that satisfies
limδ→0

Eθ[τ ]

log( 1
δ )

= ρ∗, demonstrating the tightness of Theorem 2 in the regime of δ tending towards
0. However, for fixed δ ∈ (0, 1), algorithms for linear bandits to date have only been able to match
this lower bound up to additive factors of dρ∗ or log(|Z|)ρ∗ [24, 12] (note, this does not rule out
optimality as δ → 0). In particular, the lower and the upper bounds of linear bandits do not reflect
the underlying geometry of general sets X and Z in union bounds and are loose in general. For
example, in the well-studied case of Top-K, these bounds do not capture some additive factors that
are necessary and achievable in addition to ρ∗ alone [28, 9].

As a step towards characterizing the true sample complexity, we next demonstrate a lower bound that
incorporates the geometry of X and Z for, presumably, the best possible non-interactive algorithm.
Precisely, the procedure chooses an allocation {xI1 , xI2 , . . . } ∈ X , then observes {yI1 , yI2 , . . . } ∈ R
where yIt ∼ N (x>Itθ, 1), and finally forms the MLE θ̂ = arg minθ̃

∑
t(yIt − x>It θ̃)

2 and outputs
ẑ = arg maxz∈Z z

>θ̂. We emphasize that this procedure can pick any allocation; in particular, it can
use the allocation that achieves ρ∗.
Theorem 3 (Lower bound for non-interactive MLE). Fix X ,Z ⊂ Rd and a problem θ ∈ Rd.
Let δ ∈ (0, 0.015] and c > 0 be a universal constant. If the non-interactive MLE uses less than
c(γ∗ + log(1/δ)ρ∗) samples on the problem instance (X ,Z, θ), it makes a mistake with probability
at least δ.
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Input: Confidence level δ ∈ (0, 1), rounding parameter ε ∈ (0, 1) with default value of 1
10

;
Z1 ←− Z , k ←− 1, δk ←− δ/2k2 ;
B := infλ∈∆ Eη∼N(0,I)[maxz,z′∈Z(z − z′)>A(λ)−1/2η]2 + 2 log( 1

δ1
)maxz,z′∈Z ‖z − z′‖2A(λ)−1 ∨ 1;

while |Zk| > 1 do
Let λk and τk be the solution and value of the following optimization problem

inf
λ∈∆

τ(λ;Zk) := Eη∼N(0,I)[maxz,z′∈Zk (z−z′)>A(λ)−1/2η]2+2 log(
1

δk
)maxz,z′∈Zk

∥∥z − z′∥∥2

A(λ)−1

Set Nk ←−
⌈
2(1 + ε)τk( 2k+1

B
)2
⌉
∨ q(ε) and find {x1, . . . , xNk} ←− ROUND(λk, Nk, ε);

Pull arms x1, . . . , xNk and receive rewards y1, . . . , yNk ;
Let θ̂k ←− (

∑Nk
s=1 xsx

>
s )−1∑Nk

s=1 xsys ;
Zk+1 ←− Zk \ {z ∈ Zk : ∃z′ such that (z′ − z)>θ̂k − B

2k+1 ≥ 0};
k ←− k + 1

return Zk = {ẑ}.
Algorithm 1: Fixed Confidence Peace. See text for explanation of ROUND sub-routine.

By Proposition 2, γ∗ can be larger than ρ∗ by a multiplicative factor of the dimension d, demonstrating
that the lower bound of Theorem 3 can be much larger than the lower bound of Theorem 2. While
there exists problem instances in which the best known adaptive algorithm can achieve a sample
complexity strictly smaller than the lower bound of Theorem 3 (e.g., best-arm identification), we are
unaware of any settings in which the sample complexity of the best adaptive algorithm improves over
Theorem 3 by more than a factor of log(d), which is typically considered insignificant.

5 Fixed Confidence Setting Algorithms

In this section, we present Algorithm 1, Peace, that achieves the state-of-the-art sample complexity
for (transductive) linear bandits in the fixed confidence setting. In each round k we eliminate from
the set of candidates Z all the elements that are roughly 2−k suboptimal. In each round the query
allocation is fixed according to the best non-adaptive strategy.

Our algorithm must round a design to an integral solution. It uses an efficient rounding procedure
ROUND(λ,N, ε) that for λ ∈ ∆ and N ≥ q(ε) returns κ ∈ N|X | such that

∑
x∈X κx = N and

τ(κ;Z ′) ≤ (1+ε)τ(Nλ;Z ′) [1]. It suffices to take q(ε) = O(d/ε2) (see the Supplementary Material).
Define Sk := {z ∈ Z : θ>(z∗ − z) ≤ B2−k}, ∆z := θ>(z∗ − z), and ∆min := minz∈Z\{z∗}∆z .

Theorem 4. With probability at least 1− δ, Algorithm 1 terminates and returns z∗ after a number of
samples no more than

[γ∗ + ρ∗ log(log( B
∆min

)/δ)]cmin(log( B
∆min

), log( B
mink:|Sk|>1 minλ∈∆ τ(λ;Sk) )) + cd log( B

∆min
).

log(B) = O(log(d)) when X = Z and in combinatorial bandits, and B can be replaced by an upper
bound on maxz∈Z∆z when one is known. τ(λ;Zk) can be optimized using stochastic mirror descent;
we show that after a suitable transformation, it is convex in the combinatorial bandit setting. We
conjecture that it is convex in the general case, as well.

While our upper bound has an extra additive factor of d compared to the lower bound of Theorem 3,
this factor is necessary in many cases. The following theorem shows that in the combinatorial setting,
an additive factor of d is necessary if the agent has no apriori knowledge about θ.

Theorem 5. Consider the combinatorial setting where X = {e1, . . . , ed} and Z ⊂ {0, 1}d. Let
δ ∈ (0, 1/4). Fix θ ∈ Rd such that argmaxz∈Zz

>θ is unique. If an algorithm A is δ-PAC wrt
(X ,Z,Rd), then Eθ[

∑d
i=1 Ti] ≥

d
2 where Ti denotes the number of times that A pulls ei.

The intuition behind the argument in Theorem 9 is that if Ω(d) directions are not explored with
constant probability, then there is some θi that the algorithm has no information about with constant
probability. Thus, an adversary can perturb θi to alter the best z, making the agent incorrect with a
constant probability, which contradicts the δ-PAC assumption.
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5.1 Computationally Efficient Algorithm for Combinatorial Bandits

A drawback of Algorithm 1 is that it is computationally inefficient when |Z| is exponentially
large in the dimension. In this section, we develop an algorithm for combinatorial bandits that
is computationally efficient when the linear maximization oracle defined in (1) is available. We
introduce the following notation for a set Z ′ ⊂ Z:

γ(Z ′) := min
λ∈∆

E[ sup
z,z′∈Z′

(z − z′)>A−1/2(λ)η]2. (3)

We also introduce the subroutine UNIQUE(Z, θ̂k, 2−kΓ), which uses calls to the linear maximization
oracle to determine whether the gaps are sufficiently well-estimated to terminate (see the Supplemen-
tary Material).

Input: Confidence level δ > 0, rounding parameter ε ∈ (0, 1) with default value of 1
10

, α > 0 (α = 42941
suffices though this is wildly pessimistic; we recommend using α = 4) ;
θ̂0 = 0 ∈ Rd, Γ←− γ(Z) ∨ 1, δk ←− δ

2k3 ;
for k = 0, 1, 2, . . . do

z̃k ←− arg maxz∈Z θ̂
>
k z;

Let λk, τk be the solution and value of the following optimization problem

inf
λ∈∆

Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−kΓ + θ̂>k (z̃k − z)
]2 (4)

Set Nk ←− α dτk log(1/δk)(1 + ε)e ∨ q(ε) and find {x1, . . . , xNk} ←− ROUND(λk, Nk);
Pull arms x1, . . . , xNk and receive rewards y1, . . . , yNk ;
Let θ̂k+1 ←− (

∑Nk
s=1 xsx

>
s )−1∑Nk

s=1 xsys ;
if UNIQUE(Z, θ̂k, 2−kΓ) then return z̃k

Algorithm 2: Fixed Confidence Peace with a linear maximization oracle.

The objective (4) in Algorithm 2 acts a surrogate for γ∗ that becomes increasingly accurate over
the course of the game. Enough samples are taken at round k to ensure with high probability
θ̂>k (z̃k − z) ≈ ∆z for all z ∈ Z such that ∆z ≥ 2−kΓ. Thus, at round k, (4) behaves approximately

as Eη∼N(0,I)[maxz∈Z
(z∗−z)>A(λ)−1/2η

2−kΓ+∆z
]2. As such, (4) ensures that (i) Algorithm 2 does not take

too many sample at any round and (ii) enough samples are taken to estimate ∆z for each z ∈ Z at a
progressively finer level of granularity.

In the Supplementary Material, we provide procedures for computing γ(Z) and (4) only using calls to
the linear maximization oracle. The main challenge is to compute an unbiased estimate of the gradient
of the objective in (4) (for an appropriate first-order optimization procedure such as stochastic mirror
descent), which we now sketch. Since the expectation in (4) is non-negative, it suffices to optimize
the square root of the objective function in (4). Writing g(λ; η; z) = (z̃k−z)>A(λ)−1/2η

2−kΓ+θ̂>k (z̃k−z)
, since we

may exchange the gradient with respect to λ and the expectation over η, to obtain an unbiased
estimate, it suffices to draw η ∼ N(0, I), and compute∇λmaxz∈Zg(λ; η; z). Since for a collection
of differentiable functions {h1, . . . , hl}, a sub-gradient ∇ymaxihi(y) is simply ∇yh0(y) where
h0(y) = arg maxi hi(y), it suffices to find arg maxz∈Z g(λ; η; z). We reformulate this optimization
problem as the following equivalent linear program:

min
s
s subject to maxz∈Z(z̃k − z)>A(λ)−1/2η − s[2−kΓ + θ̂>k (z̃k − z)] ≤ 0 (5)

A call to the linear maximization oracle can check whether the constraint in (5) is satisfied so the
above linear program can be solved using binary search and multiple calls to the maximization oracle.

It would be ideal to also design a surrogate for ρ∗ that can be optimized using linear maximiza-
tion oracle calls in a similar way to (4). Unfortunately, the above technique appears to fail since

maxz∈Z
∥∥∥ (z̃k−z)

2−kΓ+θ̂>k (z̃k−z)

∥∥∥2

A(λ)−1
contains quadratic terms that cannot be optimized using linear

maximization oracle calls. Fortunately, leveraging properties of Gaussian width, we show that
optimizing (4) leads to only a small loss in sample complexity.
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Input: ε ∈ (0, 1) with default value of 1
10

, budget T such that T ≥ q(ε) dlog2(γ(Z))e ;
R←− dlog2(γ(Z))e, N ←− bT/Rc, Z0 ←− Z , k ←− 0;
while k ≤ R and |Zk| > 1 do

Let λk achieve the minimum in γ(Zk) and find {x1, . . . , xN} ←− ROUND(λk, N, ε);
Pull arms x1, . . . , xN and obtain rewards y1, . . . , yN ;
Set θ̂k ←− (

∑N
s=1 xsx

>
s )−1∑N

s=1 xsys ;

Compute an ordering πk over Zk such that
〈
θ̂k, zπk(i) − zπk(i+1)

〉
≥ 0 for all i ;

Let ik+1 be the largest integer for which γ({zπk(1), . . . , zπk(ik+1)}) ≤ γ(Zk)/2 ;
Zk+1 ←− {zπk(1), . . . , zπk(ik+1)};
k ←− k + 1;

return arg maxi∈Zk θ̂
>
k zi

Algorithm 3: Fixed Budget Peace

Theorem 6. Consider the combinatorial bandit setting. With probability at least 1− 4δ Algorithm 2
terminates and returns z∗ after at most

[(γ∗ + ρ∗) log(log(γ(Z)/∆min)/δ) + d]c log(γ(Z)/∆min)

samples and if δ ∈ ( 1
2d
, 1), then with probability at least 1− 4δ, the number of oracle calls is upper

bounded by

Õ([d+ log(
d[maxz∈Z∆z + Γ]

∆minδ
)] log(d)2 d3

∆2
min

log(γ(Z)/∆min)5

δ2
)

Theorem 6 nearly matches the sample complexity of Theorem 4. The latter scales like γ∗+ρ∗ log(1/δ)
whereas the former scales like (γ∗ + ρ∗) log(1/δ), reflecting a tradeoff of statistical efficiency for
computational efficiency. It is unknown if this tradeoff is necessary.

6 Fixed Budget Setting

Next, we turn to the fixed budget setting, where the goal is to minimize the probability of returning a
suboptimal item z ∈ Z\{z∗} given a budget of T total measurements. Algorithm 3 is a generalization
of the successive halving algorithm [23] and the first algorithm for fixed-budget linear bandits. It
divides the budget into equally sized epochs and progressively shrinks the set of candidates Zk. In
each epoch, it computes a design that minimizes γ(Zk) and samples according to a rounded solution.
At the end of an epoch, it sorts the remaining items in Zk by their estimated rewards and eliminates
enough of the items with the smallest estimated rewards to ensure that γ(Zk+1) ≤ γ(Zk)

2 .

Theorem 7. Suppose that γ({z, z∗}) ≥ 1 for all z ∈ Z \ {z∗}. Then, if T ≥ cmax([ρ∗ +
γ∗], d) log(γ(Z)), Algorithm 3 returns ẑ ∈ Z such that

P(ẑ 6= z∗) ≤ 2 dlog(γ(Z))e exp(− T

c′[ρ∗ + γ∗] log(γ(Z))
).

We note that the combinatorial bandit setting satisfies the assumption that γ({z, z∗}) ≥ 1 for all z ∈
Z \ {z∗}, but this lower bound is unessential and the algorithm can be modified to accommodate an-
other lower bound. Theorem 7 implies that if T ≥ O(log(1/δ)[ρ∗ + γ∗] log(γ(Z)) log(log(γ(Z)))),
then Algorithm 3 returns z∗ with probability at least 1− δ. Finally, log(γ(Z)) is O(log(d)) in many
cases, e.g., combinatorial bandits and in linear bandits when X = Z .

7 Discussion and Prior Art

Transductive Linear Bandits: There is a long line of work in pure-exploration linear bandits
[30, 33, 31] culminating in the formulation of the transductive linear bandit problem in [12] where
the authors developed the first algorithm to provably achieve ρ∗ log(|Z|/δ). The sample complexity
of Theorem 4, γ∗ + ρ∗ log(1/δ), is never worse than [12] since γ∗ ≤ ρ∗ log(|Z|) by Proposition 1.
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On the other hand, it is possible to come up with examples where γ∗ does not scale with |Z|, but
just ρ∗ (see experiments). While our algorithms work for arbitrary X ,Z ⊂ Rd, problem instances of
combinatorial bandits most clearly illustrate the advances of our new results over prior art.

Combinatorial Bandits: The pure exploration combinatorial bandit was introduced in [10], and
followed by [13]. These papers are within a log(d) factor of the lower bound for the setting where Z
is a matroid. If ∆̃i = θ>z∗ −maxz∈Z:i∈zθ

>z when i 6∈ z∗ and θ>z∗ −maxz∈Z:i 6∈zθ
>z otherwise,

then a lower bound is known to scale as
∑d
i=1 ∆̃−2

i log(1/δ). The following result shows that γ∗ is
within log(d) of the lower bound, implying that our sample complexity scales as

∑d
i=1 ∆̃−2

i log(d/δ).
Proposition 3. Consider the combinatorial bandit setting and suppose that Z is a matroid. Then,
γ∗ ≤ c log(d)

∑d
i=1 ∆̃−2

i for some absolute constant c.

However, in the general setting where Z is not necessarily a matroid, [8] points out a class with
|Z| = 2 where the sample complexity of [10, 13] is loose by a multiplicative factor of d. Chen et al.
[8] was the first to provide a lower bound equivalent to ρ∗ log(1/δ) for the general combinatorial
bandit problem, as well as an upper bound of ρ∗ log(|Z|/δ). However, as stressed in the current
work, the log(|Z|) term is not necessary in many scenarios; for example, in Top-K, ρ∗ log(|Z|) is
larger than the best achievable sample complexity by a multiplicative factor of k [9, 28]. This is
not in contradiction with the lower bound provided in Theorem 1.9 of [8] which provides a specific
worst-case class of instances where the log(|Z|) is needed.

The next technological leap in combinatorial bandits is the algorithm of [5] (and the follow-up [20]).
They provided an algorithm with a novel sample complexity that replaces log(|Z|) with a more
geometrically inspired term. Define the sphere B(z, r) = {z′ ∈ Z : ‖z − z′‖2 = r}, and the

complexity parameter ϕi := maxz∈Z\{z∗}:i∈z∗∆z
‖z−z′‖2

2
log(d|B(z∗,‖z−z′‖

2
)|)

∆2
z

. Then [5] provide a
sample complexity scaling like ϕ∗ :=

∑n
i=1 ϕi. The following shows that γ∗ is never more than

log log(d) larger than this complexity.
Proposition 4. Consider the combinatorial bandit setting. Then, γ∗ ≤ O(ϕ∗ log(log(d))).

However, for even these sample complexity results that take the geometry into account, there exist
clear examples of looseness that our approach avoids.
Proposition 5. There exists an instance of Top-K where ϕ∗ = Ω(k log(d)ρ∗) but γ∗ = O(log(d)ρ∗).

In summary, we have the first algorithm with a sample complexity that simultaneously is nearly
optimal for matroids, essentially matches our novel lower bound γ∗ + log(1/δ)ρ∗ ≤ log(|Z|/δ)ρ∗,
and is never worse than the sample complexity ϕ∗ from [5, 20].

Computational Results in Combinatorial Bandits: The algorithm CLUCB from [10] is compu-
tationally efficient and user-friendly. [5] and [8] provide computationally efficient algorithms, but
their running times scale very poorly with problem-dependent parameters, making these algorithms
impractical and we are unaware of any implementations.

8 Experiments

Combinatorial Bandits: We use δ = 0.05 on all the experiments and the empirical probability of
failure never exceeded δ in all of our experiments. We consider three combinatorial structures. (i)
Matching: we use a balanced complete bipartite graph G = (U ∪ V,E) where |U | = |V | = 14. Note
that |Z| = 14! ≥ 8 · 1010. We took two disjoint matchings M1 and M2 and set θe = 1 if e ∈ M1

and θe = 1 − h if e ∈ M2 for h ∈ {.15, .1, .05, .025}. Otherwise, θe = 0. (ii) Shortest Path: we
consider a DAG where a source leads into two disjoint feed-forward networks with 26 width-2 layers
that then lead into a sink (see Figure 2 for an illustration). Note that |Z| ≥ 108. We consider two
paths P1 and P2 such that they are in the disjoint feed-forward networks. We set θe = 1 if e ∈ P1

and θe = 1− h if e ∈ P2 for h ∈ {.2, .15, .1, .05}. Otherwise, θe = −1.

(iii) Biclique: In the biclique problem, we are given a complete balanced bipartite graph with
√
d

nodes in each group. Z is the set of bicliques with
√
s nodes from each group in the bipartite

graph. This problem is NP-hard, so there is no linear maximization oracle, and therefore, we
consider a small instance where

√
d = 8 and

√
s = 2. We pick two random non-overlapping
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Figure 1: In row 1, panels (i) and (ii) depict the relative performance of CLUCB and UA to PEACE,
and panel (iii) depicts the relative performance of CLUCB, DisRegion, and UA to PEACE. In row 2,
Panel (i) compares uniform sampling and FBPeace in the fixed budget setting, and panel (ii) compares
the performance of RAGE to Peace on the linear bandits experiment.

bicliques and let B1 and B2 denote the set of their respective edges. If e ∈ B1, we set θe =
1, and if e ∈ B2, we set θe = 1 − h for h ∈ {.1, .8, .6, .4, .2}. Otherwise, we set θe = 0.

Figure 2: Shortest Path Problem

As discussed in the related work, all of the algorithms in the literature
are either inefficient or have burdensome running times, with the
sole exception being CLUCB from [10]. Therefore, for the shortest
path and matching experiments, we compare Algorithm 2 against a
uniform allocation strategy (UA) and CLUCB. The biclique instance
is small enough that Z can be enumerated, so we also compare
against Algorithm 4 from [5] (denoted DisRegion), which achieves
the best sample complexity result from that paper.

The first row of panels in Figure 1 depicts the ratio of the average performance of the competing
algorithms to the average performance of our algorithm. In the matching experiment, as the gap
between the best matching M1 and the second best matching M2 get smaller, CLUCB pays a cost
of roughly |U |/h2 to distinguish M1 from M2 whereas our algorithm pays a cost of roughly 1/h2.
A similar phenomenon occurs in the shortest path problem. In the biclique experiment, as the gap
between the best biclique and the second best biclique decreases, the performance of the competing
algorithms degrades relative to Peace. For example, for large h, Peace and DisRegion have similar
performace but for h = .2, DisRegion requires more than 3 times as many samples as Peace.

Multivariate Testing We consider multivariate testing [16, 15] in which there are d options, each
having k possible levels. For example, consider determining the optimal content for a display-ad with
slots such as headline, body, etc. and each slot has several variations. A layout is specified by a d-tuple
f = (f1, · · · , fd) ∈ {1, · · · , k}d indicating the level chosen for each option. For each option I , 1 ≤
I ≤ d and level f , 1 ≤ f ≤ k, there is a weightW I

f ∈ R, and for each pair of options I, J and factors
fI , fJ , there is a weight W I,J

fI ,fJ
∈ R capturing linear and quadratic interaction terms respectively.

The total reward of a layout f = (f1, · · · , fd) is given by W0 +
∑d
I=1W

I
fI

+
∑d
I=1

∑d
J=1W

I,J
fI ,fJ

.
The fixed budget experiment in Figure 1 considers a scenario when k = 6 and d = 3 and compares
Algorithm 3 (FBPeace) to uniform sampling. We set W 1,2

1,1 = .8 and W 2,3
1,1 = .1 and all other weights

to zero, capturing a setting where the three options must be synchronized. At 10000 samples, FBPeace
is 30% more likely to return the true optimal layout.

Linear Bandits. We considered a setting in R2, where X = {e1, cos(3π/4)e1 + sin(3π/4)e2} and
Z = {cos(π/4+φi)e1 +sin(π/4+φi)e2}ni=1 where φi ∼ Uniform([0, .05]). The parameter vector
is fixed at θ = e1. In Figure 1 we see that as the number of arms increases (from 103 to 106), the
number of samples by our algorithms is constant, yet grows linearly in log(|Z|) for RAGE [12]. This
reflects the main goal of the paper - optimal union bounding for large classes.
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Broader Impact

In this paper, we developed adaptive learning algorithms for linear and combinatorial settings. These
algorithms hold the promise of decreasing the amount of data that is required to make discoveries.
Given the generic nature of these algorithms, it is possible that practitioners will apply these algorithms
towards goals that are ultimately harmful for society. However, we believe that our algorithms also
hold significant promise to benefit society. By making the learning process more data-efficient, we
are optimistic that our algorithms can be applied to accelerate drug discovery, as well as the rate of
scientific discovery in a wide range of fields ranging from biology to the social sciences. Our belief is
that the potential benefits outweigh the potential negative consequences.
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A Outline and Notation

Section B gives the proof of Theorem 3. Section C presents proofs of the two results for the fixed
confidence setting. Section D proves provides the main results on the computational efficiency of
Algorithm 2. Section E provides the proof of our upper bound for the fixed budget setting. Section F
proves various results related to γ∗. Section G gives additional lower bounds for the transductive
linear bandit problem. Section H provides a discussion of rounding. Section I presents technical
lemmas. Section J discusses the convexity of γ∗. Section K discusses the sample complexity results
of other papers. Section M gives further details on the experiments.

For the combinatorial bandit setting, we assume wlog that for all i ∈ [d] there exist z, z′ ∈ Z such
that i ∈ z and i 6∈ z′. We will sometimes write z∩z′ to denote (z1 ·z′1, . . . , zd ·z′d)>. In a similar way,
we will use z∆z′ to denote the symmetric difference of z and z′, viewed as sets. We use c, c′, · · · to
denote positive universal constants whose values may change from line to line.

B Proof of Theorem 3

Proof of Theorem 3. For simplicity, we suppose that Z is finite; the extension is straightforward by
taking an ε of room. Define ∆z = θ>(z∗ − z). Let X = {x1, . . . , xm}. Fix {xI1 , . . . , xIT } ⊂ X to
be the measurement vectors pulled by the algorithm. Define the matrix

X =

x
>
I1
...
x>IT



Define θ̂ = (X>X)−1X>Y .

Let λ ∈∆ be the associated allocation: λi = 1
T

∑T
s=1 1{Is = i}. Note that

Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>(X>X)−1/2η

∆z
] =

1√
T
Eη∼N(0,I)[ sup

z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

∆z
]

and

sup
z∈Z\{z∗}

‖z∗ − z‖(X>X)−1

∆z
=

1√
T

sup
z∈Z\{z∗}

‖z∗ − z‖A(λ)−1

∆z
.

Recall

ρ∗(λ) := sup
z∈Z\{z∗}

‖z∗ − z‖2A(λ)−1

∆2
z

.

γ∗(λ) := Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

∆z
]2.

Case 1: T ≤ 1
2ρ
∗(λ) log(1/δ). First, suppose that T ≤ 1

2 log(1/δ)ρ∗(λ). By definition of ρ∗(λ),
there exists z̄ ∈ Z \ {z∗} such that

‖z∗ − z̄‖2A(λ)−1

∆2
z̄

= ρ∗(λ).

Note that

(z̄ − z∗)>(θ̂ − θ)
∆z̄

=
(z̄ − z∗)>A(Tλ)−1/2η

∆z̄
∼ N(0,

‖z∗ − z̄‖2A(Tλ)−1

∆2
z̄

) (6)

and by assumption

V(
(z̄ − z∗)>(θ̂ − θ)

∆z̄
) ≥ ρ∗(λ)

T
≥ 2

log(1/δ)
. (7)
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By Proposition 2.1.2 of [32], we have that if g ∼ N(0, σ2), then

P(g/σ ≥ t) ≥ (
1

t
− 1

t3
)

1√
2π
e−t

2/2.

Let ḡ ∼ N(0, 2
log(1/δ) ). Therefore, using (7),

P(
(z̄ − z∗)>(θ̂ − θ)

∆z̄
>
√

2) ≥ P(ḡ >
√

2)

≥ (
1√

log(1/δ)
− 1√

log(1/δ)
3 )

1√
2π
δ1/2

≥ δ.
where the last inequality follows since δ ∈ (0, 0.015] and inspecting the graph of the functions. Thus,
with probability at least δ, we have

(z̄ − z∗)>(θ̂ − θ)
∆z̄

>
√

2,

which implies that

(z̄ − z∗)>θ̂ > 0,

in which case the algorithm makes a mistake. Thus, we may suppose for the remainder of the proof
that T > 1

2 log(1/δ)ρ∗(λ).

Case 2: T > 1
2 log(1/δ)ρ∗(λ). Next, suppose

T ≤ 1

4
Eη∼N(0,I)[ sup

z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2. (8)

Note that θ̂ ∼ N(θ, (X>X)−1) so that

E sup
z∈Z\{z∗}

(z − z∗)>(θ̂ − θ)
∆z

= Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z − z∗)>(X>X)−1/2η

∆z
]

= Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>(X>X)−1/2η

∆z
]

where we used the fact that (z∗ − z)>(X>X)−1/2η and (z − z∗)
>(X>X)−1/2η are equal in

distribution.

By Theorem 5.8 in [2], with probability at least 1− e−1/2,

Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>(X>X)−1/2η

∆z
]− sup

z∈Z\{z∗}

(z − z∗)>(θ̂ − θ)
∆z

≤ sup
z∈Z\{z∗}

‖z∗ − z‖(X>X)−1

∆z

Towards a contradiction, suppose that inequality (8) does not hold. Then, with probability at least
1− e−1/2 we have

sup
z∈Z

(z − z∗)>(θ̂ − θ)
∆z

≥ Eη∼N(0,I)[ sup
z∈Z\{z∗}

(z∗ − z)>(X>X)−1/2η

∆z
]− sup

z∈Z\{z∗}

‖z∗ − z‖(X>X)−1

∆z

=
1√
T
Eη∼N(0,I)[ sup

z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

∆z
]− 1√

T
sup

z∈Z\{z∗}

‖z∗ − z‖A(λ)−1

∆z

≥ 1√
T
Eη∼N(0,I)[ sup

z∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

∆z
]− 1 (9)

> 1 (10)
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where inequality (9) follows from T > 1
2 log(1/δ)ρ∗(λ) ≥ ρ∗(λ) since δ ∈ (0, 0.015] and inequality

(10) follows from the inequality (8). Rearranging the above inequality, if (8) holds, then there exists
a z ∈ Z \ {z∗} such that

(z − z∗)>θ̂ > 0.

Combining the two cases imply that

T ≥ c[ρ∗(λ) + γ∗(λ)] ≥ c[ρ∗ + γ∗].

C Fixed Confidence Upper Bound Proofs

C.1 Peace Algorithm Proofs

Proof of Theorem 4. Step 1: Define a good event. Define δk = δ
k2 . Let x1, . . . , xNk denote the

pulled measurement vectors in round k. By Theorem 5.8 in [2], with probability at least 1− δ
k2

sup
z,z′∈Zk

|(z − z′)>(θ̂k − θ)|

≤ E[ sup
z,z′∈Zk

(z − z′)>(θ̂k − θ)] +
√

2 log(2k2/δ)maxz,z′∈Zk ‖z − z′‖
2

(
∑Nk
i=1 xix

>
i )−1

= Eη∼N(0,I)[ sup
z,z′∈Zk

(z − z′)>(

Nk∑
i=1

xix
>
i )−1/2η] +

√
2 log(2k2/δ)maxz,z′∈Zk ‖z − z′‖

2

(
∑Nk
i=1 xix

>
i )−1

≤

√
(1 + ε)

Nk

(
Eη∼N(0,I)[ sup

z,z′∈Zk
(z − z′)>A(λk)−1/2η]

+
√

2 log(2k2/δ)maxz,z′∈Zk ‖z − z′‖
2
A(λk)−1

)
(11)

≤

√
2(1 + ε)τk

Nk
(12)

where inequality (11) follows by the guarantee on the the rounding subroutine ROUND and Lemma
11, and the line (12) uses

√
a+
√
b ≤
√

2a+ 2b and the definition of τk. Define the events

Ek = { sup
z,z′∈Zk

|(z − z′)>(θ̂k − θ)| ≤

√
2(1 + ε)τk

Nk
}

E = ∩∞k=1Ek.

Note that line (12) implies that P(Ek) ≥ 1− δ
k2 . Thus, we have

P(E) =

∞∏
k=1

P(Ek| ∩k−1
l=1 El) ≥

∞∏
k=1

(1− δ

k2
) =

sin(πδ)

πδ
≥ 1− δ

where the last line used δ ∈ (0, 1). We suppose E holds for the remainder of the proof.

Step 2: Correctness. Define Sk := {z ∈ Z : θ>(z∗ − z) ≤ B2−k}. We show that z∗ ∈ Zk and
Zk ⊂ Sk−1 for k = 2, 3 . . .. Using the event E , we have that

sup
z,z′∈Z1

|(z − z′)>(θ̂1 − θ)| ≤

√
2(1 + ε)τ1

N1
≤ B

4
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where we used Nk ≥ 2τk( 2k+1

B )2(1 + ε). First, fix any z 6∈ S1. We will then show that z 6∈ Z2. By
definition, θ>(z∗ − z) ≥ B

2 . Note that

(z∗ − z)>θ̂1 −B2−2 = (z∗ − z)>(θ̂1 − θ) + θ>(z∗ − z)−B2−2

≥ (z∗ − z)>(θ̂1 − θ) +
B

4

≥ −B
4

+
B

4
≥ 0

where we applied the assumption that z 6∈ S1 and the event. Thus, by the elimination rule, z 6∈ Z2.

Now, we show that z∗ ∈ Z1. Let z ∈ Z1. Then, using the event we have that

(z − z∗)>θ̂1 −B2−2 = (z − z∗)>(θ̂1 − θ) + θ>(z∗ − z)−B2−2

< (z − z∗)>(θ̂1 − θ)−B2−2

≤ B

4
− B

4
= 0.

This proves the base case.

Next, we prove the inductive step. Suppose that Zk−1 ⊂ Sk−2; we show that Zk ⊂ Sk−1. For any
z, z′ ∈ Zk−1,

|(z − z′)>(θ̂k−1 − θ)| ≤

√
2(1 + ε)τk

Nk

≤ B2−(k+1).

Let z ∈ Sck−1 so that θ>(z∗ − z) > B2−k+1. Then,

(z∗ − z)>θ̂k−1 −B2−(k+1) = (z∗ − z)>(θ̂k−1 − θ) + (z∗ − z)>θ −B2−(k+1)

≥ (z∗ − z)>(θ̂k−1 − θ) +B2−(k+1)

≥ −B2−(k+1) +B2−(k+1)

= 0

Thus, z 6∈ Zk, proving one part of the inductive step.

Next, we show z∗ ∈ Zk. By the inductive hypothesis, z∗ ∈ Zk−1. Let z ∈ Zk−1. Then,

(z − z∗)>θ̂k−1 −B2−(k+1) = (z − z∗)>(θ̂k−1 − θ) + (z − z∗)>θ −B2−(k+1)

< (z − z∗)>(θ̂k−1 − θ)−B2−(k+1)

≤ B2−(k+1) −B2−(k+1)

= 0

Step 3: Upper bounding the sample complexity. Now, we bound the number of samples taken
until the algorithm terminates. Since Zk ⊂ Sk−1 for k = 2, 3 . . . as we showed in the previous
step, once k ≥ c log(B/∆min), we have that Zk = {z∗} and thus there are at most c log(B/∆min)

rounds. In round k, the algorithm takes Nk =
⌈
2τk( 2k+1

B )2(1 + ε)
⌉
∨ q(ε) samples and, thus, the

sample complexity is bounded by the following sum
c log(B/∆min)∑

k=1

Nk ≤ c′[log(B/∆min)d+

c log(B/∆min)∑
k=1

τk(
2k

B
)2] (13)

where we used q(ε) = O(d) by the guarantees on the rounding procedure and ε = 1/10. Now, we
focus on upper bounding the second term in the above expression. For k = 1, then

τ1(
21

B
)2 ≤ c

B
≤ c′ (14)
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where we used the relation B = τ1 ∨ 1.

Next, we bound the terms k > 1. Note that

τk(
2k

B
)2 =Eη∼N(0,I)[maxz,z′∈Zk(z − z′)>A(λ)−1/2η]2(

2k

B
)2

+ 2 log(
1

δk
)maxz,z′∈Zk ‖z − z′‖

2
A(λ)−1 (

2k

B
)2

We begin by bounding the second term. Fix λ. Then,

maxz,z′∈Zk ‖z − z′‖
2
A(λ)−1 (

2k

B
)2 ≤ maxz,z′∈Sk ‖z − z′‖

2
A(λ)−1 (

2k

B
)2 (15)

≤ cmaxz∈Sk\{z∗} ‖z∗ − z‖
2
A(λ)−1 (

2k

B
)2 (16)

≤ cmaxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
(17)

where line (15) follows since Zk ⊂ Sk−1 for k = 2, 3, . . ., line (16) follows since the triangle
inequality implies maxz,z′∈Sk ‖z − z′‖

2
A(λ)−1 ≤ cmaxz∈Sk\{z∗} ‖z∗ − z‖

2
A(λ)−1 , and line (17) fol-

lows since for all z ∈ Sk \ {z∗}, ∆z ≤ 2−kB by definition. Next, we bound the first term:

Eη∼N(0,I)[maxz,z′∈Zk
(z − z′)>A(λ)−1/2η

2−kB
]2

= 4Eη∼N(0,I)[maxz∈Zk
(z∗ − z)>A(λ)−1/2η

2−kB
]2

≤ 4Eη∼N(0,I)[maxz∈Sk
(z∗ − z)>A(λ)−1/2η

2−kB
]2 (18)

≤ 4Eη∼N(0,I)[max(maxz∈Sk\{z∗}
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
, 0)]2 (19)

≤ 8
[
Eη∼N(0,I)[maxz∈Sk\{z∗}

(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2

+ maxz∈Sk\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2

]
(20)

where line (18) follows by Zk ⊂ Sk−1, line (19) follows by Lemma 14, for all z ∈ Sk \ {z∗},
∆z ≤ 2−kB, and z∗ ∈ Sk, and line (20) follows by Lemma 16. Thus, combining (17) and (20), and
taking the infimum over λ, we obtain

τk(
2k

B
)2 ≤ c[inf

λ
Eη∼N(0,I)[maxz∈Z\{z∗}

(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2

+ maxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
log(k2/δ)]

≤ c′[γ∗ + ρ∗ log(k2/δ)] (21)

where line (21) follows by Lemma 13. Thus, combining (13), (14), and (21), we obtain

c log(B/∆min)∑
k=1

Nk ≤ c log(B/∆min)[d+ γ∗ + ρ∗ log(log(B/∆min)/δ)]. (22)

Next, we will prove

c log(B/∆min)∑
k=1

Nk ≤ c log(B/∆min)d+ log(
B

mink:|Sk|>1 Fk
)[γ∗ + ρ∗ log(log(B/∆min)/δ)].

(23)
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where

Fk :=

{
infλ maxz,z′∈Sk ‖z − z′‖

2
A(λ)−1 log( 2k2

δ ) + Eη[maxz∈Sk(z − z′)>A(λ)−1/2η]2 k ≥ 1

B k = 0

(22) and (23) together would imply the result. By a similar argument used to establish (22), it suffices
to prove

c log(B/∆min)∑
k=2

τk(
2k

B
)2 ≤ log(

B

mink:|Sk|>1 Fk
)[γ∗ + ρ∗ log(log(B/∆min)/δ)]

Let L be the largest integer such that |SL| > 1. Define

Hi = {k ∈ [L] : Fk ∈ (
F0

2−(i+1)
,
F0

2−i
]}.

and define

ki = max(k : k ∈ Hi)

for i ∈ dlog2(F0/FL)e. Then, the sample complexity is upper bounded by

c log(B/∆min)∑
k=2

τk(
2k

B
)2 ≤

c log2(B/∆min)∑
k=2

Fk(
2k

B
)2 (24)

= c

dlog2(F0/FL)e∑
i=1

∑
k∈Hi

Fk(
2k

B
)2

≤ c′
dlog2(F0/FL)e∑

i=1

maxk∈HiFk
∑
k∈Hi

(
2k

B
)2

≤ c′′
dlog2(F0/FL)e∑

i=1

maxk∈HiFk(
2ki

B
)2 (25)

≤ c′′′
dlog2(F0/FL)e∑

i=1

Fki(
2ki

B
)2

≤ c′′′′ dlog2(F0/FL)e
[

inf
λ

Eη∼N(0,I)[maxz∈Z\
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2

+ maxz∈Z\
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
] log(log(B/∆min)/δ)

]
(26)

where line (24) follows since Zk ⊂ Sk−1, line (25) follows since
∑m
l=1(2l)2 ≤ c22m, and line (26)

follows by (21).

C.2 Computationally Efficient Algorithm for Combinatorial Bandits Proofs

Before giving the proof of Theorem 6, we restate the algorithm with subroutines for solving the
optimization problems approximately. Define 0 = (0, . . . , 0)>.

We briefly note that the optimization problem in (27) includes γ(Z) as a special case by the following
identity:

Eη∼N(0,I)[maxz,z′∈Z(z − z′)>A(λ)−1/2η]2 = 4Eη∼N(0,I)[maxz∈Zz>A(λ)−1/2η]2.

We also define the UNIQUE subroutine (Algorithm 5), originally provided in [8]. It finds the empirical
best z̃ and the emprical second best z′ and determines whether enough samples have been collected
to conclude that z̃ is the best. It uses at most d calls to the linear maximization oracle.
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Input: Confidence level δ > 0, rounding parameter ε ∈ (0, 1) with default value of 1
10

, α > 0 (α = 42941
suffices though this is wildly pessimistic; we recommend using α = 4) ;
λ, 1

4
Γ′ ←− ComputeAlloc(0,0, 1, δ

4
), which approximately solves

γ(Z) := inf
λ∈∆

Eη∼N(0,I)[maxz∈Zz>A(λ)−1/2η]2

Γ←− Γ′ ∨ 1, θ̂0 ←− 0 ∈ Rd, δk ←− δ
2k3 ;

for k = 0, 1, 2, . . . do
z̃k ←− arg maxz∈Z θ̂

>
k z;

λk, τk ←− ComputeAlloc(z̃k, θ̂k, 2
−kΓ, 6δ

4π2(k+1)2
), which approximately solves

inf
λ∈∆

Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−kΓ + θ̂>k (z̃k − z)
]2 (27)

Set Nk ←− α dτk log(1/δk)(1 + ε)e ∨ q(ε) and find {x1, . . . , xNk} ←− ROUND(λk, Nk);
Pull arms x1, . . . , xNk and receive rewards y1, . . . , yNk ;
Let θ̂k+1 ←− (

∑Nk
s=1 xsx

>
s )−1∑Nk

s=1 xsys ;
if UNIQUE(Z, θ̂k, 2−kΓ) then return z̃k

Algorithm 4: Fixed Confidence Peace with a linear maximization oracle.

Input: Z , estimate θ̃, shift b > 0 ;
z̃ ←− arg maxz∈Z θ̃

>z;
for i = 1, 2, . . . , d s.t. i ∈ z̃ do

θ̃(i) =

{
θ̃j j 6= i

−∞ j = i

z̃(i) ←− arg maxz∈Z(θ̃(i))>z;
if θ̃>(z̃ − z̃(i))− b ≤ 0 then return False

return True
Algorithm 5: UNIQUE.

Proof of Theorem 6. We will first show that if we can solve the optimization problem

Emaxz
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
.

for arbitrary θ0 ∈ Rd, z0 ∈ Z , and b > 0, then the sample complexity claim follows. In particular,
this implies solving the optimization problems γ(Z) and (27). Then, we will show that solving it
approximately using the subroutine ComputeAlloc only affects up to a constant factor and bound the
number of oracle calls.

Step 1: Good event holds with high probability. Define the sets

Sk =

{
{z ∈ Z : ∆z ≤ Γ2−k} k ≥ 1

Z k = 0

and define δk = δ
2k3 . Define the events for all j ∈ [k]

Σk,j = { sup
z,z′∈Sj

|(z − z′)>(θ̂k − θ)| ≤√
2(1 + ε)(1 + π log(1/δk))

E[supz,z′∈Sj (z − z′)>A(λk)−1/2η]2

Nk
}

Σk = ∩kj=0Σk,j

Σ = ∩log(Γ/∆min)
k=1 ∩kj=0 Σk,j
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Let x1, . . . , xNk denote the measurement vectors selected in round k. Theorem 5.8 from [2] implies
that with probability at least 1− δ

k3

sup
z,z′∈Sj

|(z − z′)>(θ̂k+1 − θ)|

≤ E sup
z,z′∈Sj

(z − z′)>(θ̂k − θ) +
√

2 log(1/δk)maxz,z′∈Sj ‖z − z′‖
2

(
∑Nk
i=1 xix

>
i )−1

= E sup
z,z′∈Sj

(z − z′)>(

Nk∑
i=1

xix
>
i )−1/2η +

√
2 log(1/δk)maxz,z′∈Sj ‖z − z′‖

2

(
∑Nk
i=1 xix

>
i )−1

≤ E sup
z,z′∈Sj

(z − z′)>(

Nk∑
i=1

xix
>
i )−1/2η

+

√√√√π log(1/δk)E[ sup
z,z′∈Sj

(z − z′)>(

Nk∑
i=1

xix>i )−1/2η]2 (28)

≤

√√√√2(1 + π log(1/δk))E[ sup
z,z′∈Sj

(z − z′)>(

Nk∑
i=1

xix>i )−1/2η]2 (29)

≤

√
2(1 + ε)(1 + π log(1/δk))

E[supz,z′∈Sj (z − z′)>A(λk)−1/2η]2

Nk
(30)

where line (28) follows by Lemma 12, line (29) follows by
√
a +
√
b ≤

√
2(a+ b), and line (30)

follows by Lemma 11. Therefore, P(Σck,j) ≤ δ
k3 . By law of total probability,

P(Σc) ≤
∞∑
k=1

k∑
j=0

P(Σck,j | ∩k−1
l=1 Σl) ≤

∞∑
k=1

(k + 1)
δ

k3
≤ 3δ.

We suppose the event Σ holds for the rest of the proof.

Step 2: gaps are well estimated every round k Now, we show that the following hold: at every
round k ≥ 1,

1. if z ∈ Sck,

|(z∗ − z)>(θ̂k − θ)| ≤
∆z

8

2. if z ∈ Sk,

|(z∗ − z)>(θ̂k − θ)| ≤
2−kΓ

8
.

We proceed inductively. First, we prove the base case k = 1. On the event Σ1,1, we have using the
definition of N1, for all z ∈ Z ,

|(z∗ − z)>(θ̂1 − θ)| ≤ sup
z,z′∈Z

|(z − z′)>(θ̂1 − θ)|

≤

√
2(1 + ε)(1 + π log(1/δk))E[supz,z′∈Z(z − z′)>A(λ)−1/2η]2

N0

≤

√
8(1 + ε)(1 + π log(1/δk))E[supz∈Z(z̃0 − z)>A(λ)−1/2η]2

N0

≤ 2−1Γ

8
(31)
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where in the last line we used Nk = α dτk log(1/δk)(1 + ε)e ∨ q(ε). Observe that whether z ∈ S1

or z ∈ Sc1 the base case follows. Next, we show the inductive step. Suppose that at round k ≥ 1, if
z ∈ Sck,

|(z∗ − z)>(θ̂k − θ)| ≤
∆z

8

and if z ∈ Sk,

|(z∗ − z)>(θ̂k − θ)| ≤
2−kΓ

8
.

Now, consider round k + 1. Fix z0 ∈ Sck+1. If ∆z ≥ Γ
2 , there is nothing to show by (31). Thus,

suppose ∆z ≤ Γ
2 . Then, there exists j ≤ k such that Γ2−(j+1) ≤ ∆z0 ≤ Γ2−j . Then,

|(z∗ − z0)>(θ̂k+1 − θ)|
∆z0

≤ sup
z,z′∈Sj

| (z − z
′)>(θ̂k+1 − θ)

∆z0

|

≤

√√√√
2(1 + ε)(1 + π log(1/δk))

E[supz,z′∈Sj
(z−z′)>A(λ)−1/2η

∆z0
]2

Nk
(32)

≤

√√√√
8(1 + ε)(1 + π log(1/δk))

E[supz∈Sj
(z̃k−z)>A(λ)−1/2η

∆z0
]2

Nk

≤

√
36(1 + ε)(1 + π log(1/δk))

E[supz∈Sj
(z̃k−z)>A(λ)−1/2η

∆z+2−kΓ
]2

Nk
(33)

≤

√
36(1 + ε)(1 + π log(1/δk))

E[supz∈Z
(z̃k−z)>A(λ)−1/2η

∆z+2−kΓ
]2

Nk
(34)

≤

√√√√
162(1 + ε)(1 + π log(1/δk))

E[supz∈Z
(z̃k−z)>A(λ)−1/2η

(z̃k−z)>θ̂k+2−kΓ
]2

Nk
(35)

≤ 1

8
(36)

where line (32) follows by the event Σ, line (33) follows from Lemma 14 since z̃k ∈ Sj and for
all z ∈ Sj , 3∆z0 ≥ ∆z + 2−kΓ, (35) follows by the inductive hypothesis and Lemma 1, and (36)
follows by the definition of Nk. Next, fix z0 ∈ Sk+1; a similar series of inequalities shows that

|(z∗ − z0)>(θ̂k+1 − θ)| ≤
2−(k+1)Γ

8
,

yielding the claim.

Step 3: Correctness. To show correctness, it suffices to show that at round k, if z̃k 6= z∗, then the
UNIQUE(Z, θ̂k, 2−kΓ) returns false. Inspection of the subroutine reveals that it suffices to show that
(z̃k − z∗)>θ̂k − 2−kΓ ≤ 0. By the claim in Step 2, we have that

(z̃k − z∗)>θ̂k − 2−kΓ = (z̃k − z∗)>(θ̂k − θ)−∆z̃k − 2−kΓ

≤ max(
∆z̃k

8
,

2−kΓ

8
)−∆z̃k − 2−kΓ

≤ 0

proving correctness.

Step 4: Upper bound the sample complexity. Note that at round k, UNIQUE(Z, θ̂k, 2−kΓ) checks
whether the gap between z̃k and arg maxz 6=z̃k θ̂

>
k z is at least 2−kΓ, and terminates if it is. Thus, by

the claim in Step 2, the algorithm terminates and outputs z∗ once k ≥ c log(Γ/∆min). Thus, the
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sample complexity is upper bounded by

c log(Γ/∆min)∑
k=1

Nk ≤ c′[log(Γ/∆min)d+

c log(Γ/∆min)∑
k=1

τk(
2k

Γ
)2] (37)

where we used q(ε) = O(d) by the guarantees on the rounding procedure and ε = 1/10. Now, we
focus on upper bounding the second term in the above expression. For k = 1, then

τ1(
21

Γ
)2 ≤ c

Γ
≤ c′ (38)

where we used the relation Γ = τ1 ∨ 1. Thus, to obtain the upper bound on the sample complexity, it
suffices to upper bound

τk = inf
λ∈∆

Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−kΓ + θ̂>k (z̃k − z)
]2

for k > 1. Fix λ ∈∆. We have that

Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−kΓ + θ̂>k (z̃k − z)
]2 ≤ cEη∼N(0,I)[maxz∈Z

(z̃k − z)>A(λ)−1/2η

2−kΓ + ∆z
]2

≤ c′[Eη∼N(0,I)[maxz∈Z
(z∗ − z)>A(λ)−1/2η

2−kΓ + ∆z
]2

+ Eη∼N(0,I)[maxz∈Z
(z∗ − z̃k)>A(λ)−1/2η

2−kΓ + ∆z
]2]

We bound the first term as follows. Fix z0 ∈ Z \ {z∗}.

Eη∼N(0,I)[maxz∈Z
(z∗ − z)>A(λ)−1/2η

2−kΓ + ∆z
]2

= Eη∼N(0,I)[maxz∈Z\{z∗}max(
(z∗ − z)>A(λ)−1/2η

2−kΓ + ∆z
, 0)]2

≤ Eη∼N(0,I)[maxz∈Z\{z∗}|
(z∗ − z)>A(λ)−1/2η

2−kΓ + ∆z
|]2

≤ 8Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

2−kΓ + ∆z
]2 + 8

‖z∗ − z0‖2A(λ)−1

(2−kΓ + ∆z0)2
(39)

≤ 8[Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

∆z
]2

+ maxz 6=z∗
‖z∗ − z‖2A(λ)−1

∆2
z

] (40)

where line (39) follows by exercise 7.6.9 in [32].

It remains to bound the second term. Note that

Eη∼N(0,I)[maxz∈Z
(z∗ − z̃k)>A(λ)−1/2η

2−kΓ + ∆z
]2 ≤ Eη∼N(0,I)[max(

(z∗ − z̃k)>A(λ)−1/2η

2−kΓ
, 0)]2

≤ c
‖z∗ − z̃k‖2A(λ)−1

(2−kΓ)2

≤ c
‖z∗ − z̃k‖2A(λ)−1

∆2
z̃k

(41)

≤ cmaxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

∆2
z

(42)

where line (41) follows since z̃k ∈ Sk+2 by Lemma 1.

22



Thus, combining (37), (38), (40), and (42) yield the upper bound

c log(Γ/∆min)∑
k=1

Nk ≤ c log(Γ/∆min)[d+ γ∗ + ρ∗].

Step 5: Computation. Next, we show that we can solve the optimization problems γ(Z) and (27)
approximately and bound the number of oracle calls. In the interest of brevity, define

gk(λ) := Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−kΓ + θ̂>k (z̃k − z)
]2

Let Dk,1 denote the event that GetAlloc(z̃k, θ̂k, 2
−kΓ, 6δ

4π2(k+1)2 ) returns λk ∈∆ such that

gk(λk) ≤ c[ inf
λ∈∆

gk(λ) + 1] (43)

Let Dk,1 denote the event that GetAlloc(z̃k, θ̂k, 2
−kΓ, 6δ

4π2(k+1)2 ) uses at most the following number
of oracle calls

c[d+ log(φ · k2) + log(log(d)2 d3

(Γ2−k)2

1

δ2
)] log(d)2 d3

(Γ2−k)2

k4

δ2
(44)

where φ ≤ maxz∆z + Γ. Furthermore, define D1 = ∩kDk,1 and D2 = ∩kDk,1.

GetAlloc is applied with confidence level 6δ
4π2k2 , and thus by Theorem 8 and a standard union bound

argument, with probability at least P(D1) ≥ 1− δ
4 and P(D2) ≥ 1− 1

2d
· 1

4 .

Next, let Ck denote that event that EvalAlloc(z̃k, θ̂k, 2
−kΓ, 6δ

4π2(k+1)2 ) that the algorithm outputs a
τk such that

gk(λk) ≤ τk ≤ c[gk(λk) + 1] (45)

and the number of oracle calls is upper bounded by

O(
d2

(Γ2−k)2
log(k/δ) log(

dk

Γ2−kδ
)).

Define C = ∩kCk. Since EvalAlloc is applied with confidence level δ = 6δ
4π2k2 and by Lemma 3 and

a standard union bound argument, P(C) ≥ 1− δ
2 .

Suppose thatD1∩C∩E occurs. Inspection of the proof reveals that nothing is lost by the approximation
in (43) and (45). Thus, by a union bound, it follows that with probability at least 1−4δ, the algorithm
terminates and returns z∗ after the stated number of samples in the theorem.

Now, suppose D1 ∩ D2 ∩ C ∩ E holds. Since there are c log(Γ/∆min) rounds, the bound on the
number of oracle calls follows by the dominant term appearing in line (44). Thus, by the union bound
and assuming δ ≥ 1

2d
, the event D1 ∩ D2 ∩ C ∩ E occurs with probability at least 1 − 4δ. This

completes the proof.

The following Lemma is an essential ingredient in the proof of the upper bound for the computationally
efficient algorithm for combinatorial bandits.
Lemma 1. Let k ≥ 1. Consider the kth round of Algorithm 2. Suppose that

• if z ∈ Sck,

|(z∗ − z)>(θ̂k − θ)| ≤
∆z

8
(46)

• if z ∈ Sk,

|(z∗ − z)>(θ̂k − θ)| ≤
2−kΓ

8
. (47)

23



Then, the following hold:

1.
z̃k ∈ Sk+2, (48)

2. if z ∈ Sck

|(z̃k − z)>θ̂k − (z∗ − z)>θ| ≤
1

2
∆z. (49)

3. if z ∈ Sk,

|(z̃k − z)>θ̂k − (z∗ − z)>θ| ≤
1

2
2−kΓ. (50)

4. There exist universal constants c, c′ > 0 such that

cE[sup
z∈Z

(z̃k − z)>A(λ)−1/2η

∆z + 2−kΓ
]2 ≤ E[sup

z∈Z

(z̃k − z)>A(λ)−1/2η

(z̃k − z)>θ̂k + 2−kΓ
]2

≤ c′E[sup
z∈Z

(z̃k − z)>A(λ)−1/2η

∆z + 2−kΓ
]2

Proof. Step 1: 1 holds at round k. Note that if z ∈ Sck+2 ∩ Sk, then

θ̂>k (z∗ − z) ≥ ∆z −
2−kΓ

8
> 0

by (47) and since z ∈ Sck+2 ∩ Sk implies that ∆z ≥ 2−kΓ
4 . Thus, z 6= z̃k. On the other hand, if

z ∈ Sck,

θ̂>k (z∗ − z) ≥ ∆z −
∆z

8
> 0

by (46), so that z 6= z̃k. Together, these cases together imply that z̃k ∈ Sk+2.

Step 2: 2 and 3 hold at round k. First, suppose z ∈ Sck. We have that

|(z̃k − z)>θ̂k − (z∗ − z)>θ| ≤ |(z̃k − z)>(θ̂ − θ)|+ |θ>(z̃k − z)− θ>(z∗ − z)|

≤ |(z̃k − z∗)>(θ̂ − θ)|+ |(z∗ − z)>(θ̂ − θ)|+ |θ>(z̃k − z∗)|

≤ 1

8
(2−kΓ + ∆z) +

1

4
2−kΓ (51)

≤ 1

2
∆z

where line (51) follows by (46) and by (48) which we have shown holds at round k. By a similar
argument, if z ∈ Sk,

|(z̃k − z)>θ̂k − (z∗ − z)>θ| ≤
1

2
2−kΓ.

Step 3: 4 holds at round k. We have shown that (48) and (49) hold at round k. Fix z ∈ Z . If
z ∈ Sck, by (49) we have that ∆z ≥ 2

3 θ̂
>(z̃k − z) and thus

1

∆z + 2−kΓ
≤ 3

2

1

(z̃k − z)>θ̂k + 2−kΓ
.

On the other hand, if z ∈ Sk, by (50), we have that ∆z ≥ θ̂k(z̃k − z)− 2−kΓ
2 . Thus,

1

∆z + 2−kΓ
≤ 2

1

(z̃k − z)>θ̂k + 2−kΓ
.

Therefore, since in addition z̃k ∈ Z , we may apply Lemma 14 to obtain

E[sup
z∈Z

(z̃k − z)>A(λ)−1/2η

∆z + 2−kΓ
] ≤ 2E[sup

z∈Z

(z̃k − z)>A(λ)−1/2η

(z̃k − z)>θ̂k + 2−kΓ
]

yielding one of the inequalities. By a similar argument, we obtain the other inequality, proving the
claim.
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D Computational Results for Computationally Efficient Algorithm for
Combinatorial Bandits

In this section, we present the computational subroutines for the computationally efficient algorithm
for combinatorial bandits. The main optimization problem in Algorithm 2 is given in line (27). Fix
z0 ∈ Z , b > 0, and θ0 ∈ Rd for the remainder of the section; we will omit dependence on these
quantities because they are fixed. Since the Gaussian width is nonnegative, it suffices to solve:

inf
λ∈∆

g(λ) := Emaxz∈Z
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
.

Define the following functions

g(λ; η) := maxz∈Z
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)

g(λ; η; z) :=
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
g(λ; η; r) := maxz∈Zz>(A(λ)−1/2η + rθ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η

g(λ; η; r; z) := z>(A(λ)−1/2η + rθ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η

D.1 Main Subroutine

Input: z0 ∈ Z , θ0 ∈ Rd, Offset b > 0, δ > 0 ;
λ←− GetAlloc(z0, θ0, b, δ);
τ ←− EvalAlloc(z0, θ0, b, λ, δ);
Return (λ, τ)

Algorithm 6: ComputeAlloc(z0, θ0, b, δ)

ComputeAlloc(z0, θ0, b, δ) is the main subroutine; it solves and evaluates infλ g(λ).
GetAlloc(z0, θ0, b, δ) and EvalAlloc(z0, θ0, b, λ, δ) only use calls to the linear maximization ora-
cle. GetAlloc(z0, θ0, b, δ) finds a solution within a constant additive factor of the optimal solution
to the optimization problem infλ∈∆ g(λ) with probability at least 1 − δ. EvalAlloc(z0, θ0, b, λ, δ)
determines the value of g(λ) within a constant additive factor with probability at least 1− δ.

GetAlloc (Algorithm 7) performs stochastic mirror descent over the subset of the simplex that is a
mixture with the uniform distribution

∆̃ := {λ ∈ Rd : λ =
1

2
(κ+ κ′) where κ ∈∆ and κ′ = (1/d, . . . , 1/d)>}.

Define the Bregman divergence associated with a function f :

Df (x, y) = f(x)− f(y)−∇f(y)>(x− y).

GetAlloc calls estimateGradient (Algorithm 8) to obtain an unbiased estimate of the gradient. esti-
mateGradient needs to solve a maximization problem, for which it calls computeMax (Algorithm 9),
a subroutine that essentially performs binary search.

EvalAlloc (Algorithm 10) estimates the number of samples to take in a round, only using calls to
the linear maximization oracle. Because it estimates the mean of estimator that is not necessarily
sub-Gaussian, but has controlled variance, this subroutine uses the median-of-means estimator.
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Input: z0 ∈ Z , Offset b ∈ R, θ0 ∈ Rd, confidence level δ > 0 ;
Define Φ(λ) =

∑d
i=1 λi log(λi);

T ←− c log(d)2 d3

b2
1
δ2

where c > 0 is a universal constant obtained in the proof of Theorem 8;

κ = c′

d3

b2

√
2
T

where c′ > 0 is a universal constant obtained in the proof in of Theorem 8;

λ(1) ←− argminλ∈∆̃Φ(λ);
for s = 1, 2, . . . , T do

Let rs ←− estimateGradient(z0, θ0, b, λ);
λs+1 = argminλ∈∆̃κr

>
s λ+DΦ(λ, λs)

Return 1
T

∑T
s=1 λ

(s)

Algorithm 7: GetAlloc(z0, θ0, b, δ): Stochastic Mirror Descent for Transductive Bandits with linear
maximization oracle

Input: λ ∈∆, z0 ∈ Z , Offset b ∈ R, θ0 ∈ Rd;
Draw η ∼ N(0, I);
MAX-VAL ←− computeMax(z0, θ0, b, λ, η, 0);
Choose

z̄ ∈ arg max
z∈Z

g(λ; η; MAX-VAL; z)

Return∇λg(λ; η; z̄)

Algorithm 8: estimateGradient(z0, θ0, b, λ): Compute unbiased stochastic subgradient

Input: λ ∈∆, z0 ∈ Z , Offset b ∈ R, θ0 ∈ Rd, η ∈ Rd, TOL ≥ 0;
Define

LOW = 0, HIGH = 2

while g(λ; η : HIGH) ≥ 0 do
HIGH ←− 2 · HIGH;

while g(λ; η; LOW) 6= 0 or 1
2
(HIGH + LOW) > TOL do

if g(λ; η; 1
2
(HIGH + LOW)) < 0 then

LOW ←− 1
2
(HIGH + LOW)

else
HIGH ←− 1

2
(HIGH + LOW)

LOW ←− g(λ; η; z′) for some z′ ∈ arg max g(λ; η; LOW; z)
Return LOW

Algorithm 9: computeMax(z0, θ0, b, λ, η, TOL): Compute g(λ; η)

Input: λ ∈∆, z0 ∈ Z , θ0 ∈ Rd, Offset b ∈ R ;
T ←− 864 d

2

b2
log(1/δ);

Draw η1, . . . , ηT ∼ N(0, I) ;
ys ←− computeMax(z0, θ0, b, λ, ηs, TOL = 1/2) for s = 1, . . . , T ;
Let τ be the output of the median of means estimator applied to y1, . . . , yT ;
Return [τ + 1]2

Algorithm 10: EvalAlloc(z0, θ0, b, λ): Estimate g(λ)
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D.2 Proofs

Recall the definitions:

g(λ; η) := maxz∈Z
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)

g(λ; η; z) :=
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
g(λ; η; r) := maxz∈Zz>(A(λ)−1/2η + rθ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η

g(λ; η; r; z) := z>(A(λ)−1/2η + rθ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η

We note that we may assume without loss of generality that θ>0 (z0 − z) ≥ 0 for all z ∈ Z . We define
the event Bλ = {| arg maxz∈Z g(λ; η; z)| = 1}, which will appear in the analysis several times.

The following Lemma provides the guarantee for estimateGradient. Define φ =√
maxz∈Zθ>0 (z0 − z) + b.

Lemma 2. Consider the combinatorial bandit setting. Fix z0 ∈ Z , b > 0, θ0 ∈ Rd, and λ ∈ ∆̃.
estimateGradient(z0, θ0, b, λ) returns an unbiased stochastic gradient of the function g(λ) with
probability 1. Let ξ > 0. With probability at least 1− 2ξ

2d
, it terminates after O(d+ log(db ) + log(φξ ))

oracle calls.

Proof. Step 1: Correctness. Let η ∼ N(0, I). Note that Eg(λ; η) = g(λ). Since η ∼ N(0, I), with
probability 1 arg maxz∈Z g(λ; η; z) is unique and, therefore,

∇λmaxzg(λ; η; z) = ∇λg(λ; η; arg max
z∈Z

g(λ; η; z)).

By Lemma 8, we have that
∇λEg(λ; η) = E∇λg(λ; η)1{Bλ}.

Thus, we have
∇λEmaxzg(λ; η; z) = E∇λmaxzg(λ; η; z)1{Bλ} = E∇λg(λ; η; arg max

z∈Z
g(λ; η; z))1{Bλ}.

As a consequence, to show that estimateGradient returns an unbiased gradient, it suffices to show that
Algorithm 8 identifies arg maxz∈Z g(λ; η; z). Note that g(λ; η) is equivalent to the following linear
program problem

r∗ = min
r
r

s.t. g(λ; η; r) = maxz∈Zz>(A−1/2(λ)η + r̄θ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η ≤ 0.

The estimageGradient algorithm terminates once it finds r̄ > 0 such that maxz∈Zg(λ; η; r̄; z) = 0.
Let z̄ ∈ arg maxz∈Z g(λ; η; r̄; z). Then,

0 = maxzg(λ; η; r̄; z)

= g(λ; η; r̄; z̄)

= z̄>(A−1/2(λ)η + r̄θ0)− r̄(b+ θ>0 z0)− z>0 A(λ)−1/2η

> z>(A−1/2(λ)η + r̄θ0)− r̄(b+ θ>0 z0)− z>0 A(λ)−1/2η.

where the strict inequality holds with probability 1 since η ∼ N(0, I). Rearranging the above
inequality, this implies that for every for all z ∈ Z \ {z̄}

(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
< r̄ =

(z0 − z̄)>A(λ)−1/2η

b+ θ>0 (z0 − z̄)
implying that z̄ = arg maxz g(λ; r̄; z), showing estimateGradient returns an unbiased gradient.

Step 2: Running time. Next, we bound the number of oracle calls. Define ỹ =

supz∈Z
(z0−z)>A(λ)−1/2η

b+θ>0 (z0−z)
. By Theorem 5.8 of [2], we have that

V(ỹ) ≤ 4 sup
z∈Z

V(
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
) ≤ 8

d2

b2
.
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where we used λ ∈ ∆̃. Define the event

E = {sup
z∈Z

(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
≤ 8

d2

b2
1

δ
}

Thus, by Chebyshev’s inequality, we have that

P(Ec) ≤ δ. (52)

Thus, choosing δ = ξ
2d

, we have with probability at least P(Ec) ≤ ξ
2d

. Then, by Lemma 5 the first
while loop requires

O(log(
d

bδ
)) = O(log(

d

b
) + d+ log(

1

ξ
))

oracle calls.

Next, we consider the second while loop. Define the event

D = {|g(λ; η; z)− g(λ; η; z)| > ξ

φ22d
,∀z 6= z′ ∈ Z}.

By Lemma 4, we have that with probability at least D ≥ 1 − ξ
2d

. Then, by Lemma 5, the second
while loop requires at most O(d+ log(db ) + log(φξ )) oracle calls. A standard union bound argument
for event E ∩ D yields the result.

The following Theorem provides the guarantee for GetAlloc.
Theorem 8. Consider the combinatorial bandit setting. Fix z0 ∈ Z , b > 0, and θ0 ∈ Rd. With
probability at least 1− δ GetAlloc(z0, θ0, b, δ) returns λ̄ ∈∆ such that

g(λ̄)2 ≤ c[min
λ∈∆

g(λ)2 + 1].

Let ξ > 0. Furthermore, with probability at least 1− 2ξ
2d

, the number of oracle calls is bounded above
by

c[d+ log(φ/ξ) + log(log(d)2 d
3

b2
1

δ2
)] log(d)2 d

3

b2
1

δ2
.

Proof. Step 1: Guarantee on final allocation. Note that for any z ∈ Z ,

|∇λg(λ; η; z)i1{Bλ}| = 1{Bλ}1{i ∈ z0∆z}| λ
−3/2
i ηi

b+ θ>0 (z0 − z)
|

and thus

Emaxz∈Z ‖∇λg(λ; η; z)1{Bλ}‖2∞ ≤ c
d3

b2
Emaxiη2

i

≤ log(d)c
d3

b2

where we used the fact that λ ∈ ∆̃.

Note that the mirror map used is

Φ(λ) =

d∑
i=1

λi log(λi).

It is not hard to see that

sup
λ∈∆̃

Φ(λ)− min
λ′∈∆̃

Φ(λ′) ≤ log(d)
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By Theorem 6.1 in [4],

Eg(λ̄)− min
λ∈∆̃

g(λ) ≤ c log(d)
d3/2

b

√
1

T
.

Then, by Markov’s inequality,

P(g(λ̄)− min
λ∈∆̃

g(λ) ≥ 1) ≤ Eg(λ̄)− min
λ∈∆

g(λ)

≤ c log(d)
d3/2

b

√
1

T

≤ c log(d)
d3/2

b

√
1

T

= δ

by our choice of T . Noting that minλ∈∆̃ g(λ) ≤
√

2 minλ∈∆ g(λ) yields the result.

Step 2: Bound the number of oracle calls. Using Lemma 2 with ξ′ = ξ
T and union bounding over

each of the T iterations, with probability at least 1− 2ξ
2d

the number of oracle calls is at most

c[d+ log(
d

bδ
) + log(φ/ξ · T )]T = c[d+ log(φ/ξ) + log(log(d)2 d

3

b2
1

δ2
)] log(d)2 d

3

b2
1

δ2
.

The following Lemma provides the guarantee for Algorithm 10.

Lemma 3. With probability at least 1 − δ, Algorithm 10 returns τ such that g(λ)2 ≤ (τ + 1)2 ≤
g(λ)2 + 4. Furthermore, with probability at least, 1− δ, it uses O(d

2

b2 log(1/δ) log( dbδ )) oracle calls.

Proof. Let ỹs = supz∈Z
(z0−z)>A(λ)−1/2ηs

b+θ>0 (z0−z)
. By Theorem 5.8 of [2], we have that

V(ỹs) ≤ 4 sup
z∈Z

V(
(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
) ≤ 8

d2

b2

Applying the median of means estimator (see [18]) to ỹ1, . . . , ỹT yields that with probability at least
1− δ τ̃ satisfies

|τ̃ − E sup
z∈Z

(z0 − z)>A(λ)−1/2ηs
b+ θ>0 (z0 − z)

| ≤ 1/2

by our choice of T and standard results for median of means estimation. Since the procedure
computeMax a tolerance of 1/2, by Lemma 5, we have that |ys − ỹs| ≤ 1/2 for all s = 1, . . . , T .
Thus, it follows that |τ̃ − τ | ≤ 1/2. Thus,

|τ − E sup
z∈Z

(z0 − z)>A(λ)−1/2ηs
b+ θ>0 (z0 − z)

| ≤ 1.

Manipulating the above inequality yields the result.

It remains to bound the number of oracle calls. Consider ỹs = supz∈Z
(z0−z)>A(λ)−1/2ηs

b+θ>0 (z0−z)
. By the

same argument made in inequality (52), we have that with probability at least 1− δ
T , ỹs ≤ O(d

2T
b2δ ).

Union bounding over all ỹs s ∈ [T ], we have that with probability at least 1 − δ, sups ỹs ≤
O( d

4

b4δ log(1/δ)). Since the procedure computeMax uses a tolerance of 1/2, by Lemma 5 we have
that each call of computeMax uses at most O(log( dbδ )) calls to the linear maximization oracle,
yielding the result.
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D.3 Technical Lemmas

Lemma 4. Consider the combinatorial bandit setting. Fix θ0 ∈ Rd and b ≥ 0. Let ξ > 0. Then,

P(∃z 6= z′ ∈ Z : |g(λ; η; z)− g(λ; η; z′)| ≤ ξ

φ22d
) ≤ ξ

2d
.

Proof. Let m = |Z|. Fix z 6= z′ ∈ Z . Fix z0 ∈ Z , k ∈ N, and θ0 ∈ Rd. For the sake of brevity,
define h(z̃) := g(λ; η; z̃). Note that |h(z)− h(z′)| is a truncated normal distribution. Now, we lower
bound its variance.

V(h(z)− h(z′)) =

∥∥∥∥ (z0 − z)>A(λ)−1/2

2−kB + θ>0 (z0 − z)
− (z0 − z′)>A(λ)−1/2

b+ θ>0 (z0 − z′)

∥∥∥∥
2

≥
∥∥∥∥ (z0 − z)>A(λ)−1/2

b+ θ>0 (z0 − z)
− (z0 − z′)>A(λ)−1/2

b+ θ>0 (z0 − z′)

∥∥∥∥
∞

≥ min
v∈Z

∥∥∥∥ 1

b+ θ>0 (z0 − v)

∥∥∥∥
∞

≥ 1

φ2

where we used the fact that for every ‖z − z′‖∞ ≥ 1 for combinatorial bandits and and the definition
of φ.

Then, using the cdf of the half normal, we have that

P(|h(z)− h(z′)| ≤ ξ

φ22d
) =

∫ ξ

φ22d

0

1√
V(h(z)− h(z′))

√
2/π exp(− y2

2V(h(z)− h(z′))
)dy

≤
∫ ξ

φ22d

0

φ
√

2/π exp(− y2

2V(h(z)− h(z′))
)dy

≤
√

2/π
ξ

22d
.

Thus, using a union bound, we have that

P(∃z 6= z′ ∈ Z : |h(z)− h(z′)| ≤ ξ

φ22d
≤ |Z|

22d
)

≤ ξ

2d
.

Lemmas 5, 6, and 7 show that Algorithm 9 essentially performs binary search.
Lemma 5. The following two claims holds regarding Algorithm 9.

1. At the end of the first while loop of Algorithm 9, g(λ; η) ∈ [LOW, HIGH] and it takes at most
O(log(g(λ; η))) oracle calls.

2. In the second while loop of Algorithm 9, it always holds that g(λ; η) ∈ [LOW, HIGH].
Furthermore, define z̄ = arg maxz∈Z g(λ; η; z). Then, if g(λ; η)− maxz 6=z̄g(λ; η; z) > ε,
then it terminates after O(log( g(λ;η)

ε )) oracle calls.

Proof. We begin by proving the first claim. By Lemma 6, if HIGH < g(λ; η), then g(λ; η; HIGH) > 0
and HIGH keeps increasing. At some point, we have HIGH > g(λ; η), which by Lemma 6 implies
that g(λ; η; HIGH) < 0 and the while loop terminates. Notice that since z0 ∈ Z , g(λ; η) ≥ 0 = LOW.
Furthermore, since HIGH doubles at each round the first while loop takes at most O(log(g(λ; η))))
oracle calls. This completes the proof of the first claim.

Next, we prove the second claim regarding the second while loop. At the beginning of the second
while loop, g(λ; η) ∈ [LOW, HIGH]. It is a straightforward consequence of Lemma 6 that at the end
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of the if else statement in the second while loop it holds that g(λ; η) ∈ [LOW, HIGH]. In the last line
of the while loop where

LOW ←− g(λ; η; z′) for some z′ ∈ arg max g(λ; η; LOW; z)

it follows from Lemma 7 that g(λ; η; LOW) ≥ 0. Then, by Lemma 6, it follows that g(λ; η) ≥ LOW.
Thus, the claim that g(λ; η) ∈ [LOW, HIGH] during the second while loop holds.

Finally, we bound the number of oracle calls. Assume g(λ; η) − maxz 6=z̄g(λ; η; z) > ε where
z̄ = arg maxz∈Z g(λ; η; z). Since at the end of the first while loop HIGH ≤ 2g(λ; η) and the second
while loop performs binary search, we have that after O(log( g(λ;η)

ε )) oracle calls,

g(λ; η) ≥ LOW > g(λ; η)− ε.
Let y ∈ arg maxz∈Z g(λ; η; LOW; z); we claim that y = arg maxz∈Z g(λ; η; z). By Lemma 7, we
have that g(λ; η; LOW; y) ≥ 0. Rearranging, we obtain

(z0 − y)>A(λ)−1/2η

b+ θ>0 (z0 − y)
≥ LOW > g(λ; η)− ε > maxz 6=z̄g(λ; η; z),

which implies that

y = arg max
z∈Z

g(λ; η; z) = arg max
z∈Z

(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
proving the claim.

Thus, inspection of the algorithm shows that it suffices to show that g(λ; η; g(λ; η)) = 0, but this
follows directly from Lemma 6.

Lemma 6. If g(λ; η; r) < 0, then r > g(λ; η) and if g(λ; η; r) > 0, then r < g(λ; η).

Proof. Suppose g(λ; η; r) < 0. Then, by definition,

maxz∈Zz>(A−1/2(λ)η + rθ0)− r(b+ θ>0 z0)− z>0 A(λ)−1/2η < 0.

Rearranging, we have that for all z ∈ Z ,

(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
< r,

thus proving the first claim. Next, suppose g(λ; η; r) > 0. Then, rearranging as above, there exists a
z ∈ Z such that

(z0 − z)>A(λ)−1/2η

b+ θ>0 (z0 − z)
> r,

proving the second claim.

Lemma 7. If maxz∈Zg(λ; η; z;L1) ≥ 0, then letting L2 = g(λ; η; z′) for some z′ ∈
arg maxz∈Z g(λ; η; z;L1), we have that L2 ≥ L1 and g(λ; η;L2) ≥ 0. Furthermore,
g(λ; η; LOW) ≥ 0 throughout the execution of Algorithm 9.

Proof. We have that

g(λ; η; z′;L1) = (z′)>(A−1/2(λ)η + L1θ0)− L1(b+ θ>0 z0)− z>0 A(λ)−1/2η ≥ 0.

Rearranging, we have that

L2 :=
(z0 − z′)>A(λ)−1/2η

b+ θ>0 (z0 − z′)
≥ L1,

proving the first claim. Furthermore, rearranging the equality

(z0 − z′)>A(λ)−1/2η

b+ θ>0 (z0 − z′)
= L2
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yields 0 = g(λ; η; z′;L2) ≤ maxz∈Zg(λ; η; z;L2), yielding the second inequality.

Finally, g(λ; η; LOW) ≥ 0 follows inductively. In the base case, LOW = 0 and we observe that for
0 = g(λ; η; z0; 0) ≤ maxz∈Zg(λ; η; z; 0). The inductive step follows by the update and the above
claims.

Lemma 8 shows g(λ) is differentiable.

Lemma 8. Let λ ∈ ∆̃. Then, Eg(λ; η) is differentiable at λ and ∇λEg(λ; η) = E∇λg(λ; η)1{Bλ}
where

Bλ = {| arg max
z∈Z

g(λ; η; z)| = 1}.

Proof. Note that
E∇λg(λ; η)1{Bλ} = ∇λEg(λ; η)⇐⇒ (E∇λg(λ; η)1{Bλ})i = (∇λEg(λ; η))i ∀i

and thus, it suffices to prove the statement for a single fixed i. Note that since λ ∈ ∆̃, A(λ)−1/2 is

full rank and hence each A(λ)−1/2(z0−z)
b+θ>0 (z0−z)

is distinct . Therefore, since η ∼ N(0, I), Bλ occurs with
probability 1.

Note that for each fixed z, since λ ∈ ∆̃,

|∂g(λ; η; z)

∂λi
| ≤ |1

2

λ
−3/2
i ηi

b+ θ>0 (z0 − z)
| ≤ c|d

3/2ηi
b
| =: Lη

g(λ; η; z) is Lη-Lipschitz in λi. Since g(λ; η) = maxz∈Zg(λ; η; z), g(λ; η) is Lη-Lipschitz in λi.
Thus, we have that for any h > 0,

g(λ+ hei; η)− g(λ; η)

h
≤ Lη

and so by the Dominated Convergence Theorem

lim
h−→0

E[
g(λ+ hei; η)− g(λ; η)

h
] = E[ lim

h−→0

g(λ+ hei; η)− g(λ; η)

h
]

= E[ lim
h−→0

g(λ+ hei; η)− g(λ; η)

h
1{Bλ]

= E[
∂g(λ; η)

∂λi
1{Bλ}]

which shows that the partial derivatives of E[g(λ; η)] exist and
∂E[g(λ; η)]

∂λi
= E[

∂g(λ; η)

∂λi
1{Bλ}].

To show that E[g(λ; η)] is differentiable, it suffices to show that the partial derivatives ∂E[g(λ;η)]
∂λi

are
continuous. Let λ(n) ∈ ∆̃ be a sequence such that limn−→∞ λ(n) = λ. Then, a straightforward
application of the Dominated Convergence Theorem shows that

lim
n−→∞

E[
∂g(λ(n); η)

∂λ
(n)
i

1{Bλ(n)}] = E[ lim
n−→∞

∂g(λ(n); η)

∂λ
(n)
i

1{Bλ(n)}]

= E[ lim
n−→∞

∂g(λ(n); η)

∂λ
(n)
i

1{Bλ(n)}1{Bλ}]

= E[
∂g(λ; η)

∂λi
1{Bλ}]

where we used that limn−→∞ 1{Bλ(n)}1{Bλ} = 1{Bλ}. This is true since clearly if η is such that
1{Bλ} = 0, then the claim follows. On other hand, if η is such that 1{Bλ} = 1, then using the
Lipschitzness of g(λ; η; z) (as previously argued), we have that limn−→∞ 1{Bλ(n)} = 1{Bλ}. Thus,
we conclude that the partial derivatives are continuous, which completes the proof.
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E Fixed Budget Upper Bound Proofs

Lemma 9 is the main step in the proof of the upper bound for the fixed budget algorithm.
Lemma 9. Suppose T ≥ cRmax([ρ∗ + γ∗], d). If z∗ ∈ Zk, then z∗ is eliminated in round k with
probability at most

2 exp(
−T

c′[ρ∗ + γ∗]
).

Proof. Let N = bT/Rc. Let X = {x1, . . . , xm}. Let λk denote the design chosen by the algorithm
in round k. Let xI1 , . . . , xIN denote the measurement vectors selected in round k and define λ̄ ∈∆

by λ̄i = 1
N

∑N
s=1 1{Is = i}. Let ξ > 0 (a constant to be chosen later). Define

∆ =argmin∆′

s.t. sup
z,z′∈Zk

‖z − z′‖2A(λ̄)−1

(∆′)2
≤ ξ[ρ∗ + γ∗].

Define the event

E = { sup
z,z′∈Zk

|(z − z′)>(θ̂k − θ)|
∆

≤

√
E[supz,z′∈Zk

(z−z′)>A(λ̄)−1/2η
∆ ]2

bT/Rc
+

1

2
}.

By Theorem 5.8 in [2] with probability at least

P(Ec) ≤ 2 exp(
−bT/Rc

8
supz,z′∈Zk

‖z−z′‖2
A(λ̄)−1

∆2

) ≤ 2 exp(
−bT/Rc

8ξ[ρ∗ + γ∗]
)

where we used the definition of ∆. Suppose E occurs for the remainder of the proof.

Define

Zk,wrong = {z ∈ Zk : θ̂>k (z∗ − z) < 0}.
Towards a contradiction, suppose z∗ is eliminated at round k. Then, by definition of the algorithm,

γ(Zk,wrong ∪ {z∗}) ≥
γ(Zk)

2
=

1

2
E sup
z,z′∈Zk

(z − z′)>A(λk)−1/2η.

Define z0 = arg maxz∈Zk,wrong ∆z . Then,

1

2(1 + ε)
E sup
z,z′∈Zk

(z − z′)>A(λ̄)−1/2η ≤ 1

2
E sup
z,z′∈Zk

(z − z′)>A(λk)−1/2η (53)

≤ min
λ

E sup
z,z′∈Zk,wrong∪{z∗}

(z − z′)>A(λ)−1/2η

≤ cmin
λ

E sup
z∈Zk,wrong∪{z∗}

(z∗ − z)>A(λ)−1/2η

≤ c′min
λ

E sup
z∈Zk,wrong

(z∗ − z)>A(λ)−1/2η

+ ‖z∗ − z0‖A(λ)−1 (54)

where line (53) follows by the guarantees of the rounding procedure and Lemma 11 and line (54)
follows by Lemma 16. Thus,

E[
supz,z′∈Zk(z − z′)>A(λ̄)−1/2η

∆z0

]2 ≤ cmin
λ

E[ sup
z∈Zk,wrong

(z∗ − z)>A(λ)−1/2η

∆z0

]2

+
‖z∗ − z0‖2A(λ)−1

∆2
z0

≤ c′[γ∗ + ρ∗] (55)
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where line (55) follows by Lemma 13. Furthermore, we have that

E[
supz,z′∈Zk(z − z′)>A(λ̄)−1/2η

∆z0

]2 ≥ c sup
z,z′∈Zk

‖z − z′‖2A(λ̄)−1

∆2
z0

(56)

by Lemma 12. Combining inequalities (55) and (56), we have that there exists a univesral constant
ξ > 0 such that ∆z0 ≥ ∆ (choose this ξ).

Then,

|(z∗ − z0)>(θ̂k − θ)| ≤ sup
z,z′∈Zk

|(z − z′)>(θ̂k − θ)|

≤ ∆z0

√√√√E[supz,z′∈Zk
(z−z′)>A(λ̄)−1/2η

∆z0
]2

bT/Rc
+

∆

2
(57)

≤ ∆z0c
′

√
γ∗ + ρ∗

bT/Rc
+

∆

2
(58)

<
∆z0

2
+

∆

2
(59)

≤ ∆z0 .

where line (57) follows by the event E , line (58) follows by (55), and line (59) follows since
T ≥ cR[ρ∗ + γ∗] for an appropriately large universal constant c > 0. Rearranging the above
inequality implies that

(z∗ − z0)>θ̂k > 0

and thus z0 6∈ Zk,wrong , a contradiction. Therefore, on E , z∗ is not eliminated.

Proof of Theorem 7. Define the event

Ek = {z∗ is not eliminated in round k},
E = ∩Rk=0Ek.

Then, by the law of total probability, Lemma 9, and the definition of R = dlog(γ(Z))e,

P(Ec) ≤ P(Ec1) +

R∑
k=2

P(Eck| ∩k−1
l=1 El)

≤ dlog(γ(Z))e exp(
−T

32R[ρ∗ + γ∗]
).

Assume the event E holds. Recall the assumption that γ({z, z∗}) ≥ 1 for all z ∈ Z \ {z∗}. Since by
the definition of the algorithm and R,

γ(ZR) ≤ γ(Z)

2R
≤ 1

the algorithm must terminate in one of the dlog(γ(Z))e rounds and return z∗, completing the proof.

F γ∗ Results

In this Section, we prove various results related to γ∗.

Proof of Proposition 2. Define θ = e1 and z∗ = e1. Let

Z = {v ∈ Rd : ‖v‖2 = 1, v1 = 0} ∪ {z∗}.
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Let X = {e1, . . . , ed}. Then, for any λ ∈∆,

Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2 = Eη∼N(0,I)[maxz∈Z\{z∗}(z∗ − z)

>A(λ)−1/2η]2

= Eη∼N(0,I)[maxz∈Z\{z∗}z
>A(λ)−1/2η]2

≥ (d− 1)Eη∼N(0,I)[maxz∈Z\{z∗}z
>η]2

≥ (d− 1)(d+ c)

where c is a universal constant where the second to last inequality follows by symmetry and the last
inequality follows by example 7.5.7 in [32]. On the other hand,

ρ∗ = inf
λ

maxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2

= inf
λ

maxz∈Z\{z∗} ‖z∗ − z‖
2
A(λ)−1

≤ 4d

where we took λ = (1/d, . . . , 1/d)>. Thus, there exists an instance where ρ∗ ≤ dc and γ∗ ≥ c′d2,
proving the result.

Top-K is an example of a problem instance where γ∗ ≤ c log(d)ρ∗ (see Proposition 6).

Proposition 6. Consider an instance of Top-K. Assume wlog θ1 ≥ θ2 ≥ . . . ≥ θd.

γ∗ ≤ c log(d)[
∑
i≤k

(θi − θk+1)−2 +
∑
i>k

(θk − θi)−2].

Proof of Proposition 6. Define

∆i =

{
θi − θk+1 if i ≤ k
θk − θi if i > k

Set λi =
∆−2
i∑

j∈[d] ∆−2
j

. Note that Z = {z ⊂ [d] : |z| = k}. Then,

γ∗ ≤ Eη∼N(0,I)[maxz⊂Z\[k]

∑
i∈[k]∆z

1√
λi
ηi∑

i∈[k]\z θi −
∑
j∈z\[k] θj

]2

=
∑
j∈[n]

∆−2
j Eη∼N(0,I)[maxz⊂Z\[k]

∑
i∈[k]\z(θi − θk)ηi +

∑
j∈z\[k](θk+1 − θj)ηj∑

i∈[k]\z θi −
∑
j∈z\[k] θj

]2

=
∑
j∈[n]

∆−2
j Eη∼N(0,I)[maxz⊂Z\[k]v

>
z η + w>z η]2

where we defined the vectors

(vz)i =
θi − θk∑

i∈[k]\z θi −
∑
j∈z\[k] θj

1{i ∈ [k] \ z}

(wz)i =
θk+1 − θi∑

i∈[k]\z θi −
∑
j∈z\[k] θj

1{i ∈ [z] \ [k]}

Note that

‖vz‖1 =

∑
i∈[k]\z(θi − θk)∑

i∈[k]\z θi −
∑
j∈z\[k] θj

≤
∑
i∈[k]\z θi −

∑
j∈z\[k] θj∑

i∈[k]\z θi −
∑
j∈z\[k] θj

= 1
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where we used the fact that |[k] \ z| = |z \ [k]| and the assumption θ1 ≥ θ2 ≥ . . . ≥ θn. Similarly,

‖wz‖1 ≤ 1.

Thus,

γ∗ ≤
∑
j∈[d]

∆−2
j Eη∼N(0,I)[maxz⊂Z\[k]v

>
z η + w>z η]2

≤
∑
j∈[d]

∆−2
j Eη∼N(0,I)[maxv:‖v‖1≤1v

>η + maxw:‖w‖1≤1w
>η]2

≤ c log(d)
∑
j∈[d]

∆−2
j

where in the final inequality we used Example 7.5.9 of [32].

Proof of Proposition 1.

γ∗ = inf
λ

Eη∼N(0,I)[maxz∈Z
[A(λ)−1/2(z∗ − z)]>η

θ>(z∗ − z)
]2

≤ inf
λ
c log(|Z|) diam({A(λ)−1/2(z∗ − z)

θ>(z∗ − z)
: z ∈ Z \ {z∗}})2 (60)

≤ c′ log(|Z|) inf
λ

maxz∈Z\z∗

∥∥∥∥A(λ)−1/2(z∗ − z)
θ>(z∗ − z)

∥∥∥∥2

2

= c′ log(|Z|) inf
λ

maxz∈Z\z∗
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2

= c′ log(|Z|)ρ∗

where we used exercise 7.5.10 of [32] in line (60). On the other hand, Proposition 7.5.2 of [32]
implies that

γ∗ ≤ dρ∗

Now, we prove the lower bound. There exists ξ > 0, z1 ∈ Z , and λ1 ∈∆ such that

ξ + inf
z 6=z∗

inf
λ∈∆

‖z∗ − z‖2A(λ)−1

∆2
z

≥
‖z∗ − z1‖A(λ1)−1

∆2
z1

.
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Let λ2 ∈∆ attain γ∗. Let λ̄ = 1
2 (λ1 + λ2) Then,

min
λ∈∆

maxz 6=z∗
‖z∗ − z‖2A(λ)−1

∆2
z

≤ maxz 6=z∗
‖z∗ − z‖2A(λ̄)−1

∆2
z

≤ 4(maxz 6=z∗

∥∥∥∥z∗ − z∆z
− z∗ − z1

∆z1

∥∥∥∥2

A(λ̄)−1

+
‖z∗ − z1‖2A(λ̄)−1

∆2
z1

)

≤ 4(
π

2
Eη∼N(0,I)maxz,z′∈Z\{z∗}(

z∗ − z
∆z

− z∗ − z1

∆z1

)>A(λ̄)−1/2η]2 (61)

+
‖z∗ − z1‖2A(λ̄)−1

∆2
z1

)

= 4(2πEη∼N(0,I)maxz∈Z\{z∗}(
z∗ − z

∆z
)>A(λ̄)−1/2η]2 +

‖z∗ − z1‖2A(λ̄)−1

∆2
z1

)

≤ 8(2πEη∼N(0,I)maxz∈Z\{z∗}(
z∗ − z

∆z
)>A(λ2)−1/2η]2 +

‖z∗ − z1‖2A(λ1)−1

∆2
z1

)

(62)

≤ 8(2π inf
λ∈∆

Eη∼N(0,I)maxz∈Z\{z∗}(
z∗ − z

∆z
)>A(λ2)−1/2η]2

+ inf
z 6=z∗

inf
λ∈∆

‖z∗ − z‖2A(λ)−1

∆2
z

+ ξ).

where line (61) follows by Lemma 12 and line (62) follows by the Sudakov-Fernique inequality
(Theorem 7.2.11 of [32]) since A(λ̄)−1 � 2A(λ2)−1. Since ξ > 0 is arbitrary, sending ξ −→ 0
yields the lower bound.

Proof of Proposition 4. Recall the definition B(z, r) = {z′ ∈ Z : ‖z − z′‖2 = r}. Let λi = ϕi
ϕ∗ .

Further, define

Ai = {j ∈ [d] : log(d|B(z∗, j)|) ∈ [2i−1, 2i]}.
Let v > 0 a constant to be chosen later. Then,

√
γ∗ ≤ Eη∼N(0,I)[maxz∈Z\z∗

∑
i∈z∗∆z

1√
λi
ηi

∆z
]

=
1

v
Eη∼N(0,I)[maxz∈Z\z∗v

∑
i∈z∗∆z

1√
λi
ηi

∆z
]

=

√
ϕ∗

v
Eη∼N(0,I)[log(maxz∈Z\z∗ exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
))]

≤
√
ϕ∗

v
log(Eη∼N(0,I)[maxz∈Z\z∗ exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)]) (63)

=

√
ϕ∗

v
log(Eη[maxi∈[4 log(d)]maxz 6=z∗,|z∆z∗|∈Ai exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)]) (64)

≤
√
ϕ∗

v
log(

∑
i∈[4 log(d)]

Eη[maxz 6=z∗,|z∆z∗|∈Ai exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)]) (65)

≤
√
ϕ∗

v
log(4 log(d)maxi∈[4 log(d)]Eη[maxz 6=z∗,|z∆z∗|∈Ai exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)]) (66)

where line (63) follows by Jensen’s inequality, where line (64) follows by the definition of Ai, and
line (65) follows since the max is upper bounded by the sum.
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Notice that line (66) contains the moment generating function of a Gaussian random variable. We
upper bound its variance as follows. Suppose |z∗∆z| ∈ Ai. Then,

V(

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)

= V(

∑
i∈z∗∆z minz′:i∈z∗∆z′

∆z′√
|z∗∆z′| log(d|B(z∗,|z∗∆z′|)|)

ηi

∆z
) (67)

=
∑

i∈z∗∆z

minz′:i∈z∗∆z′
∆2
z′

|z∗∆z′| log(d|B(z∗,|z∗∆z′|)|)

∆2
z

(68)

=
1

|z∗∆z| log(d|B(z∗, |z∗∆z|)|)
∑

i∈z∗∆z

minz′:i∈z∗∆z′
∆2
z′

|z∗∆z′| log(d|B(z∗,|z∗∆z′|)|)
∆2
z

|z∗∆z| log(d|B(z∗,|z∗∆z|)|)

≤ 1

log(d|B(z∗, |z∗∆z|)|)

≤ 1

2i−1
(69)

where line (67) follows by the definition of ϕi, line (68) follows since η ∼ N(0, I), and line (69)
follows since |z∗∆z| ∈ Ai. Now, continuing and using this upper bound on the variance, we have

√
ϕ∗

v
log(4 log(d)maxi∈[4 log(d)]Eη[maxz 6=z∗,|z∆z∗|∈Ai exp(v

∑
i∈z∗∆z

1√
ϕi
ηi

∆z
)])

≤
√
ϕ∗

v
log(4 log(d)maxi∈[4 log(d)]| ∪j∈Ai B(z∗, j)| exp(v2 c

2i+1
)) (70)

= maxi∈[4 log(d)]

√
ϕ∗[log(4 log(d))/v + log(| ∪j∈Ai B(z∗, j)|)/v + v

c

2i+1
]

= maxi∈[4 log(d)]

√
ϕ∗ log(4 log(d)) log(| ∪j∈Ai B(z∗, j)|)

c

2i+1
(71)

≤ maxi∈[4 log(d)]

√
ϕ∗ log(4 log(d))maxj∈Ai log(|Ai|B(z∗, j)|)

c

2i+1

≤ maxi∈[4 log(d)]

√
ϕ∗ log(4 log(d))maxj∈Ai log(d|B(z∗, j)|)

c

2i+1
(72)

≤ c
√
ϕ∗ log(log(d)) (73)

where (70) follows by Lemma 17 and {z ∈ Z : z 6= z∗, |z∆z∗| ∈ Ai} ⊂ ∪j∈AiB(z∗, j), line (71)
follows by maximizing the constant v, (72) follows since |Ai| ≤ d, and line (73) follows by definition
of Ai.

Proof of Proposition 3. Define the allocation

λi ∝ ∆̃−2
i

where

∆̃i =

{
θ>z∗ −maxz∈Z:i∈zθ

>z i 6∈ z∗
θ>z∗ −maxz∈Z:i 6∈zθ

>z i ∈ z∗
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Then,

γ∗ ≤ Eη∼N(0,I)[maxz∈Z\z∗

∑
i∈z∗∆z

1√
λi
ηi∑

i∈z∗\z θi −
∑
j∈z\z∗ θj

]2

=

d∑
i=1

∆̃−2
i Eη∼N(0,I)[maxz∈Z\z∗

∑
i∈z∗∆z ∆̃iηi∑

i∈z∗\z θi −
∑
j∈z\z∗ θj

]2

=

d∑
i=1

∆̃−2
i Eη∼N(0,I)[maxz∈Z\z∗

∑
i∈z∗\z ∆̃iηi +

∑
i∈z\z∗ ∆̃iηi∑

i∈z∗\z θi −
∑
j∈z\z∗ θj

]2

=

d∑
i=1

∆̃−2
i Eη∼N(0,I)[maxz∈Z\z∗

v>z η + w>z η∑
i∈z∗\z θi −

∑
j∈z\z∗ θj

]2

where we defined the vectors

(vz)i =
θ>z∗ −maxz∈Z:i6∈zθ

>z∑
j∈z∗\z θj −

∑
j∈z\z∗ θj

1{i ∈ z∗ \ z}

(wz)i =
θ>z∗ −maxz∈Z:i∈zθ

>z∑
j∈z∗\z θj −

∑
j∈z\z∗ θj

1{i ∈ z \ z∗}

It remains to bound the expected suprema. Suppose wlog z∗ = {1, . . . , r}. By Lemma 10, there
exists a bijection σ : z∗ −→ z such that for every i ∈ z∗, z(i) := (z∗ \ {i}) ∪ {σ(i)} ∈ Z . Note that

θ>z∗ −maxz∈Z:i 6∈zθ
>z ≤ θ>(z∗ − z(i)) = θi − θσ(i).

Therefore,

‖vz‖1 =
∑
i∈z∗\z

|θ>z∗ −maxz∈Z:i 6∈zθ
>z|∑

j∈z∗\z θj −
∑
j∈z\z∗ θj

≤
∑
i∈z∗\z

θi − θσ(i)∑
j∈z∗\z θj −

∑
j∈z\z∗ θj

≤ 1.

A similar argument show that ‖wz‖1 ≤ 1. Thus,

Eη∼N(0,I)[maxz⊂Z\z∗v
>
z η + w>z η]2 ≤ Eη∼N(0,I)[maxv:‖v‖1≤1v

>η + maxw:‖w‖1≤1w
>η]2

≤ c log(d)

where in the final inequality we used Example 7.5.9 of [32].

The following Lemma appears as Corollary 3 in [3].
Lemma 10. Given two bases B1 and B2 of a matroid M = (E, I), there exists a bijection σ :
B1 −→ B2 such that (B2 \ σ(e)) ∪ e ∈ I for all e ∈ I .

G Additional Lower Bounds

In this section, we show that in several common situations Ω(d) samples are required. The following
Theorem applies to combinatorial bandits and implies Theorem 5.
Theorem 9. Let δ ∈ (0, 1/4). Consider the combinatorial bandit setting. Fix θ ∈ Θ such that there
is a unique best arm. Suppose Θ satisfies the following property: for all i ∈ [d]

(θ + ei · min
i∈z∗\z

∆z ∈ Θ) or (θ − ei · min
i∈z\z∗

∆z ∈ Θ) is true.
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If an algorithm A is δ-pac wrt (X ,Z,Θ), then

Eθ[
d∑
i=1

Ti] ≥
d

2
.

where Ti denotes the number of times that A pulls ei.

Remark 1. Note that if Θ = Rd, then Θ satisfies the condition in the above Theorem.

Proof of Theorem 9. Without loss of generality, suppose 1 = arg maxi θ
>zi. Towards a contradic-

tion, suppose there is some arm i such that Eθ[Ti] ≤ 1
2 . Let zj such that i ∈ zj∆z1 and suppose that

i ∈ zj \ z1 (the other case is similar). Define

θ̃k =

{
θk if k 6= i

θi + 2θ>(z1 − zj) if k = i.

Note that (z1 − zj)>θ̃ < 0. Observe that

1

2
≥ Eθ[Ti] ≥ Pθ(Ti > 0).

Define the event A = {Ti = 0} ∩ {I = 1}, where I denotes the index of the set output by A as its
answer for the best set. Note that

Pθ(Ac) ≤ Pθ(Ti > 0) + Pθ(I 6= 1) ≤ 1

2
+ δ ≤ 3

4

so that Pθ(A) ≥ 1
4 .

Define

k̂li,Ti =

Ti∑
s=1

log(fθ(Zs)/fθ̃(Zs))

where Zs is the observation on the sth pull of ei, fθ denotes the density of the distribution associated
with ei ∈ X under θ, and fθ̃ denotes the density of the distribution associated with ei ∈ X under θ̃.
Then, by the change of measure identity (Lemma 18) from [25],

Pθ̃(I = 1) ≥ Pθ̃(A)

= Eθ[1{A} exp(−Tik̂li,Ti)]
= Pθ(A)

≥ 1

4
.

where we used the fact that the only difference between problem θ and problem θ̃ is the ith arm
and on the event A, Ti = 0. Thus, on problem instance (Z, θ̃), A gives the incorrect answer with
probability 1/4 > δ, which is a contradiction.

The following Theorem gives a lower bound for best arm identification in linear bandits.

Theorem 10. Let δ ∈ (0, 1). Let X ⊂ Rd, such that ‖xi‖2 ≤ 1 for all i ∈ [|X |], Z = X , and
Θ = Rd. Fix θ ∈ Θ such that there is a unique best arm and let x1 = arg maxi θ

>xi. If an algorithm
A is δ-pac wrt (X ,Z,Θ) and d ≥ 3, then

Eθ[
∑
x∈X

Tx] ≥ c log(
1

2.4
δ) min

i 6=1

d

θ>(x1 − xi)2

where Tx denotes the number of times that A pulls x ∈ X .
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Proof of Theorem 10. By Theorem 1 of [12], we have that

Eθ[
∑
x∈X

Tx] ≥ log(
1

2.4
δ)cρ∗

so it suffices to lower bound ρ∗.

Since

ρ∗ = min
λ

maxi6=1

‖x1 − xi‖2A(λ)−1

θ>(x1 − xi)2
≥ [min

j 6=1

cd

θ>(x1 − xj)2
] min
λ

maxi 6=1 ‖x1 − xi‖2A(λ)−1 ,

it suffices to show that

min
λ

maxi 6=1 ‖x1 − xi‖2A(λ)−1 ≥ cd.

Let

λ∗ = argminλmaxi 6=1 ‖x1 − xi‖A(λ)−1 .

Then,
√
d = min

λ
maxi∈[|X |] ‖xi‖A(λ)−1

≤ min
λ

maxi 6=1 ‖x1 − xi‖A(λ)−1 + ‖x1‖A(λ)−1

≤ maxi 6=1 ‖x1 − xi‖[ 1
2A(λ∗)+ 1

2x1x>1 ]−1 + ‖x1‖[ 1
2A(λ∗)+ 1

2x1x>1 ]−1

≤
√

2maxi 6=1 ‖x1 − xi‖A(λ∗)−1 +
√

2 ‖x1‖(x1x>1 )+

=
√

2maxi 6=1 ‖x1 − xi‖A(λ∗)−1 +
√

2. (74)

The first line follows by Keifer-Wolfowitz (Theorem 21.1 in [26]). The second to last inequality
follows because

1

2
A(λ∗) +

1

2
x1x
>
1 �

1

2
A(λ∗)

which implies

(
1

2
A(λ∗))−1 � (

1

2
A(λ∗) +

1

2
x1x
>
1 )−1.

Also, since x1 ∈ span(x1), the same fact implies that

‖x1‖( 1
2x1x>1 )+ ≥ ‖x1‖[ 1

2A(λ∗)+ 1
2x1x>1 ]−1 .

Rearranging the inequality (74), we obtain

2(
√
d−
√

2)2 ≤ min
λ

maxi 6=1 ‖x1 − xi‖2A(λ)−1

and thus the result follows.

H Rounding

In this Section, we justify the application of the rounding procedure from [1]. Define

SN = {v ∈ N|X| :

|X |∑
i=1

vi ≤ N}

CN = {v ∈ [0, N ]|X| :

|X |∑
i=1

vi ≤ N}

The following Theorem appears in [1].
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Theorem 11. Let F : S+
d −→ R such that

• For any A,B ∈ S+
d , if A � B, then F (A) ≥ F (B),

• for any A ∈ S+
d and t ∈ (0, 1), F (tA) = t−1F (A).

Let ε ∈ (0, 1/6]. Then, if |X | ≥ N ≥ 5 d
ε2 , for any π ∈ CN , there exists an algorithm that in

Õ(|X |d2) time rounds π to κ ∈ SN such that

F (A(κ)) ≤ (1 + 6ε)F (A(π)).

The following result shows that the optimization problem

Lemma 11. Fix V ⊂ Rd. Define the functions F,G : S+
d −→ R

F (A) = Eη∼N(0,I)[maxv∈V v>A−1/2η]2

G(A) = maxv∈V v>Av.

F and G satisfy the conditions of Theorem 11.

Proof. It is trivial to see thatG satisfies the conditions of Theorem 11. Thus, we focus on the function
F . Let A,B ∈ S+

d such that A � B. Then, A−1 � B−1. Fix v, w ∈ V . Then,

E[(v − w)>A−1/2η]2 = ‖v − w‖A−1 ≤ ‖v − w‖B−1 = E[(v − w)>B−1/2η]2

Then, by Sudakov-Fernique inequality (Theorem 7.2.11 in [32]), it follows that F (A) ≥ F (B).

The second condition is trivial.

I Technical Lemmas related to γ∗

In this Section, we state and prove several useful technical lemmas.

Lemma 12. Let S ⊂ Z . Then,

Eη∼N(0,I)[maxz,z′∈S [A(λ)−1/2(z − z′)]>η]2 ≥ 2

π
maxz,z′∈S ‖z − z′‖

2
A(λ)−1 .

Proof. Fix z1, z2 ∈ S. Then,

Eη∼N(0,I)[maxz,z′∈S [A(λ)−1/2(z − z′)]>η] ≥ Eη∼N(0,I)

[
|A(λ)−1/2(z1 − z2)]>η|

]
= ‖z1 − z2‖

√
2

π

Lemma 13. Let α > 0 be a constant. Then,

inf
λ

Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2 + maxz∈Z\{z∗}

‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
α

≤ c[γ∗ + ρ∗α]

Proof. Let λ1 denote the solution to γ∗ and λ2 the solution to ρ∗. Define λ = 1
2 (λ1 +λ2). It suffices

to show that

Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2

≤ cEη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ1)−1/2η

θ>(z∗ − z)
]2
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and

maxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
≤ cmaxz∈Z\{z∗}

‖z∗ − z‖2A(λ2)−1

θ>(z∗ − z)2
.

Note that

1/2
∑
x∈X

(λ1,x + λ2,x)xx> � 1/2
∑
x∈X

λi,xxx
>

for i = 1, 2. Therefore,

2A(λi)
−1 ≥ A(λ)−1 (75)

for i = 1, 2.

(75) immediately implies

maxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
≤ cmaxz∈Z\{z∗}

‖z∗ − z‖2A(λ2)−1

θ>(z∗ − z)2
.

(75) implies via Sudakov-Fernique inequality (Theorem 7.2.11 in [32]) that

Eη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ)−1/2η

θ>(z∗ − z)
]2

≤ cEη∼N(0,I)[maxz∈Z\{z∗}
(z∗ − z)>A(λ1)−1/2η

θ>(z∗ − z)
]2.

Lemma 14. Let V = {v1, . . . , vl} ⊂ Rd and suppose 0 ∈ V . Let ai ≥ 1 for all i. Then,

Eη∼N(0,I) sup
vi∈V

v>i η ≤ Eη∼N(0,I) sup
vi∈V

aiv
>
i η

Proof. Fix η ∈ Rd. Then, clearly,

sup
vi∈V

v>i η ≤ sup
vi∈V

aiv
>
i η.

Taking the expectation wrt η ∼ N(0, I) yields the result.

Lemma 15. Fix V ⊂ Rd. Then,

Eη∼N(0,I) sup
v∈V

v>η ≥ 0.

Proof. Fix v0 ∈ V . Then,

Eη∼N(0,I) sup
v∈V

v>η ≥ Eη∼N(0,I)v
>
0 η = 0.

Lemma 16. Let V ⊂ Rd and suppose 0 ∈ V . Fix v0 ∈ V . Then,

E sup
v∈V

v>η ≤ 2(‖v0‖2 + E sup
v∈V \{0}

v>g)

Proof.

E sup
v∈V

v>η ≤ E sup
v∈V \{0}

|v>η| ≤ 2(‖v0‖2 + E sup
v∈V \{0}

v>g)

where the last inequality follows by exercise 7.6.9 of [32].
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Lemma 17. Consider a sub-Gaussian random process Xt indexed by t ∈ T such that for any ν we
have E[exp(νXt)] ≤ exp(ν2σ2

t /2). Then E [supt∈T Xt] ≤
√

2 supt∈T σ
2
t log (|T |).

Proof.

E
[
sup
t∈T

Xt

]
=

1

ν
E
[
sup
t∈T

νXt

]
=

1

ν
E
[
log

(
sup
t∈T

exp (νXt)

)]
≤ 1

ν
log

(
E
[
sup
t∈T

exp (νXt)

])
≤ 1

ν
log

(
|T | sup

t∈T
E [exp (νXt)]

)
≤ 1

ν
log

(
|T | sup

t∈T
exp

(
ν2σ2

t /2
))

=
1

ν
log (|T |) + ν sup

t∈T
σ2
t /2

≤
√

2 sup
t∈T

σ2
t log (|T |)

J Some Useful Results regarding Computational Efficiency

The following result shows that after a suitable monotonic transformation, the objective function
in the optimization problems for finding a good allocation in Algorithms 1 and 2 is convex when
X = {e1, . . . , ed}, which holds in the combinatorial bandit problem. We note that Lemma 15 shows
that the gaussian width is nonnegative and thus it suffices consider the squareroot of the objective
function.
Proposition 7. Fix V ⊂ Rd.

f(λ) = Eη∼N(0,I)[maxv∈V v>diag(
1

λ
1/2
i

)η]

is convex.

Proof. Fix λ, κ ∈ Sn−1 and α ∈ [0, 1]. By matrix convexity,

diag(
1

αλi + (1− α)κi
)1/2 � αdiag(

1

λi
)1/2 + (1− α)diag(

1

κi
)1/2.

Furthermore, since the above matrices are diagonal,

diag(
1

αλi + (1− α)κi
) � (αdiag(

1

λi
)1/2 + (1− α)diag(

1

κi
)1/2)2.

Then, by Sudakov-Fernique inequality (Theorem 7.2.11 [32]),
f(αλ+ (1− α)κ) = Eη∼N(0,diag( 1

αλi+(1−α)κi
)) sup
v∈V

v>η

≤ Eη∼N(0,(αdiag( 1
λi

)1/2+(1−α)diag( 1
κi

)1/2)2) sup
v∈V

z>η

= Eη∼N(0,I) sup
v∈V

v>(αdiag(
1

λi
)1/2 + (1− α)diag(

1

κi
)1/2)η

≤ αEη∼N(0,I) sup
v∈V

v>diag(
1

λi
)1/2η

+ (1− α)Eη∼N(0,I) sup
v∈V

v>diag(
1

κi
)1/2η

= αf(λ) + (1− α)f(κ)
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K Comparison Results

In this Section, we prove various results related to the sample complexities proposed in other works.
Recall the notation for the sphere B(z, r) = {z′ ∈ Z : ‖z − z′‖2 = r}.

Proof of Proposition 5. Define θ1 = . . . = θk = 1/2, θk+1 = . . . = θ2k−1 = 1
2 −

1
k1/2 and

θ2k = . . . = θd = 0 and d = k2. Define

∆i =

{
θi − θk+1 : i ≤ k
θk − θi : i > k

λ̄i =
∆−2
i∑d

i=1 ∆−2
i

Note that

ρ∗ ≤
∑
i

∆−2
i maxz 6=z∗

∑
i∈z∗∆z ∆2

i

∆2
z

≤ c
∑
i

∆−2
i

≤ c[k2 + d]

≤ c′d.

Consider arm d. We will show that ϕd ≥ ck log(d). Fix z̃ = {k + 1, k + 2, . . . , 2k − 1, d} and
z∗ = [k]. It suffices to show that

‖z∗ − z̃‖1 log(|B(z∗, |z∗∆z̃|)
θ>(z∗ − z̃)2

≥ c log(d)k,

from which the claim will follow. Note that

‖z∗ − z̃‖1
θ>(z∗ − z̃)2

=
2k

(k−1√
k

+ 1
2 )2
≥ c.

Furthermore,

log(|B(z∗, |z∗∆z̃|)|) ≥ log(

(
d− 2k

k

)
)

≥ log(
(d− 2k)k

k!
)

≥ k log(
d− 2k

k
)

≥ k log(k − 2)

≥ 1

4
k log(d)

where in the last inequality we used d = k2. Thus, the claim follows and ϕd ≥ ck. A similar
argument applies to arms {2k, . . . , d− 1} yielding the result.

The following proposition shows that ρ∗ is lower bounded by the typical measure of hardness for
top-k [25]. It implies that the sample complexity of [8, 12] is off by a factor of k.

Proposition 8. Consider the top-k problem where θ1 ≥ . . . θk > θk+1 ≥ . . . ≥ θn.

ρ∗ ≥
∑
i≤k

1

(θi − θk+1)2
+
∑
i>k

1

(θk − θi)2
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Proof.

ρ∗ = inf
λ

maxz∈Z\{z∗}
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2

= inf
λ

maxA 6=[k]

∑
i∈A∆[k]

1
λi

(
∑
i∈[k] θi −

∑
i∈A θi)

2

≥ min
λ

max(maxi∈[k]

1
λi

+ 1
λk+1

(θi − θk+1)2
,maxi∈[d]\[k]

1
λi

+ 1
λk

(θk − θi)2
)

≥ min
λ

max(maxi∈[k]

1
λi

(θi − θk+1)2
,maxi∈[d]\[k]

1
λi

(θk − θi)2
)

To minimize the RHS, we set it to a constant c. Then,

λi =

{
1

c(θi−θk+1)2 i ≤ k
1

c(θi−θk)2 otherwise

Then, the result follows from the below and solving for c.

1 =
∑
i=1

λi =
1

c
[
∑
i≤k

1

(θi − θk+1)2
+
∑
i>k

1

(θk − θi)2
].

The following gives an instance where |Z| is linear in the dimension d, but ϕ∗ is loose by a
√
d factor.

Proposition 9. Consider the combinatorial bandit setting. There exists a problem where |Z| is linear
in the dimension d and ϕ∗ ≥ cρ∗

√
d.

Proof. Fix k < d. Define z1 = [k], z2 = {k + 1}, z3 = {k + 3}, . . . , zd−k = {d} and let
Z = {z1, . . . , zd−k}. Note |Z| ≤ d and thus satisfies the hypothesis. Fix ε > 0 and let

θi =

{
ε i ≤ k
0 otherwise

.

Then, z∗ = z1. The upper bound guarantee of [5, 20] is at least

k∑
i=1

maxz 6=z∗
|z∗∆z|

θ>(z∗ − z)2
+

d∑
i=k+1

|z∗∆zi|
θ>(z∗ − zi)2

= d
k + 1

(kε)2

≥ d

kε2
. (76)

On the other hand, we have that

ρ∗ = maxz 6=z∗
‖z∗ − z‖2A(λ)−1

θ>(z∗ − z)2
≤ 2[

k2 + d

(kε)2

≤ 2[
1

ε2
+

d

(kε)2
] (77)

where we took

λi =

{
1
2k + 1

2d i ≤ k
1
2d otherwise

.

Putting k =
√
d into (76) and (77) yields the result.

In the matching problem, if θ = 1{i ∈ z}∆ for some z ∈ Z and ∆ > 0, we say that it is an
instance of HOMOGENOUS MATCHING. The following result appears in [5]. It shows that the sample
complexity of [5, 20] is correct for the homogeneous matching problem.
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Proposition 10. Consider the homogenous MATCHING problem. Then, ρ∗ = Θ(d/∆2). Further,
letting

ϕi = maxz∈Z\{z∗}:i∈z∗∆z
|z∗∆z| log(|B(z∗, |z∗∆z|)|)

∆2
z

we have that
∑n
i=1 ϕi = O(d/∆2).

Remark 2. It follows from Proposition 4 that for the homogenous MATCHING problem, γ∗ ≤
O(log(log(d))d/∆2)

The following result appears in [8]. It shows that there is a gap of order d between the sample
complexities in [10] and [13] and the lower bound.

Proposition 11. Let d be even. Consider the combinatorial bandit setting where X = {e1, . . . , ed}
and Z = {[d/2], {d/2 + 1, . . . , d} and θi = ε1{i ≤ d/2}. Then, the guarantee of the CLUCB in
[10] and the algorithm in [13] is Ω(dε−2 ln(1/d)). On the other hand, ρ∗ = ε−2.

The following result shows that the sample complexity cannot depend on log(Z) because |Z| can be
arbitrarily large while γ∗ ≤ 1.

Proposition 12. For any N ∈ N, there exists an instance of the transductive linear bandit problem
where |Z| ≥ N and γ∗ ≤ 1.

Proof of Proposition 12. Let X = {e1, . . . , ed}. Let θ = ae1 for a constant a > 0 to be chosen
later. Let z1 = e1. Let z2, . . . , zN such that for every i e>1 zi = 0 and ‖zi‖2 = 1. Then, ∆i :=
θ>(z1 − z) = a for all i and some ∆ > 0. Then, by Proposition 7.5.2 of [32], we have that

inf
λ∈∆

E[sup
i>1

(z∗ − zi)>A(λ)−1/2η

∆i
] =

1

a
inf
λ∈∆

E[sup
i>1

(z∗ − zi)>A(λ)−1/2η]

≤
√
d

a
maxi>1

∥∥∥A(λ)−1/2(z∗ − zi)
∥∥∥

2

≤ d

a
maxi>1 ‖z∗ − zi‖2

=
2d

a
≤ 1

for a = 2d. Thus, the claim follows.

L Extension to SubGaussian noise

We briefly sketch the extension to SubGaussian noise. First, we define some notation: If Y is a
random variable, define ‖Y ‖ψ2

:= inf{s > 0 : E Y 2

s2 ≤ 1}, i.e., the 2-Orlicz norm. If Y is a random
vector, then ‖Y ‖ψ2

= supv:‖v‖2=1

∥∥v>Y ∥∥
ψ2

(see [32] for a reference).

Let n ≥ d and fix a set of measurements xI1 , . . . , xIn and let y1, . . . , yn be the associated observations
where we assume yi = x>i θ + ηi for ηi is independent mean-0 subGauss(1) noise. Define the matrix

X =

x
>
I1
...
x>IT


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Define θ̂ = (X>X)−1X>Y . Note that θ̂ − θ = (X>X)−1X>η. Note that ‖η‖ψ2
≤ 1. For any

v ∈ Rd,∥∥v>(X>X)−1X>η
∥∥
ψ2

=
∥∥X(X>X)−1v

∥∥
2

∥∥∥∥ 1

‖X(X>X)−1v‖2
v>(X>X)−1X>η

∥∥∥∥
ψ2

≤
∥∥X(X>X)−1v

∥∥
2

= ‖v‖(X>X)−1

This shows that
∥∥v>(X>X)−1X>η

∥∥
ψ2
≤
∥∥v>(X>X)−1X>η̃

∥∥
ψ2

where η̃ ∼ N(0, I). Thus,
applying Theorem 8.5.5 and Talagrand’s majorizing measure theomem (Theorem 8.6.1) from [32]
yields for all z ∈ Z \ {z∗}

(z∗ − z)>θ̂ ≥ (z∗ − z)>θ − c
(
Eη∼N(0,Id)

[
sup

z∈Z\{z∗}
(z∗ − z)>A−1/2η

]
−
√

2 sup
z∈Z\{z∗}

‖z∗ − z‖2A−1 log( 1
δ )
)
,

where c > 0 is a universal constant, which is the essential concentration inequality used for the
arguments in this paper.

M Experiment Details

Combinatorial Bandit Experiments: We used Python 3 and parallized the simulations on an
Intel(R) Xeon(R) CPU E5-2690. For each experiment, we generate noise from a standard normal
distribution. We used the stochastic mirror descent algorithm described in Section K, but let λ ∈∆

(instead of ∆̃). We ran the algorithm for 1000 iterations with a batch size of 10 on all experiments.
Once we obtained a λ ∈ ∆, we used 2,000 samples to form an empirical mean to estimate the
Gaussian width. We considered the setting where it is known that maxz∆z ≤ 2d, which holds for
example when θ ∈ [−1, 1], and thus solved

inf
λ∈∆

Eη∼N(0,I)[maxz∈Z
(z̃k − z)>A(λ)−1/2η

2−k · 2d+ θ̂>k (z̃k − z)
]2

instead of (27). We rounded our designs τkλ simply by taking the ceiling (which only incurs a loss of
an additive factor of d because |X | ≤ d.

To implement CLUCB, we use a state-of-the-art anytime confidence bound (inequality (2) from [17]),
which is much better than the one used in [10]. For the uniform allocation algorithm, we use the
termination condition that one obtains from applying the TIS inequality (Theorem 5.8 in [2]) to the
process θ̂>(z − z′).

We used 20 trials for the matching experiment, 30 trials for the shortest path experiment, and 60 trials
for the biclique experiment. We generated 95% confidence intervals using the bootstrap.

Transductive Linear Bandits: We made two main changes to the algorithm as written,
both focused on computing the objective infλ∈∆ τ(λ;Zk) more effectively. Firstly, we con-
sidered two different subproblems: minλ∈∆ Eη∼N(0,I)[maxz′,z∈Zk(z − z′)>A(λ)−1/2η]2 and
minλ maxz,z′‖z′ − z‖2A(λ)−1 . In the setting where there are extremely large number of arms, it
is not practical to take a max over all pairs of them - so in both subproblems we only took the max
over ẑk −Zk where ẑk = argmaxz∈Zk θ̂

>
k zk. To justify this, we point out that by Theorem 7.5.2 of

[32] Eη∼N(0,I)[maxz′,z∈Zk(z − z′)>A(λ)−1/2η] = 2Eη∼N(0,I)[maxz∈Zk(ẑk − z)>A(λ)−1/2η],
and minλ maxz,z′‖z′ − z‖2A(λ)−1 ≤ 4 minλ maxz∈Zk‖ẑk − z‖2A(λ)−1 . Motivated by this, we
computed the distribution λ′ = argminλEη∼N(0,I)[maxz∈Zk(ẑk − z)>A(λ)−1/2η] and λ′′ =

minλ maxz‖ẑk − z‖2A(λ)−1 and set λk = (λ′ + λ′′)/2. Note that using this distribution only makes
the algorithm perform worst than if the optimal - it does not affect correctness in anyway.

Fixed Budget: As in the previous, we computed an allocation not using γ(Zk) but rather a minimum
over the differences ẑk −Zk.
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