
We thank the reviewers for the constructive feedback, which confirms our contributions of laying a solid theoretical1

foundation for studying the abilitiy for GNNs to count substructures, proving concrete results for MPNNs and IGNs,2

and proposing the novel LRP model successful in substructure counting and real tasks. We address the concerns below.3

1. Motivation and Theory4

R1 The advantage of GNNs over traditional subgraph-counting algorithms? Many challenging prediction tasks on5

graph data can involve counting an unknown set of graph substructures, which calls for a data-driven solution that can6

not only count substructures but also discover which substructures to count. GNNs have such potentials, provided that7

they have enough expressive power to do so. Moreover, GNNs are known for integrating structural information with8

node and edge features, which is desirable for counting attributed substructures efficiently.9

R4 The theoretical results are not novel given existing results that GNNs are no more expressive than WL. We respect-10

fully disagree. While the reviewer is correct about prior work on the powers of MPNNs v.s. WL, our results precisely11

establish substructure-counting (in)abilities of WL which were unknown before our work. These results then carry over12

to MPNNs by building on prior work. Moreover, we also prove results for IGNs, which are not within the WL hierarchy.13

2. The Local Relational Pooling model14

R1 and R2 Time-complexity of LRP. While enumerating node permutations may sound prohibitive, LRP can be imple-15

mented practically, thanks to 1) only enumerating each local egonet; 2) only considering BFS-consistent permutations;16

3) tensor cropping; 4) pre-computing node/edge indices for permutations. Its efficiency in practice is shown in Table 1.17

18

R1 How does GraphSAGE compare with LRP? Indeed, the expressiveness of GraphSAGE19

deserves a separate analysis, especially when using multi-hop neighborhood. If we allow20

GraphSAGE to enumerate all permutations of the neighborhood, as the reviewer suggested,21

it becomes similar in spirit to LRP, except for aggregating neighborhood information as a22

sequence rather than a tensor, which results in advantages of LRP in exploiting edge features and high-order structures:23

1) While the original GraphSAGE does not consider edge features, even if we can do so via augmenting the node features24

by applying an invariant function to the features of its immediate edges (e.g. summing or averaging), GraphSAGE25

cannot distinguish the pairs of graphs shown on the right, while LRP-1-3 can; 2) GraphSAGE cannot distinguish the26

pair of 12-circular graphs C12(1, 3) and C12(1, 5) (see [1]), no matter the hop-size being used, because ∀k, the k-hop27

neighborhood of every node in the two graphs has the same size. This means GraphSAGE cannot count squares, while28

LRP-2-4 can. Further, Table 3 shows the performance on the synthetic tasks of GraphSAGE + LSTM on full 1-hop29

neighborhood - it can count stars but not triangles, consistent with the limitation of information in 1-hop neighborhood.30

R2 How to decide which subtensor Ck to use for node i? Let Gego
i,l denote the egonet of depth l centered at node i. For31

every BFS-consistent permutation, π, of the nodes in Gego
i,l , Ck(π ◦Bego

i,l ) ∈ Rk×k×d gives the tensor representation of32

the subgraph induced by the first k nodes under this permutation. On the choice of k - we set k to be an upper bound on33

the size of the substructures of interest.34

R2 Where does the term MLP(Di)/|SBFS
n | come from? If this term were 1 or 1/|SBFS

n |, we would get sum or mean35

pooling over all BFS-consistent permutations of the egonet, respectively. However, adding irrelevant edges to node i36

affects both the total number and fraction of permutations in which a substructure of interest appears, and so neither37

summing nor averaging over all permutations is fully desirable. Hence, we introduce MLP(Di) to learn to correct this bias38

as a function of the degree of node i. Thus, we can learn an invariant function over permutations that extends summation39

and averaging. From the literature of GNNs, this can be also seen as a generalization of the degree-normalization in40

GCNs. When l > 1, we generalize from MLP(Di) to an MLP over the list of degrees of all nodes in the permutation.41

3. Experiments42

R1 Regarding what “top and median performances” means. Sorry about not having made it clearer, but here “top” and43

“median” are with respect to five random seeds in training, and the errors are indeed averaged over all test graphs. The44

reason we report the top performance is because we are more interested in expressive power than training, and a good45

top performance suffices to indicates good expressive power.46

R4 and R2 Experiments on more standard datasets; How about LRP with l > 1? Additional results on ZINC and47

MUTAG are shown below. When l > 1, each cropped subtensor contains one node from every depth level ≤ l.48

LRP-7-8 almost matches the best performance (by GateGCN-E-PE, which augments node features with top Laplacian49

eigenvectors) on ZINC benchmarked in [2]. LRP-1-4 also surpasses GIN and 3WLGNN ([3]) on MUTAG.50

Table 1: Results for ZINC. †: reported in [2].
Model Train MAE Test MAE Time / Epoch

GraphSAGE† 0.081 ± 0.009 0.398 ± 0.002 16.61s
GIN† 0.319 ± 0.015 0.387 ± 0.015 2.29s
MoNet† 0.093 ± 0.014 0.292 ± 0.006 10.82s
GatedGCN-E-PE† 0.067 ± 0.019 0.214 ± 0.013 10.70s
GatedGCN-E† 0.074 ± 0.016 0.282 ± 0.015 20.50s
3WLGNN† 0.140 ± 0.044 0.256 ± 0.054 334.69s
LRP-7-8 0.028 ± 0.004 0.223 ± 0.008 72s
LRP-5-6 0.020 ± 0.006 0.256 ± 0.033 42s

Table 2: Results for MUTAG. †: reported in [3].
Model Test Acc (%)
FGSD† 92.12
GIN† 89.4 ± 5.6
3WLGNN† 90.6 ± 9.7
LRP-1-4 91.0 ± 6.4

Table 3: Top & median loss on synthetic tasks.
Model 3-Star Triangle
GraphSAGE 2.4E-10 / 2.0E-5 1.3E-1 / 1.5E-1
LRP-1-4 1.1E-5 / 3.8E-5 2.8E-5 / 4.8E-5
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