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Abstract

The ability to detect and count certain substructures in graphs is important for
solving many tasks on graph-structured data, especially in the contexts of computa-
tional chemistry and biology as well as social network analysis. Inspired by this,
we propose to study the expressive power of graph neural networks (GNNSs) via
their ability to count attributed graph substructures, extending recent works that
examine their power in graph isomorphism testing and function approximation. We
distinguish between two types of substructure counting: induced-subgraph-count
and subgraph-count, and establish both positive and negative answers for popular
GNN architectures. Specifically, we prove that Message Passing Neural Networks
(MPNNs), 2-Weisfeiler-Lehman (2-WL) and 2-Invariant Graph Networks (2-IGNs)
cannot perform induced-subgraph-count of any connected substructure consisting
of 3 or more nodes, while they can perform subgraph-count of star-shaped sub-
structures. As an intermediary step, we prove that 2-WL and 2-IGNs are equivalent
in distinguishing non-isomorphic graphs, partly answering an open problem raised
in [38]]. We also prove positive results for k-WL and k-IGNs as well as negative
results for k-WL with a finite number of iterations. We then conduct experiments
that support the theoretical results for MPNNs and 2-IGNs. Moreover, motivated
by substructure counting and inspired by [43], we propose the Local Relational
Pooling model and demonstrate that it is not only effective for substructure counting
but also able to achieve competitive performance on molecular prediction tasks.

1 Introduction

In recent years, graph neural networks (GNNs) have achieved empirical success on processing data
from various fields such as social networks, quantum chemistry, particle physics, knowledge graphs
and combinatorial optimization [4} 5} 9L [10} [12} 13} 29} 1311 147 55| 158l 166 167, 169, (70, [71} [73\ [74].
Thanks to such progress, there have been growing interests in studying the expressive power of GNNs.
One line of work does so by studying their ability to distinguish non-isomorphic graphs. In this
regard, Xu et al. [64] and Morris et al. [44] show that GNNs based on neighborhood-aggregation
schemes are at most as powerful as the classical Weisfeiler-Lehman (WL) test [60] and propose
GNN architectures that can achieve such level of power. While graph isomorphism testing is very
interesting from a theoretical viewpoint, one may naturally wonder how relevant it is to real-world
tasks on graph-structured data. Moreover, WL is powerful enough to distinguish almost all pairs of
non-isomorphic graphs except for rare counterexamples [3]]. Hence, from the viewpoint of graph
isomorphism testing, existing GNNs are in some sense already not far from being maximally powerful,
which could make the pursuit of more powerful GNNs appear unnecessary.
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Another perspective is the ability of GNNs to approximate permutation-invariant functions on graphs.
For instance, Maron et al. [41] and Keriven and Peyré [28]] propose architectures that achieve universal
approximation of permutation-invariant functions on graphs, though such models involve tensors
with order growing in the size of the graph and are therefore impractical. Chen et al. [§8]] establishes
an equivalence between the ability to distinguish any pair of non-isomorphic graphs and the ability
to approximate arbitrary permutation-invariant functions on graphs. Nonetheless, for GNNs used
in practice, which are not universally approximating, more efforts are needed to characterize which
functions they can or cannot express. For example, Loukas [37] shows that GNNs under assumptions
are Turing universal but lose power when their depth and width are limited, though the arguments
rely on the nodes all having distinct features and the focus is on the asymptotic depth-width tradeoff.
Concurrently to our work, Garg et al. [[16] provide impossibility results of several classes of GNNs
to decide graph properties including girth, circumference, diameter, radius, conjoint cycle, total
number of cycles, and k-cliques. Despite these interesting results, we still need a perspective for
understanding the expressive power of different classes of GNNs in a way that is intuitive, relevant to
goals in practice, and potentially helpful in guiding the search for more powerful architectures.

Meanwhile, graph substructures (also referred to by various names including graphlets, motifs, sub-
graphs and graph fragments) are well-studied and relevant for graph-related tasks in computational
chemistry [[11} 13} 25} 26l 27, 146]], computational biology [32] and social network studies [24]. In or-
ganic chemistry, for example, certain patterns of atoms called functional groups are usually considered
indicative of the molecules’ properties [33!49]. In the literature of molecular chemistry, substructure
counts have been used to generate molecular fingerprints [43} 48] and compute similarities between
molecules [[1,153]]. In addition, for general graphs, substructure counts have been used to create
graph kernels [56] and compute spectral information [S1]. The connection between GNNs and graph
substructures is explored empirically by Ying et al. [[68] to interpret the predictions made by GNNss.
Thus, the ability of GNN architectures to count graph substructures not only serves as an intuitive
theoretical measure of their expressive power but also is highly relevant to practical tasks.

In this work, we propose to understand the expressive power of GNN architectures via their ability to
count attributed substructures, that is, counting the number of times a given pattern (with node and
edge features) appears as a subgraph or induced subgraph in the graph. We formalize this question
based on a rigorous framework, prove several results that partially answer the question for Message
Passing Neural Networks (MPNNs) and Invariant Graph Networks (IGNs), and finally propose a new
model inspired by substructure counting. In more detail, our main contributions are:

1. We prove that neither MPNNSs [17] nor 2nd-order Invariant Graph Networks (2-IGNs) [41]]
can count induced subgraphs for any connected pattern of 3 or more nodes. For any such
pattern, we prove this by constructing a pair of graphs that provably cannot be distinguished
by any MPNN or 2-IGN but with different induced-subgraph-counts of the given pattern.
This result points at an important class of simple-looking tasks that are provably hard for
classical GNN architectures.

2. We prove that MPNNs and 2-IGNs can count subgraphs for star-shaped patterns, thus
generalizing the results in Arvind et al. [2]] to incorporate node and edge features. We also
show that k-WL and k-IGNs can count subgraphs and induced subgraphs for patterns of
size k, which provides an intuitive understanding of the hierarchy of k-WL’s in terms of
increasing power in counting substructures.

3. We prove that T iterations of k-WL is unable to count induced subgraphs for path patterns
of (k + 1)2T or more nodes. The result is relevant since real-life GNNs are often shallow,
and also demonstrates an interplay between k and depth.

4. Since substructures present themselves in local neighborhoods, we propose a novel GNN
architecture called Local Relation Pooling (LRP)'| with inspirations from Murphy et al.
[45]. We empirically demonstrate that it can count both subgraphs and induced subgraphs
on random synthetic graphs while also achieving competitive performances on molecular
datasets. While variants of GNNs have been proposed to better utilize substructure informa-
tion [34} 35]142], often they rely on handcrafting rather than learning such information. By
contrast, LRP is not only powerful enough to count substructures but also able to learn from
data which substructures are relevant.

!Code available at https://github.com/leichen2018/GNN-Substructure-Counting,
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Figure 1: Illustration of the two types
substructure-counts of the patterns
G®] and GP2! in the graph G, as de-
fined in Section 2.J1 The node fea-
tures are indicated by colors. We
have C;(G; GP1l) = Co(G; GP) =

Pl Pl G 1, and C;(G;GPl) = 0 while
Cq(G; Gy =1.

2 Framework

2.1 Attributed graphs, (induced) subgraphs and two types of counting

We define an attributed graph as G = (V, E, z,e), where V = [n] := {1, ..., n} is the set of vertices,
E CV x Vis the set of edges, x; € & represents the feature of node 7, and e; ; € Y represent the
feature of the edge (4, j) if (¢,j) € E. The adjacency matrix A € R™*"is defined by A, ; = 1 if
(i,7) € E and 0 otherwise. We let D; = .y, A; ; denote the degree of node i. For simplicity, we
only consider undirected graphs without self-connections or multi-edges. Note that an unattributed

graph G = (V, E) can be viewed as an attributed graph with identical node and edge features.

Unlike the node and edge features, the indices of the nodes are not inherent properties of the
graph. Rather, different ways of ordering the nodes result in different representations of the same
underlying graph. This is characterized by the definition of graph isomorphism: Two attributed
graphs Gt = (VI Bl 2l e[ty and G = (VI B2 2] el]) are isomorphic if there exists
a bijection 7 : VI — VPl such that (1) (i,7) € EM if and only if (7(i),7(j)) € EP, (2)

xgl] ol 2 ;) for all i in VI and (3) ¢; 1] = efgz) () Torall (i,7) € Bl

For G = (V,E, x,e), a subgraph of G is any graph G5} = (VI EB! 2 ¢) with VI8 C V and
EBl C E. An induced subgraphs of G is any graph GI8'1 = (V81 EIS'] 2 ¢) with V18T C V and
EST=FEn (V[S/] )2. In words, the edge set of an induced subgraph needs to include all edges in F

that have both end points belonging to V8. Thus, an induced subgraph of G is also its subgraph,
but the converse is not true.

We now define two types of counting associated with subgraphs and induced subgraphs, as illustrated
in Figure (1} Let G = (VP! ElFl 2[P] ¢[Pl) be a (typically smaller) graph that we refer to as a
pattern or substructure. We define Cg(G, GI?)), called the subgraph-count of G in G, to be the
number of subgraphs of G that are isomorphic to G*!. We define C;(G; GI*1), called the induced-
subgraph-count of G in G, to be the number of induced subgraphs of G that are isomorphic to
GPl. Since all induced subgraphs are subgraphs, we always have C;(G; GF!) < Cq(G; GP)).

Below, we formally define the ability for certain function classes to count substructures as the ability
to distinguish graphs with different subgraph or induced-subgraph counts of a given substructure.

Definition 2.1. Let G be a space of graphs, and F be a family of functions on G. We say F is able to
perform subgraph-count (or lnduced-sub raph-count) ofa pattern GPlongGi ]ffor all G GPl e g
such that Cs (G, GP) # Cs(GPL, GPY) (or C; (G, GP £ C;(GPL, GPY)), there exists f € F
that returns different outputs when applied to G and G2.

In Appendix [A] we prove an equivalence between Definition 2.1 and the notion of approximating
subgraph-count and induced-subgraph-count functions on the graph space. Definition [2.1] also
naturally allows us to define the ability of graph isomorphism tests to count substructures. A graph
isomorphism test, such as the Weisfeiler-Lehman (WL) test, takes as input a pair of graphs and
returns whether or not they are judged to be isomorphic. Typically, the test will return true if the two
graphs are indeed isomorphic but does not necessarily return false for every pair of non-isomorphic
graphs. Given such a graph isomorphism test, we say it is able to perform induced-subgraph-count (or
subgraph-count) of a pattern GI*! on G if VGt GI?! € G such that C; (G GPP) # C (G, GIP)
(or C5(GIU, GIPl) £ C5(GPI, GIP1)), the test can distinguish these two graphs.



3 Message Passing Neural Networks and i-Weisfeiler-Lehman tests

The Message Passing Neural Network (MPNN) is a generic model that incorporates many popular
architectures, and it is based on learning local aggregations of information in the graph [17]. When
applied to an undirected graph G = (V, E, z, ¢), an MPNN with T layers is defined iteratively as

follows. For ¢ < T, to compute the message m{") and the hidden state hgtﬂ) for eachnode v € V

at the (¢ + 1)th layer, we apply the following deate rule:
mgt—H) = ZN(’L) Mt(h(t) h(t) ei,j)? h]gt-‘,—l) = Ut(hgt),m(ﬂ_l)) 5

IR ERY B i
where N/ (2) is the neighborhood of node 7 in G, M, is the message function at layer ¢ and Uy is the

vertex update function at layer ¢. Finally, a graph-level prediction is computed as § = R({hET) :
i € V}), where R is the readout function. Typically, the hidden states at the first layer are set as

hl(.o) = x;. Learnable parameters can appear in the functions My, Uy (for all ¢ € [T]) and R.

Xu et al. [64]] and Morris et al. [44] show that, when the graphs’ edges are unweighted, such models
are at most as powerful as the Weisfeiler-Lehman (WL) test in distinguishing non-isomorphic graphs.
Below, we will first prove an extension of this result that incorporates edge features. To do so, we
first introduce the hierarchy of k-Weisfeiler-Lehman (k-WL) tests. The k-WL test takes a pair of
graphs GI! and G and attempts to determine whether they are isomorphic. In a nutshell, for each
of the graphs, the test assigns an initial color in some color space to every k-tuple in V* according to
its isomorphism type, and then it updates the colorings iteratively by aggregating information among
neighboring k-tuples. The test will terminate and return the judgement that the two graphs are not
isomorphic if and only if at some iteration ¢, the coloring multisets differ. We refer the reader to
Appendix [C|for a rigorous definition.

Remark 3.1. For graphs with unweighted edges, 1-WL and 2-WL are known to have the same
discriminative power [39]]. For k > 2, it is known that (k + 1)-WL is strictly more powerful than
k-WL, in the sense that there exist pairs of graph distinguishable by the former but not the latter [0]].
Thus, with growing k, the set of k-WL tests forms a hierarchy with increasing discriminative power.
Note that there has been an different definition of WL in the literature, sometimes known as Folklore
Weisfeiler-Lehman (FWL), with different properties [39) 44]]. E]

Our first result is an extension of Morris et al. [44], Xu et al. [[64] to incorporate edge features.

Theorem 3.2. Two attributed graphs that are indistinguishable by 2-WL cannot be distinguished by
any MPNN.

The theorem is proven in Appendix [D| Thus, it motivates us to first study what patterns 2-WL can or
cannot count.

3.1 Substructure counting by 2-WL and MPNNs

It turns out that whether or not 2-WL can perform induced-subgraph-count of a pattern is completely
characterized by the number of nodes in the pattern. Any connected pattern with 1 or 2 nodes
(i.e., representing a node or an edge) can be easily counted by an MPNN with 0 and 1 layer of
message-passing, respectively, or by 2-WL with 0 iterationﬂ In contrast, for all larger connected
patterns, we have the following negative result, which we prove in Appendix [E]

Theorem 3.3. 2-WL cannot induced-subgraph-count any connected pattern with 3 or more nodes.

The intuition behind this result is that, given any connected pattern with 3 or more nodes, we can
construct a pair of graphs that have different induced-subgraph-counts of the pattern but cannot be
distinguished from each other by 2-WL, as illustrated in Figure[2] Thus, together with Theorem 3.2}
we have

Corollary 3.4. MPNNs cannot induced-subgraph-count any connected pattern with 3 or more nodes.

For subgraph-count, if both nodes and edges are unweighted, Arvind et al. [2] show that the only
patterns 1-WL (and equivalently 2-WL) can count are either star-shaped patterns and pairs of disjoint

2When “WL test” is used in the literature without specifying “k”, it usually refers to 1-WL, 2-WL or 1-FWL.
3In fact, this result is a special case of Theorem



Figure 2: Illustration of the con-

2 struction in the proof of Theorem

/ \ / / \ / for the pattern Gl on the

/ \— ' : 1 left. Note that C;(GIU; GIPl) = 0

Y 5 . 5 and C;(GP; GPl) = 2, and the

/ \ / / \ / graphs G!* and G/ cannot be

Z distinguished by 2-WL, MPNNs
felil felt) feltl or 2-IGNs.

edges. We prove the positive result that MPNNs can count star-shaped patterns even when node and
edge features are allowed, utilizing a result in Xu et al. [64] that the message functions are able to
approximate any function on multisets.

Theorem 3.5. MPNNs can perform subgraph-count of star-shaped patterns.

By Theorem [3.2] this implies that
Corollary 3.6. 2-WL can perform subgraph-count of star-shaped patterns.

3.2 Substructure counting by k-WL

There have been efforts to extend the power of GNNs by going after k-WL for higher k, such as
Morris et al. [44]]. Thus, it is also interesting to study the patterns that £-WL can and cannot count.
Since k-tuples are assigned initial colors based on their isomorphism types, the following is easily
seen, and we provide a proof in Appendix [G]

Theorem 3.7. k-WL, at initialization, is able to perform both induced-subgraph-count and subgraph-
count of patterns consisting of at most k nodes.

This establishes a potential hierarchy of increasing power in terms of substructure counting by k-WL.
However, tighter results can be much harder to achieve. For example, to show that 2-FWL (and
therefore 3-WL) cannot count cycles of length 8, Fiirer [[15] has to rely on computers for counting
cycles in the classical Cai-Fiirer-Immerman counterexamples to k-WL [6]. We leave the pursuit of
general and tighter characterizations of k-WL’s substructure counting power for future research, but
we are nevertheless able to prove a partial negative result concerning finite iterations of k-WL.

Definition 3.8. A path faattern of size m, denoted by H,,, is an unattributed graph, H,, =
(VIR BED) where VIl = [m], and EM) = {(i,i4+1):1<i<m}U{(i+1,i):1<i<m}
Theorem 3.9. Running T iterations of k-WL cannot perform induced-subgraph-count of any path
pattern of (k + 1)2T or more nodes.

The proof is given in Appendix |Hl This bound grows quickly when 7" becomes large. However, since
in practice, many if not most GNN models are designed to be shallow [62, [74], this result is still
relevant for studying finite-depth GNNs that are based on k-WL.

4 Invariant Graph Networks

Recently, diverging from the strategy of local aggregation of information as adopted by MPNNs
and k-WLs, an alternative family of GNN models called Invariant Graph Networks (IGNs) was
introduced in Maron et al. [39, 140, 41]]. Here, we restate its definition. First, note that if the node and
edge features are vectors of dimension d,, and d., respectively, then an input graph can be represented
by a second-order tensor B € R™*™* (d+1) where d = max(d,, d.), defined by

Biita, =%, VieV=][n],

Bijid. =e¢ij, Y(,j)€EE, (1)

Bl:n,l:n,d+1 =A.

If the nodes and edges do not have features, B simply reduces to the adjacency matrix. Thus, GNN

models can be alternatively defined as functions on such second-order tensors. More generally, with
graphs represented by kth-order tensors, we can define:

Definition 4.1. A kth-order Invariant Graph Network (k-IGN) is a function F : R *do — R that
can be decomposed in the following way:

F=mohoLMogo---oooLW),



where each LV) is a linear equivariant layer [40] from R™ *%-1 to R™ %% 5 is a pointwise
. . . . . . . k .
activation function, h is a linear invariant layer from R™ %97 to R, and m is an MLP,

Maron et al. [41]] show that if % is allowed to grow as a function of the size of the graphs, then k-IGNs
can achieve universal approximation of permutation-invariant functions on graphs. Nonetheless, due
to the quick growth of computational complexity and implementation difficulty as k increases, in
practice it is hard to have k£ > 2. If £ = 2, on one hand, it is known that 2-IGNs are at least as
powerful as 2-WL [38]]; on the other hand, 2-IGNs are not universal [8]. However, it remains open to
establish a strict upper bound on the expressive power of 2-IGNs in terms of the WL tests as well as
to characterize concretely their limitations. Here, we first answer the former question by proving that
2-IGNs are no more powerful than 2-WL:

Lemma 4.2. If two graphs are indistinguishable by 2-WL, then no 2-IGN can distinguish them either.

We give the full proof of Lemma4.2]in Appendix[I] As a consequence, we then have
Corollary 4.3. 2-IGNs are exactly as powerful as 2-WL.

Thanks to this equivalence, the following results on the ability of 2-IGNs to count substructures are
immediate corollaries of Theorem [3.3]and Corollary [3.6](though we also provide a direct proof of
Corollary d.4]in Appendix [J):

Corollary 4.4. 2-IGNs cannot perform induced-subgraph-count of any connected pattern with 3 or
more nodes.

Corollary 4.5. 2-IGNs can perform subgraph-count of star-shaped patterns.

In addition, as k-IGNs are no less powerful than k£-WL [39]], as a corollary of Theorem we have

Corollary 4.6. k-IGNs can perform both induced-subgraph-count and subgraph-count of patterns
consisting of at most k nodes.

5 Local Relational Pooling

While deep MPNNs and 2-IGNs are able to aggregate information from multi-hop neighborhoods,
our results show that they are unable to preserve information such as the induced-subgraph-counts of
nontrivial patterns. To bypass such limitations, we suggest going beyond the strategy of iteratively
aggregating information in an equivariant way, which underlies both MPNNs and IGNs. One helpful
observation is that, if a pattern is present in the graph, it can always be found in a sufficiently large
local neighborhood, or egonet, of some node in the graph [50]. An egonet of depth [ centered at a
node ¢ is the induced subgraph consisting of ¢ and all nodes within distance [ from it. Note that any
pattern with radius r is contained in some egonet of depth [ = r. Hence, we can obtain a model
capable of counting patterns by applying a powerful local model to each egonet separately and then
aggregating the outputs across all egonets, as we will introduce below.

For such a local model, we adopt the Relational Pooling (RP) approach from Murphy et al. [45]. In
summary, it creates a powerful permutation-invariant model by symmetrizing a powerful permutation-
sensitive model, where the symmetrization is performed by averaging or summing over all permuta-
tions of the nodes’ ordering. Formally, let B € R™*"*? be a permutation-sensitive second-order
tensor representation of the graph G, such as the one defined in (I)). Then, an RP model is defined by

fre(G) = ﬁ Z f(m*B),

TES,

where f is some function that is not necessarily permutation-invariant, such as a general multi-layer
perceptron (MLP) applied to the vectorization of its tensorial input, .5,, is the set of permutations
on n nodes, and 7 x B is B transformed by permuting its first two dimensions according to 7,
i, (mx B)j, jo.p = Br(ji),x(js),p- FOr choices of f that are sufficiently expressive, such frp’s
are shown to be an universal approximator of permutation-invariant functions [45]]. However, the
summation quickly becomes intractable once n is large, and hence approximation methods have been
introduced. In comparison, since we apply this model to small egonets, it is tractable to compute the
model exactly. Moreover, as egonets are rooted graphs, we can reduce the symmetrization over all
permutations in S,, to the subset SBFS C S, of permutations which order the nodes in a way that



is compatible with breath-first-search (BFS), as suggested in Murphy et al. [45] to further reduce

the complexity. Defining Ggelgo] as the egonet centered at node 4 of depth , Bgelg"} as the tensor

representation of G Eefo} and n; ; as the number of nodes in Ggelgo] , we consider models of the form

flep(G ZH“ H;, = |S§FS Z f (W*B[ego]) )

N, BFS
eV GS’HM

To further improve efficiency, we propose to only consider ordered subsets of the nodes in each
egonet that are compatible with k-truncated-BFS rather than all orderings of the full node set of
the egonet, where we define k-truncated-BFS to be a BFS-like procedure that only adds at most
k children of every node to the priority queue for future visits and uses zero padding when fewer

than k children have not been visited. We let S’k'BFS denote the set of order subsets of the nodes in

G[eg(’] that are compatible with k-truncated-BES. Each 7 € S¥BFS can be written as the ordered list

[7?(1), ,7(|7|)], where |7| is the length of 7, and for ¢ € [\7r|] each 7(4) is the index of a distinct
node in G’ ego] . In addition, for each 7 € S¥;P™, we introduce a learnable normalization factor, oz,
which can depend on the degrees of the nodes that appear in 7, to adjust for the effect that adding
irrelevant edges can alter the fraction of permutations in which a substructure of interest appears. It
is a vector whose dimension matches the output dimension of f. More detail on this factor will be

given below. Using ® to denote the element-wise product between vectors, our model becomes

Lip(G) :ZH“ H: = SleFS Z aﬁ@f(ﬁ*BE?ZgO]) ’ )

eV eggc—lBFS

We call this model depth-I size-k Local Relational Pooling (LRP-I-k). Depending on the task, the
summation over all nodes can be replaced by taking average in the definition of f/gp(G). In this
work, we choose f to be an MLP applied to the vectorization of its tensorial input. For fixed [ and k&,
if the node degrees are upper-bounded, the time complexity of the model grows linearly in n.

In the experiments below, we focus on two particular variants, where either = 1 or £ = 1. When
I =1, we let az be the output of an MLP applied to the degree of root node :. When k£ = 1, note that
each 7 € S F-BES consists of nodes on a path of length at most (I + 1) starting from node 4, and we
let avz be the output of an MLP applied to the concatenation of the degrees of all nodes on the path.
More details on the implementations are discussed in Appendix

Furthermore, the LRP procedure can be applied iteratively in order to utilize multi-scale information.
We define a Deep LRP-I-k model of T layers as follows. For ¢ € [T'], we iteratively compute

" = Sms > oo (FeBEl ) | 4

ﬂ.esk -BFS

where for an H € R"*4, Bklg(’] (H) is the subtensor of B(H) € R™*"*4 corresponding to the

subset of nodes in the egonet Ggelgol, and B(H) is defined by replacing each z; by H; in (I). The

dimensions of a( ) and the output of f ®) are both d, and we set Hi(o)

graph-level output to be, depending on the task,
Dot (@) = > H"or > a 5)

i€V eV

= ;. Finally, we define the

The efficiency in practice can be greatly improved by leveraging a pre-computation of the set of maps
H i 7% Bgflg(’] (H) as well as sparse tensor operations, which we describe in Appendix

6 Experiments

6.1 Counting substructures in random graphs

We first complement our theoretical results with numerical experiments on counting the five substruc-
tures illustrated in Figure [3]in synthetic random graphs, including the subgraph-count of 3-stars and



the induced-subgraph-counts of triangles, tailed triangles, chordal cycles and attributed triangles. By
Theorem[3.3]and Corollary 3.4, MPNNs and 2-IGNs cannot exactly solve the induced-subgraph-count
tasks; while by Theorem [3.5[and Corollary [.5] they are able to express the subgraph-count of 3-stars.

Figure 3: Substructures considered in

/I\ A . E i > . the experiments: (a) 3-star (b) triangle
[
(a) (b)

(c) tailed triangle (d) chordal cycle (e)
(c) (d) (e) attributed triangle.

Datasets. We create two datasets of random graphs, one consisting of Erdés-Renyi graphs and the
other random regular graphs. Further details on the generation of these datasets are described in
Appendix[M.2.1] As the target labels, we compute the ground-truth counts of these unattributed and
attributed patterns in each graph with a counting algorithm proposed by Shervashidze et al. [S6].

Models. We consider LRP, GraphSAGE (using full 1-hop neighborhood) [18], GIN [64], GCN [31],
2-1GN [40]], PPGN [39] and spectral GNN (sGNN) [[7]], with GIN and GCN under the category of
MPNNs. Details of the model architectures are given in Appendix[M.I] We use mean squared error
(MSE) for regression loss. Each model is trained on 1080ti five times with different random seeds.

Results. The results on the subgraph-count of 3-stars and the induced-subgraph-count of triangles
are shown in Table [T} measured by the MSE on the test set divided by the variance of the ground
truth counts of the pattern computed over all graphs in the dataset, while the results on the other
counting tasks are shown in Appendix Firstly, the almost-negligible errors of LRP on all
the tasks support our theory that LRP exploiting only egonets of depth 1 is powerful enough for
counting patterns with radius 1. Moreover, GIN, 2-IGN and sGNN yield small error for the 3-star
task compared to the variance of the ground truth counts, which is consistent with their theoretical
power to perform subgraph-count of star-shaped patterns. Relative to the variance of the ground truth
counts, GraphSAGE, GIN and 2-IGN have worse top performance on the triangle task than on the
3-star task, which is also expected from the theory (see Appendix [[]for a discussion on GraphSAGE).
PPGN [39] with provable 3-WL discrimination power also performs well on both counting triangles
and 3-stars. Moreover, the results provide interesting insights into the average-case performance in
the substructure counting tasks, which are beyond what our theory can predict.

Table 1: Performance of different GNNs on learning the induced-subgraph-count of triangles and the subgraph-
count of 3-stars on the two datasets, measured by test MSE divided by variance of the ground truth counts.
Shown here are the best and the median (i.e., third-best) performances of each model over five runs with different
random seeds. Values below 1E-3 are emboldened. Note that we select the best out of four variants for each
of GCN, GIN, sGNN and GraphSAGE, and the better out of two variants for 2-IGN. Details of the GNN
architectures and the results on the other counting tasks can be found in Appendices[M.T|and[M.2.2}

Erd6s-Renyi Random Regular
triangle 3-star triangle 3-star

best median best median best median best median
GCN 6.78E-1 8.27E-1 4.36E-1 4.55E-1 1.82 2.05 2.63 2.80
GIN 1.23E-1 1.25E-1 1.62E-4 3.44E-4 4770E-1 4.74E-1 3.73E-4 4.65E-4
GraphSAGE 1.31E-1 1.48E-1 2.40E-10 1.96E-5 3.62E-1 5.21E-1 8.70E-8 4.61E-6
sGNN 9.25E-2  1.13E-1 2.36E-3  7.73E-3 3.92E-1 4.43E-1 2.37E-2 141E-1
2-IGN 9.83E-2 9.85E-1 5.40E-4 5.12E-2 2.62E-1 5.96E-1 1.19E-2 3.28E-1
PPGN 5.08E-8 2.51E-7 4.00E-5 6.01E-5 1.40E-6 3.71E-5 8.49E-5 9.50E-5
LRP-1-3 1.56E-4 2.49E-4 2.17E-5 5.23E-5 247E-4 3.83E-4 1.88E-6 2.81E-6
Deep LRP-1-3  2.81E-5 4.77E-5 1.12E-5 3.78E-5 1.30E-6 5.16E-6 2.07E-6 4.97E-6

6.2 Molecular prediction tasks

We evaluate LRP on the molecular prediction datasets ogbg-molhiv [63], QM9 [54] and ZINC [14].
More details of the setup can be found in Appendix [M.3]

Results. The results on the ogbg-molhiv, QM9 and ZINC are shown in Tables 2] -4} where for each
task or target, the top performance is colored red and the second best colored violet. On ogbg-molhiv,
Deep LRP-1-3 with early stopping (see Appendix [M.3|for details) achieves higher testing ROC-AUC
than the baseline models. On QM9, Deep LRP-1-3 and Deep-LRP-5-1 consistently outperform
MPNN and achieve comparable performances with baseline models that are more powerful than



1-WL, including 123-gnn and PPGN. In particular, Deep LRP-5-1 attains the lowest test error on
three targets. On ZINC, Deep LRP-7-1 achieves the best performance among the models that do not
use feature augmentation (the top baseline model, GateGCN-E-PE, additionally augments the node
features with the top Laplacian eigenvectors).

Table 2: Performances on ogbg-molhiv measured  Table 3: Performances on ZINC measured by the
by ROC-AUC (%). : Reported on the OGB learder-  Mean Absolute Error (MAE). 1: Reported in Dwivedi

board [20]. ¥: Reported in [21]. et al. (2020).
Model Training Validation Testing Model Training Testing Time / Ep
GINT 88.64+2.54 82.32+0.90 75.58+1.40 GraphSAGE' 0.081 +£0.009 0.398 £ 0.002 16.61s
GIN + VNT 92.73+£3.80 84.79+0.68 77.07+1.49 GINT 0.319+£0.015 0.387 £0.015 2.29s
GCNf 88.54+2.19 82.04+1.41 76.06+0.97 MoNett 0.093 £0.014  0.292 £0.006 10.82s
GCN + VNf 90.07+£4.69 83.84+0.91 75.99+1.19 GatedGCN-E' 0.074 £ 0.016  0.282 £ 0.015 20.50s
GAT [59]} - - 72.9+1.8 GatedGCN-E-PET  0.067 £ 0.019  0.214 + 0.013  10.70s
GraphSAGE [18]* - - 74.4+0.7 PPGN' 0.140 £ 0.044  0.256 £ 0.054 334.69s
Deep LRP-1-3 89.81+£2.90 81.31+0.88 76.87+1.80 Deep LRP-7-1 0.028 +0.004  0.223 +0.008 725
Deep LRP-1-3 (ES) 87.56+2.11 82.09+1.16 77.19+1.40 Deep LRP-5-1 0.020 + 0.006  0.256 £+ 0.033  42s

Table 4: Performances on QM9 measured by the testing Mean Absolute Error. All baseline results are from
[39], including DTNN [63] and 123-gnn [44]]. The loss value on the last row is defined in Appendix [M.3]

Target DTNN MPNN 123-gnn PPGN Deep LRP-1-3  Deep LRP-5-1

I 0.244 0.358 0.476 0.231 0.399 0.364
o 0.95 0.89 0.27 0.382 0.337 0.298
€homo 0.00388  0.00541 0.00337 0.00276 0.00287 0.00254
€lumo  0.00512  0.00623  0.00351  0.00287 0.00309 0.00277
A 0.0112  0.0066  0.0048 0.00406 0.00396 0.00353
(R?) 17 28.5 229 16.07 20.4 19.3
ZPVE 0.00172 0.00216 0.00019 0.00064 0.00067 0.00055
Uo 2.43 2.05 0.0427 0.234 0.590 0.413
U 2.43 2 0.111 0.234 0.588 0.413
H 2.43 2.02  0.0419 0.229 0.587 0.413
G 2.43 2.02  0.0469 0.238 0.591 0.413
Cy 0.27 042 0.0944 0.184 0.149 0.129
Loss 0.1014  0.1108  0.0657  0.0512 0.0641 0.0567

7 Conclusions

We propose a theoretical framework to study the expressive power of classes of GNNs based on
their ability to count substructures. We distinguish two kinds of counting: subgraph-count and
induced-subgraph-count. We prove that neither MPNNs nor 2-IGNs can induced-subgraph-count
any connected structure with 3 or more nodes; k-IGNs and k-WL can subgraph-count and induced-
subgraph-count any pattern of size k. We also provide an upper bound on the size of “path-shaped”
substructures that finite iterations of k-WL can induced-subgraph-count. To establish these results,
we prove an equivalence between approximating graph functions and discriminating graphs. Also, as
intermediary results, we prove that MPNNs are no more powerful than 2-WL on attributed graphs,
and that 2-IGNs are equivalent to 2-WL in distinguishing non-isomorphic graphs, which partly
answers an open problem raised in Maron et al. [38]]. In addition, we perform numerical experiments
that support our theoretical results and show that the Local Relational Pooling approach inspired by
Murphy et al. [45] can successfully count certain substructures. In summary, we build the foundation
for using substructure counting as an intuitive and relevant measure of the expressive power of GNNs,
and our concrete results for existing GNNs motivate the search for more powerful designs of GNNss.

One limitation of our theory is that it is only concerned with the expressive power of GNNs and
no their optimization or generalization. Our theoretical results are also worse-case in nature and
cannot predict average-case performance. Many interesting theoretical questions remain, including
better characterizing the ability to count substructures of general k-WL and k-IGNs as well as other
architectures such as spectral GNNs [7] and polynomial IGNs [38]]. On the practical side, we hope our
framework can help guide the search for more powerful GNNs by considering substructure counting
as a criterion. It will be interesting to quantify the relevance of substructure counting in empirical
tasks, perhaps following the work of Ying et al. [68]], and also to consider tasks where substructure
counting is explicitly relevant, such as subgraph matching [36].



Broader impact

In this work we propose to understand the power of GNN architectures via the substructures that
they can and cannot count. Our work is motivated by the relevance of detecting and counting graph
substructures in applications, and the current trend on using deep learning — in particular, graph
neural networks — in such scientific fields. The ability of different GNN architectures to count graph
substructures not only serves as an intuitive theoretical measure of their expressive power but also is
highly relevant to real-world scenarios. Our results show that some widely used GNN architectures
are not able to count substructures. Such knowledge may indicate that some widely-used graph neural
network architectures are actually not the right tool for certain scientific problems. On the other hand,
we propose a GNN model that not only has the ability to count substructures but also can learn from
data what the relevant substructures are.
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