
A Proofs of Theoretical Results

Proposition 3.1. Both L̂ and L̂k as defined in Equation 4 are estimators of lower bounds on the log
marginal likelihood; that is

E[L̂(D)] = L(D)  logP (D) and E[L̂k(D)] = Lk(D)  logP (D) . (5)
Further, the bias term in L can be quantified as follows.

L(D) = logP (D)�
nX

i=1

KL(P (✓|D<i)||P (✓|D<i+1)) (6)

Proof. The result for L follows from a straightforward derivation:

L(D) =
XZ

logP (Di|✓)dP (✓|D<i) (12)

=
XZ

log[
P (Di|✓)P (✓|D<i)P (Di|D<i)

P (✓|D<i)P (Di|D<i)
]dP (✓|D<i) (13)

=
XZ

log
P (✓|Di))

P (✓|D<i)
dP (✓|D<i) +

X
logP (Di|D<i) (14)

=
X✓

logP (Di|D<i)� KL(P (✓|D<i)||P (✓|Di))

◆
(15)

= logP (D)�
nX

i=1

KL(P (✓|D<i)||P (✓|Di)). (16)

The result for L̂k follows immediately from Jensen’s inequality, yielding

X
E[log

kX

j=1

1

k
p(Di|✓j)] 

X
logE[

kX

j=1

1

k
p(Di|✓j)] =

X
logE[p(Di|✓j)] = logP (D) . (17)

Because Lk applies Jensen’s inequality to a random variable with decreasing variance as a function
of k, we expect the bias of Lk to decrease as k grows, an observation characterized in Section 4.

Proposition 3.2. Let P (Yi|D<i, Xi) = N (µi,�2
i) for some µi,�2

i . Define the standard mean and
variance estimators µ̂i =

1
N

PN
j=1 f(✓

i
j , xi) and �̂2

i = 1
N�1

P
(f(✓ij , xi)� µ̂)2. Then the estimator

L̂S(D) =
nX

i=1

logP (Yi|µ̂i, �̂
2
i) (7)

is a lower bound on the log ML: i.e. E[L̂S(D)]  logP (D).

Proof. To show that the sum of the estimated log likelihoods is a lower bound on the log marginal
likelihood, it suffices to show that each term in the sum of the estimates is a lower bound on the
corresponding term in log marginal likelihood expression. Thus, without loss of generality we
consider a single data point Di = (x, y) and posterior distribution p(y|x,D<i) = N (µ,�2).

Let y 2 R, µ̂, �̂ the standard estimators for sample mean and variance given sample Ŷ 2 Rk sampled
from N (µ,�2). We want to show

EŶ⇠N (µ,�2)[ln p(y|µ̂, �̂
2)]  ln p(y|µ,�2). (18)

We first note that µ̂(Ŷ) ? �̂(Ŷ) for Ŷ a collection of i.i.d. Gaussian random variables [2]. We
also take advantage of the fact that the log likelihood of a Gaussian is concave with respect to its µ
parameter and its �2 parameter. Notably, the log likelihood is not concave w.r.t. the joint pair (µ,�2),
but because the our estimators are independent, this will not be a problem for us. We proceed as
follows by first decomposing the expectation over the samples Ŷ into an expectation over µ̂ and c�2

EX⇠N (µ,�2)[ln p(y|µ̂, �̂2)] = Eµ̂,Y2,...,YN ln p(y|µ̂, �̂2) (19)

= Eµ̂E�̂2 ln p(y|µ̂, �̂2) (20)

14

We apply Jensen’s inequality first to the inner expectation, then to the outer.

 Eµ̂ ln p(y|µ̂,E[�̂2]) = Eµ̂ ln p(y|µ̂,�2) (21)

 ln p(y|µ,�2) (22)
So we obtain our lower bound.

Theorem 3.3. Let D = (Xi, Yi)ni=1 and let (✓ij)
n,J
i,j=1 be generated by the procedure outlined above.

Then the estimators L̂, L̂S , and L̂k, applied to the collection (✓ij), are lower bounds on logP (D).
Further, expressing � logP (Di|✓) as the `2 regression loss plus a constant, we then obtain

logP (D) �
nX

i=1

E✓i⇠P (·|D<i)[logP (Di|✓i)] = E
nX

i=1

�`2(Di, ✓i) + c = L(D) (8)

Proof. The heavy lifting for this result has largely been achieved by Propositions 3.1 and 3.2, which
state that provided the samples ✓ij are distributed according to the posterior, the inequalities will hold.
It therefore remains only to show that the sample-then-optimize procedure yields samples from the
posterior. The proof of this result can be found in Lemma 3.8 of Osband et al. [36], who show that
the optimum for the gradient descent procedure described in Algorithm 1 does indeed correspond to
the posterior distribution for each subset D<i.

Finally, it is straightforward to express the lower bound estimator L̂ as the sum of regression
losses. We obtain this result by showing that the inequality holds for each term logP (Di|✓i) in the
summation.

logP (Di|✓) = log[exp

✓
� (✓>xi � yi)2

2�2

◆
1p
2⇡�

] (23)

= � (✓>xi � yi)2

2�2
� 1

2
log(2⇡�2) (24)

= c1`2(Di, ✓) + c2 (25)

We note that in practice, the solutions found by gradient descent for finite step size and finite number
of steps will not necessarily correspond to the exact local optimum. However, it is straightforward
to bound the error obtained from this approximate sampling in terms of the distance of ✓ from the
optimum ✓⇤. Denoting the difference |✓ � ✓⇤| by �, we get

| logP (Di|✓⇤)� logP (Di|✓)| = | ((✓
⇤)>xi � yi)2

2�2
� ((✓)>xi � yi)2

2�2
| (26)

 1

2�2
|(✓⇤)>xi � ✓>xi|2 (27)

 |((✓⇤)>xi)
2 � (✓>xi)

2|+ |2y||✓>x� (✓⇤)>x| (28)

 |(✓⇤ � ✓)>x+ 2((✓⇤)>x)((✓⇤ � ✓)>x)|+ |2y||✓>x� (✓⇤)>x|
(29)

 |✓⇤ � ✓||x|+ 2|✓⇤x||✓⇤ � ✓||x|+ |2y||x||✓ � ✓⇤| (30)
and so the error in the estimate of logP (D|✓) will be proportional to the distance |✓ � ✓⇤| induced
by the approximate optimization procedure.

Corollary 3.4. Let D be a dataset indexed by our standard notation. Let f0 be sampled from an
infinitely wide neural network architecture F under some initialization distribution, and let f i

1 be
the limiting solution under the training dynamics defined by He et al. [18] applied to the initialization
f0 and using data D<i. Let K1 denote the neural tangent kernel for F , and M = GP (0,K1)
the induced Gaussian Process. Then f i

1 ⇠ P (f |D<i,M), and in the limit of infinite training time,
the iterative sample-then-optimize procedure yields an unbiased estimate of L(D|M). Letting `2
denote the scaled squared `2 regression loss and c be a constant, we obtain as a direct corollary of
Theorem 3.3

P (D) � Efi
1⇠P (·|D<i)[logP (Di|✓i)] = E

nX

i=1

�`2(Di, fi) + c = L(D) . (9)

15

Proof. Follows immediately from the results of He et al. [18] stating that the the limiting distribution
of fk

1 is precisely P (f |Dn
k,M). We therefore obtain the same result as for Theorem 3.3, plugging

in the kernel gradient descent procedure on f for the parameter-space gradient descent procedure on
✓.

The following Lemma will be useful in order to prove Proposition 3.5. Intuitively, this result
states that in a linear regression problem in which each feature �i is ‘normalized’ (the dot product
h�i, yi = h�j , yi = ↵ for some ↵ and all i, j) and ‘independent’ (i.e. h⇧y?�i,⇧y?�ji = 0), then
the optimal linear regression solution assigns highest weight to the feature which obtains the least
error in predicting y on its own.
Lemma A.1. Let y 2 Rn, and � 2 Rd⇥d be a design matrix such that �[:, j] = ↵y+ ✏j8j for some
fixed ↵ � 0, with ✏ 2 y?, and ✏>i ✏j = 0 for all i 6= j. Let w⇤ be the solution to the least squares
regression problem on � and y. Then

min
i

wi = min
i

kfi(x)� yk2 = max
i

L(Mi) (31)

Proof. We express the minimization problem as follows. We let �(x) = (f1(x), . . . , fk(x)), where
fi(x) = ↵y + ✏i, with ✏i ? ✏j . We denote by the vector containing all ones (of length k). We
observe that we can decompose the design matrix � into one component whose columns are parallel to
y, denoted �y , and one component whose columns are orthogonal to y, denoted �?. Let �2

i = k✏ik2.
By assumption, �y = ↵y >, and �>

?�? = diag(�2
1 , . . . ,�

2
n) = ⌃. We then observe the following

decomposition of the squared error loss of a weight vector w, denoted `(w).

`(w) = k�w � yk2 = (�w � y)>(�w � y)

= ((�y + �?)w � y)>((�y + �?)w � y)

= (�yw � y)>(�yw � y) + w>�>
?�?w

= kyk2k1� ↵ >wk2 +
X

�2
iwi

In particular, the loss decomposes into a term which depends on the sum of the wi, and another
term which will depend on the norm of the component of each model’s predictions orthogonal to the
targets y.

As this is a quadratic optimization problem, it is clear that an optimal w exists, and so w> will take
some finite value, say �. We will show that for any fixed �, the solution to the minimization problem

min
w

X
wi�

2
i : w> = � (32)

is such that the argmax over i of wi is equal to that of the minimum variance. This follows by
applying the method of Lagrange multipliers to obtain that the optimal w satisfies

w⇤
i =

↵
P

��2
i

1

�2
i

. (33)

In particular, w⇤
i is inversely proportional to the variance of fi, and so is maximized for i =

arg mini Ekfi(x)� yk2.

Proposition 3.5. Let M1, . . . ,Mk be Bayesian linear regression models with fixed noise variance
�2
N and Gaussian likelihoods. Let � be a (random) matrix of posterior prediction samples, of the

form �[i, j] = ŷji ⇠ P (yj |D<j , xj ,Mi). Suppose the following two conditions on the columns of
� are satisfied: Eh�[:, i], yi = Eh�[:, j], yi for all i, j, and Eh⇧y?�i,⇧y?�ji = 0. Let w⇤ denote
the least-squares solution to the regression problem minw E�k�w � yk2. Then the following holds

arg max
i

w⇤
i = arg max

i
L(D|Mi) 8w⇤ = arg min

w
Ek�w � yk2 . (11)

16

Proof. We first clarify the independence assumptions as they pertain to the assumptions of the
previous lemma: writing �[:, i] as fi(x) + ⇣i = ↵y + ✏i + ⇣i with ⇣i ⇠ N (0,⌃i) corresponding
to the noise from the posterior distribution and fi its mean, the first independence assumption is
equivalent to the requirement that fi = ↵0y + ✏i with ✏i ? y for all i. The second independence
assumption is an intuitive expression of the constraint that ✏i ? ✏j in the linear-algebraic sense of
independence, and that ⇣ji is sampled independently (in the probabilistic sense) for all i and j.

We note that our lower bound for each model in the linear regression setting is equal to
E
PN

i=1 kfk(xi) + ⇣i � yik2 + c where c is a fixed normalizing constant. By the previous
Lemma, we know that the linear regression solution w⇤ based on the posterior means satisfies,
maxi w⇤

i = maxi L(Mi). It is then straightforward to extend this result to the noisy setting.

E[k�w � yk2] = E[k(�y + �? + ⇣)w � yk2] (34)

= E[((�y + �? + ⇣)w � y)>((�y + �? + ⇣)w � y)] (35)

= k�yw � yk2 + w>�>
?�?w + E[w>⇣>⇣w] (36)

= (w> � ↵)2kyk2 + w>�>
?�?w + E[w>⇣>⇣w] (37)

= (w> � ↵)2kyk2 +
X

w2
i (k�?[:, i]k2 + k⇣ik2) (38)

We again note via the same reasoning as in the previous Lemma that the model with the greatest
lower bound will be the one which minimizes k�?[:, i]k2 + k⇣ik2, and that the weight given to index
i will be inversely proportional to this term.

It only remains to show that for each model i, the model which maximizes L(Mi) will also minimize
k�?[:, i]k2 + k⇣ik2. This follows precisely from the Gaussian likelihood assumption. As we showed
previously

L(D|Mi) = E[
X

logP (yi|D<i)] / �
X

E[`2(yi � ŷi] (39)

= [ky � µk2 + E[kŷ � µk2] (40)

= ↵kyk2 + k�?[:, i]k2 + E[k⇣ik2] (41)

and so finding the model Mi which maximizes L(D,Mi) is equivalent to picking the maximal index
i of w⇤ which optimizes the expected loss of the least squares regression problem.

17

Figure 5: Relative rankings given by optimize-then-prune, ML, and estimated L(D). Left: feature
selection. Middle: prior variance selection. Right: RFF frequency selection. Rankings are consistent
with what our theoretical results predict. Results are averaged over 5 runs.

B Experiments

B.1 Experimental details: Model Selection using Trajectory Statistics

We consider 3 model selection settings in which to evaluate the practical performance of our estimators.
In prior variance selection we evaluate a set of BLR models on a synthetic linear regression data set.
Each model Mi has a prior distribution over the d parameters of the form w ⇠ N (0,�2

i Id) for some
�2
i , and the goal is to select the optimal prior variance (in other words, the optimal regularization

coefficient). We additionally evaluate an analogous initialization variance selection method on an
NTK network trained on a toy regression dataset. In frequency (lengthscale) selection we use as
input a subset of the handwritten digits dataset MNIST given by all inputs labeled with a 0 or a 1.
We compute random Fourier features (RFF) of the input to obtain the features for a Bayesian linear
regression model, and perform model selection over the frequency of the features (full details on
this in the appendix). This is equivalent to obtaining the lengthscale of an approximate radial basis
function kernel. In feature dimension selection, we use a synthetic dataset [46] of the form (X, y),
where xi = (yi + ✏1, yi + . . . , yi + ✏15, ✏16, . . . , ✏30). We then consider a set of models {Mk} with
feature embeddings �k(xi) = xi[1, . . . , k]. The optimal model in this setting is the one which uses
exactly the set of ‘informative’ features x[1, . . . , 15].

The synthetic data simulation used in this experiment is identical to that used in [46]. Below, we
provide the details.

Let k be the number of informative features and d the total number of features. We generate a
datapoint Di = {xi, yi} as follows:

1. Sample yi: yi ⇠ U([0, 1])

2. Sample k informative features: xi,j ⇠ N(yi,�0) 8j 2 1, . . . k

3. Sample max(d� k, 0) noise features: xi,k+j ⇠ N(0,�1) 8j 2 1, . . . d� k

4. Concatenate the features: Xi = [xi,1, . . . xi,d]

We set �0 = �1 = 1, k = 15, n = 30, and let d vary from 5 to n. We then run our estimators on the
Bayesian linear regression problem for each feature dimension, and find that all estimators agree on
the optimal number of features, k.

To compute the random fourier features used for MNIST classification, we vectorize the MNIST
input images and follow the procedure outlined by [37] (Algorithm 1) to produce RFF features, which
are then used for standard Bayesian linear regression against the binarized labels. The frequency
parameter (which can also be interpreted as a transformation of the lengthscale of the RBF kernel
approximated by the RFF model) is the parameter of interest for model selection.

B.2 Experimental details: Bayesian model comparison

Here we provide further detail of the experiment in Section 4.2.1. The goal of the experiment is to
determine whether the connection between sum-over-training losses (SOTL) and model evidence
observed in the linear regression setting extends to DNNs. In particular, the two sub-questions are:

18

1. Do models with a lower SOTL generalize better?

2. Are these models favoured by SGD?

To answer these questions, we train a linear combination of NNs. We can answer subquestion [1]
by plotting the correlation between SOTL and test performance of an individual model. Further, we
address subquestion [2] by considering the correlation between test loss and linear weights assigned
to each model.

Below we explain the set-up of the linear combination in more detail. We train a variety of deep
neural networks along with a linear ‘ensemble’ layer that performs a linear transformation of the
concatenated logit outputs3 of the classification models. Let hm(xi) be logit output of model m for
input xi, `(yi, hi) be the loss for point i (where hi is a logit) and wm,t be the weight corresponding
to model m at time step t.

We consider two training strategies: we first train models individually using the cross-entropy loss
between each model’s prediction and the true label, only cross-entropy loss of the final ensemble
prediction to train the linear weights. Mathematically, we update the models using the gradients

�

�✓m
`(yi, hm(xi)), (42)

and the ‘ensemble’ weights using

�

�wm
`(yi,

X

m

wmhm(xi)). (43)

We refer to this training scheme as Parallel Training as the models are trained in parallel. We also
consider the setting in which the models are trained using the cross entropy loss from the ensemble
prediction backpropagated through the linear ensemble layer, i.e. the model parameters are now
updated using:

�

�✓m
`(yi,

X

m

wmhm(xi)). (44)

We refer to this scheme as the Concurrent Training.

We train a variety of different MLPs (with varying layers,and nodes) and convolutional neural
networks (with varying layers, nodes and kernels) on FashionMNIST using SGD until convergence.

B.3 Experimental Details: SGD upweights submodels that perform well

Below we provide further details of the experiment in Section 4.2.2. The goal of the experiment is to
determine whether SGD upweights sub-models that fit the data better.

We train a MLP network (with units 200, 200, 10) on FashionMMIST using SGD until convergence.
After training is completed, for every class of y, we rank all nodes in the penultimate layer by the
norm of their absolute weight (in the final dense layer). We group the points into submodels according
to their ranking – the k nodes with the highest weights are grouped together, next the k + 1, . . . 2k
ranked nodes are grouped, etc. We set k = 10.

We determine the performance of a submodels by training a simple logistic classifier to predict
the class of an input, based on the output of the submodel. To measure the performance of the
classifier, we use the cross-entropy loss. To capture the equivalent notion of the AUC, we estimate the
performance of the sub-models throughout training, and sum over the estimated cross-entropy losses.

Below, we show additional plots for the parallel and concurrent training schemes. The results are
the same to those presented in the main text, and we observe [1] a negative correlation between
test performance and ensemble weights and [2] a strong correlation between SOTL and average test
cross-entropy.

3These are pre-softmax outputs. To obtain the predicted probability of a class, they are fed through a softmax
function.

19

Figure 6: Linear combinations of DNNs on FashionMNIST. Left: ensemble weights versus the
test loss for parallel training; we observe a negative correlation. Middle: SOTL (standardized by the
number of training samples) versus test loss for concurrent and concurrent training. We observe a
strong correlation indicating that the SOTL generalizes well. Right: training curves for the different
models in concurrent training schemes. All results are averaged over 10 runs, and standard deviations
are shown by the shaded regions around each observation. The model parameters, given in the
parentheses, are the number of layers (l), nodes per layer (n) and kernel size (k), respectively.

However, similarly to the linear setting, the difference in assigned weights is magnified in the
concurrent training scheme. Here we find that in the concurrent training scheme, the ensemble
focuses on training the CNNs (as can be seen from the training curve in Figure 3 in the main text).
This is likely because CNNs are able to learn more easily, leading to larger weights earlier on.

20

Figure 7: Weight assigned to subnetwork by SGD in a deep neural network (x-axis) versus the subnet-
work performance (estimated by the sum of cross-entropy, on the y-axis) for different FashionMNIST
classes. The light blue ovals denote depict 95% confidence intervals, estimated over 10 seeds (i.e. 2�
for both the weight and SOTL). The orange line depicts the general trend.

Figure 8: Weight assigned to subnetwork by SGD in a deep neural network (x-axis) versus the
subnetwork performance (estimated by the sum of cross-entropy, on the y-axis) for different CIFAR-
10 classes. The light blue ovals denote depict 95% confidence intervals, estimated over 10 seeds (i.e.
2� for both the weight and SOTL). The orange line depicts the general trend.

Above, we show additional plots to those shown in Figure 4, Section 4.2.2. Figure 7 shows the results
for the all FashionMNIST classes, and Figure 8 shows the results for experiment on CIFAR-10. From
both, we see that SGD assigns higher weights to subnetworks that perform better.

21

	Introduction
	Background and Related Work
	Bayesian Parameter Inference
	Bayesian Model Selection
	Generalization and Risk Minimization

	Marginal Likelihood Estimation with Training Statistics
	Training Speed and the Marginal Likelihood
	Unbiased Estimation of a Lower Bound
	Lower bounds via gradient descent trajectories
	From Linear Models to Infinite Neural Networks

	Bayesian Model Selection and Optimization

	Empirical Evaluation
	Bayesian Model Selection
	Training Speed, Ensemble Weight, and Generalization in DNNs
	Linear Combination of DNN Architectures
	Subnetwork Selection in Neural Networks

	Conclusion
	Broader Impact
	Proofs of Theoretical Results
	Experiments
	Experimental details: Model Selection using Trajectory Statistics
	Experimental details: Bayesian model comparison
	Experimental Details: SGD upweights submodels that perform well

