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1 Additional Experiments

1.1 Synthetic Experiments

As an additional experiment, we repeated the same experiment (i.e., varying the number of layers of
f and e or the embedding dimension) in Sec. 5 with two different classes of target functions (type II
and III). The experiments with Type I functions are presented in the main text.

Type I The target functions is of the form y(x, I) := 〈x, h(I)〉. Here, h is a three-layers fully-
connected neural network of dimensions dI → 300→ 300→ 103 and applies sigmoid activations
within the two hidden layers and softmax on top of the network. The reason we apply softmax on top
of the network is to restrict its output to be bounded.

Type II The second group of functions consists of randomly initialized fully connected neural
networks y(x, I). The neural network has four layers of dimensions (dx + dI) → 100 → 50 →
50→ 1 and applies ELU activations.

Type III The second type of target functions y(x, I) := h(x � I) consists of fully-connected
neural network applied on top of the element-wise multiplication between x and I . The neural
network consists of four layers of dimensions dI → 100 → 100 → 50 → 1 and applies ELU
activations. The third type of target functions is of the form y(x, I) := 〈x, h(I)〉. Here, h is a
three-layers fully-connected neural network of dimensions dI → 300→ 300→ 1000 and applies
sigmoid activations within the two hidden layers and softmax on top of the network. The reason we
apply softmax on top of the network is to restrict its output to be bounded.

In all of the experiments, the weights of y are set using the He uniform initialization [11].

In Fig. 1, we plot the results for varying the number of layers/embedding dimensions of hypernetworks
and embedding methods. As can be seen, the performance of hypernetworks improves as a result of
increasing the number of layers, despite the embedding method. On the other hand, for both models,
increasing the embedding dimension seems ineffective.

1.2 Predicting Image Rotations

As an additional experiment on predicting image rotations, we studied the effect of the embedding
dimension on the performance of the embedding method, we varied the embedding dimension
Ei = 104i for i ∈ [8]. The primary-network q has dimensions din → 10→ 12 with din = dI + Ei
and the embedding network e has architecture dx → 100→ Ei. We compared the performance to
a hypernetwork with g of architecture dx → 10→ 12 and f of architecture dI → 100→ Ng. We
note that q is larger than g, the embedding dimension Ei exceeds Ng = 30840 for any i > 3 and
therefore, e is of larger size than f for i > 3.
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Figure 1: (a-b) The error obtained by hypernetworks and the embedding method with varying number
of layers (x-axis). The MSE (y-axis) is computed between the learned function and the target function
at test time. The blue curve stands for the performance of the hypernetwork model and the red one
for the neural embedding method. (a) Target functions of neural network type, (b) Functions of the
form y(x, I) = h(x� I), where h is a neural network.(d-e) Measuring the performance for the same
three target functions when varying the size of the embedding layer to be 100/1000 (depending on
the method) times the value on the x-axis. The error bars depict the variance across 100 repetitions of
the experiment.

(a) MNIST (b) CIFAR10

Figure 2: Predicting image rotations. varying the embedding dimension of the embedding method
to be 104 times the value of the x-axis, compared to the results of hypernetworks. The error bars
depict the variance across 100 repetitions of the experiment.

As can be seen in Fig. 2, the hypernetwork outperforms the embedding method by a wide margin
and the performance of the embedding method does not improve when increasing its embedding
dimension.

1.3 Image Colorization

The second type of target functions are y(x, I), where I is a sample gray-scaled version of an image
Î from the dataset and x = (i1, i2) is a tuple of coordinates, specifying a certain pixel in the image
I . The function y(x, I) returns the RGB values of Î in the pixel x = (i1, i2) (normalized between
[−1, 1]). For this self-supervised task we employ CIFAR10 dataset, since the MNIST has grayscale
images.

For the purpose of comparison, we considered the following setting. The inputs of the networks are
x′ = (i1, i2)‖(ik1 + i2, i

k
2 + i1, i

k
1 − i2, ik2 − i1)9

k=0 and a flattened version of the gray-scaled image I
of dimensions dx′ = 42 and dI = 1024. The functions f and e are fully connected neural networks
of the same architecture with a varying number of layers k = 2, . . . , 7. Their input dimension is
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dI , each hidden layer is of dimension 100 and their output dimensions are 450. We took primary
networks g and q to be fully connected neural networks with two layers din → 10 → 3 and ELU
activations within their hidden layers. For the hypernetwork case, we have: din = 42 and for the
embedding method din = 42 + 450 = 492, since the input of q is a concatenation of x′ (of dimension
42) and e(I) which is of dimension 450.

The overall number of trainable parameters in e and f is the same, as they share the same architecture.
The number of trainable parameters in q is 492 · 10 + 10 · 3 = 4950 and in g is 42 · 10 + 10 · 3 = 450.
Therefore, the embedding method is provided with a larger number of trainable parameters as q is 10
times larger than g. The comparison is depicted in Fig. 3. As can be seen, the results of hypernetworks
outperform the embedding method by a large margin, and the results improve when increasing the
number of layers.

Figure 3: Colorization. The error obtained by hypernetworks and the embedding method with
varying number of layers (x-axis). The error rate (y-axis) is computed between the learned function
and the target function at test time. The blue curve stands for the performance of the hypernetwork
model and the red one for the neural embedding method.

1.4 Sensitivity Experiment

(a) (b)

Figure 4: Comparing the performance of a hypernetwork and the embedding method when
varying the learning rate. The x-axis stands for the value of the learning rate and the y-axis stands
for the averaged accuracy rate at test time. (a) Results on MNIST and (b) Results on CIFAR10.

In the rotations prediction experiment in Sec. 5, we did not apply any regularization or normalization
on the two models to minimize the number of hyperparameters. Therefore, the only hyperparameter
we used during the experiment is the learning rate. We conducted a hyperparameter sensitivity test
for the learning rate. We compared the two models in the configuration of Sec. 5 when fixing the
depths of f and e to be 4 and varying the learning rate. As can be seen in Fig. 4, the hypernetwork
outperforms the baseline for every learning rate in which the networks provide non-trivial error rates.

1.5 Validating Assumption 2

To empirically justify Assumption 2, we trained shallow neural networks on MNIST and Fashion
MNIST classification with a varying number of hidden neurons. The optimization was done using
the MSE loss, where the labels are cast into one-hot encoding. The network is trained using Adadelta
with a learning rate of µ = 1.0 and batch size 64 for 2 epochs. As can be seen in Fig. 5, the MSE
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(a) MNIST (b) Fashion MNIST

Figure 5: Validating Assumption 2. The MSE loss at test time strictly decreases when increasing
the number of hidden neurons.

loss strictly decreases when increasing the number of hidden neurons. This is true for a variety of
activation functions.
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2 Preliminaries

2.1 Identifiability

Neural network identifiability is the property in which the input-output map realized by a feed-
forward neural network with respect to a given activation function uniquely specifies the network
architecture, weights, and biases of the neural network up to neural network isomorphisms (i.e.,
re-ordering the neurons in the hidden layers). Several publications investigate this property. For
instance, [2, 17] show that shallow neural networks are identifiable. The main result of [8] considers
feed-forward neural networks with the tanh activation functions are shows that these are identifiable
when the networks satisfy certain “genericity assumptions“. In [18] it is shown that for a wide class of
activation functions, one can find an arbitrarily close function that induces identifiability (see Lem. 1).
Throughout the proofs of our Thm. 1, we make use of this last result in order to construct a robust
approximator for the target functions of interest.

We recall the terminology of identifiability from [8, 18].

Definition 1 (Identifiability). A class f = {f(·; θf ) : A → B | θf ∈ Θf} is identifiable up to
(invariance) continuous functions Π = {π : Θf→ Θf}, if

f(·; θf ) ≡A f(·; θ′f ) ⇐⇒ ∃π ∈ Π s.t θ′f = π(θf ) (1)

where the equivalence ≡A is equality for all x ∈ A.

A special case of identifiability is identifiability up to isomorphisms. Informally, we say that two
neural networks are isomorphic if they share the same architecture and are equivalent up to permuting
the neurons in each layer (excluding the input and output layers).

Definition 2 (Isomorphism). Let fbe a class of neural networks. Two neural networks f(x; [W,b])

and f(x; [V,d]) of the same class fare isomorphic if there are permutations {γi : [hi]→ [hi]}k+1
i=1 ,

such that,

1. γ1 and γk+1 are the identity permutations.

2. For all i ∈ [k], j ∈ [hi+1] and l ∈ [hi], we have: V ij,l = W i
γi+1(j),γi(l)

and dij = biγi+1(j).

An isomorphism π is specified by permutation functions γ1, . . . , γk+1 that satisfy conditions (1)
and (2). For a given neural network f(x; [W,b]) and isomorphism π, we denote by π ◦ [W,b] the
parameters of a neural network produced by the isomorphism π.

As noted by [8, 18], for a given class of neural networks, f, there are several ways to construct pairs
of non-isomorphic neural networks that are equivalent as functions.

In the first approach, suppose that we have a neural network with depth k ≥ 2, and there exist indices
i, j1, j2 with 1 ≤ i ≤ k − 1 and 1 ≤ j1 < j2 ≤ hi+1, such that, bij1 = bij2 and W i

j1,t
= W i

j2,t
for all

t ∈ [hi]. Then, if we construct a second neural network that shares the same weights and biases, except
replacing W i+1

1,j1
and W i+1

1,j2
with a pair W̃ i+1

1,j1
and W̃ i+1

1,j2
, such that, W̃ i+1

1,j1
+ W̃ i+1

1,j2
= W i+1

1,j1
+W i+1

1,j2
.

Then, the two neural networks are equivalent, regardless of the activation function. The j1 and j2
neurons in the i’th layer are called clones and are defined formally in the following manner.

Definition 3 (No-clones condition). Let class of neural networks f. Let f(x; [W,b]) ∈ fbe a neural
network. We say that f has clone neurons if there are: i ∈ [k], j1 6= j2 ∈ [hi+1], such that:

(bij1 ,W
i
j1,1, . . . ,W

i
j1,hi) = (bij2 ,W

i
j2,1, . . . ,W

i
j2,hi) (2)

If f does not have a clone, we say that f satisfies the no-clones condition.

A different setting in which uniqueness up to isomorphism is broken, results when taking a neural
network that has a “zero” neuron. Suppose that we have a neural network with depth k ≥ 2, and
there exist indices i, j with 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ hi+1, such that, W i

j,t = 0 for all t ∈ [hi] or
W i+1
t,j = 0 for all t ∈ [hi+2]. In the first case, one can replace any W i+1

1,j with any number W̃ i+1
1,j if

σ(bi,j) = 0 to get a non-isomorphic equivalent neural network. In the other case, one can replace
W i
j,1 with any number W̃ i+1

j,1 to get non-isomorphic equivalent neural network.
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Definition 4 (Minimality). Let f(x; [W,b]) be a neural network. We say that f is minimal, if for all
i ∈ [k], each matrix W i has no identically zero row or an identically zero column.

A normal neural network satisfies both minimality and the no-clones condition.

Definition 5 (Normal neural network). Let f(x; [W,b]) be a neural network. We say that f is normal,
if it has no-clones and is minimal. The set of normal neural networks within f is denoted by fn.

An interesting question regarding identifiability is whether a given activation σ : R→ R function
implies the identifiability property of any class of normal neural networksfn with the given activation
function are equivalent up to isomorphisms. An activation function of this kind will be called
identifiability inducing. It has been shown by [8] that the tanh is identifiability inducing up to
additional restrictions on the weights. In [17] and in [2] they show that shallow neural networks are
identifiable.

Definition 6 (Identifiability inducing activation). Let σ : R→ R be an activation function. We say
that σ is identifiability inducing if for any class of neural networks fwith σ activations, we have:
f(·; θ1) = f(·; θ2) ∈ fn if and only if they are isomorphic.

The following theorem by [18] shows that any piece-wise C1(R) activation function σ with σ′ ∈
BV (R) can be approximated by an identifiability inducing activation function ρ.

Lemma 1 ([18]). Let σ : R → R be a piece-wise C1(R) with σ′ ∈ BV (R) and let ε > 0. Then,
there exists a meromorphic function ρ : D → C, R ⊂ D, ρ(R) ⊂ R, such that, ‖σ − ρ‖∞ < ε and ρ
is identifiability inducing.

2.2 Multi-valued Functions

Throughout the proofs, we will make use of the notion of multi-valued functions and their continuity.
A multi-valued function is a mapping F : A→ P(B) from a set A to the power set P(B) of some
set B. To define the continuity of F , we recall the Hausdorff distance [10, 16] between sets. Let
dB be a distance function over a set B, the Hausdorff distance between two subsets E1, E2 of B is
defined as follows:

dH(E1, E2) := max
{

sup
b1∈E1

inf
b2∈E2

dB(b1, b2), sup
b2∈E2

inf
b1∈E1

dB(b1, b2)
}

(3)

In general, the Hausdorff distance serves as an extended pseudo-metric, i.e., satisfies dH(E,E) = 0
for all E, is symmetric and satisfies the triangle inequality, however, it can attain infinite values
and there might be E1 6= E2, such that, dH(E1, E2) = 0. When considering the space C(B) of
non-empty compact subsets of B, the Hausdorff distance becomes a metric.

Definition 7 (Continuous multi-valued functions). Let metric spaces (A, dA) and (B, dB) and
multi-valued function F : A→ C(B). Then, we define:

1. Convergence: we denote E = lima→a0 F (a), if E is a compact subset of B and it satisfies:

lim
a→a0

dH(F (a), E) = 0 (4)

2. Continuity: we say that F is continuous in a0, if lima→a0 F (a) = F (a0).

2.3 Lemmas

In this section, we provide several lemmas that will be useful throughout the proofs of the main
results.

Let [W1, b1] and [W2, b2] be two parameterizations. We denote by [W1, b1] − [W2, b2] = [W1 −
W2, b1 − b2] the element-wise subtraction between the two parameterizations. In addition, we define
the L2-norm of [W, b] to be:

∥∥[W, b]
∥∥

2
:= ‖vec([W, b])‖2 :=

√√√√ k∑
i=1

(‖W i‖22 + ‖bi‖22) (5)
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Lemma 2. Let f(x; [W1,b1]) and f(x; [W2,b2]) be two neural networks. Then, for a given isomor-
phism π, we have:

π ◦ [W1,b1]− π ◦ [W2,b2] = π ◦ [W1 −W2,b1 − b2] (6)

and ∥∥π ◦ [W,b]
∥∥

2
=
∥∥[W,b]

∥∥
2

(7)

Proof. Follows immediately from the definition of isomorphisms.

Lemma 3. Let σ : R→ R be a L-Lipschitz continuous activation function, such that, σ(0) = 0. Let
f(·; [W, 0]) : Rm → R be a neural network with zero biases. Then, for any x ∈ Rm, we have:

‖f(x; [W, 0])‖1 ≤ Lk−1 · ‖x‖1
k∏
i=1

‖W i‖1 (8)

Proof. Let z = W k−1 · σ(. . . σ(W 1x)). We have:

‖f(x; [W, 0])‖1 ≤ ‖W k · σ(z)‖1
≤ ‖W k · σ(z)‖1
= ‖W k‖1 · ‖σ(z)− σ(0)‖1
≤ ‖W k‖1 · L · ‖z‖1

(9)

and by induction we have the desired.

Lemma 4. Let σ : R→ R be a L-Lipschitz continuous activation function, such that, σ(0) = 0. Let
f(·; [W,b]) be a neural network. Then, the Lipschitzness of f(·; [W,b]) is given by:

Lip(f(·; [W,b])) ≤ Lk−1 ·
k∏
i=1

‖W i‖1 (10)

Proof. Let zi = W k−1 · σ(. . . σ(W 1xi + b1)) for some x1 and x2. We have:

‖f(x1; [W, b])− f(x2; [W, b])‖1 ≤ ‖W k · σ(z1)−W k · σ(z2)‖1
≤ ‖W k · (σ(z1 + bk−1)− σ(z2 + bk−1))‖1
= ‖W k‖1 · ‖σ(z1 + bk−1)− σ(z2 + bk−1)‖1
≤ ‖W k‖1 · L · ‖z1 − z2‖1

(11)

and by induction we have the desired.

Throughout the appendix, a function y ∈ Y is called normal with respect to f, if it has a best
approximator f ∈ f, such that, f ∈ fn.

Lemma 5. Let fbe a class of neural networks. Let y be a target function. Assume that y has a best
approximator f ∈ f. If y /∈ f, then, f ∈ fn.

Proof. Let f(·; [W, b]) ∈ fbe the best approximator of y. Assume it is not normal. Then, f(·; [W, b])
has at least one zero neuron or at least one pair of clone neurons. Assume it has a zero neuron. Hence,
by removing the specified neuron, we achieve a neural network of architecture smaller than f that
achieves the same approximation error as fdoes. This is in contradiction to Assumption 2. For clone
neurons, we can simply merge them into one neuron and obtain a smaller architecture that achieves
the same approximation error, again, in contradiction to Assumption 2.

Lemma 6. Let fbe a class of functions with a continuous activation function σ. Let Y be a class
of target functions. Then, the function ‖f(·; θ) − y‖∞ is continuous with respect to both θ and y
(simultaneously).
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Proof. Let sequences θn → θ0 and yn → y0. By the reversed triangle inequality, we have:∣∣∣‖f(·; θn)− yn‖∞ − ‖f(·; θ0)− y0‖∞
∣∣∣ ≤ ‖f(·; θn)− f(·; θ0)‖∞ + ‖yn − y0‖∞ (12)

Since θn → θ0 and f is continuous with respect to θ, we have: ‖f(·; θn)− f(·; θ0)‖∞ → 0. Hence,
the upper bound tends to 0.

Lemma 7. Let fbe a class of functions with a continuous activation function σ. Let Y be a closed
class of target functions. Then, the function F (y) := minθ∈Θf

‖f(·; θ) − y‖∞ is continuous with
respect to y.

Proof. Let {yn}∞n=1 ⊂ Y be a sequence that converges to some y0 ∈ Y. Assume by contradiction
that:

lim
n→∞

F (yn) 6= F (y0) (13)

Then, there is a sub-sequence ynk of yn, such that, ∀k ∈ N : F (ynk) − F (y0) > ∆ or ∀k ∈ N :
F (y0)− F (ynk) > ∆ for some ∆ > 0. Let θ0 be the minimizer of ‖f(·; θ)− y0‖∞. With no loss of
generality, we can assume the first option. We notice that:

F (ynk) ≤ ‖f(·; θ0)− ynk‖∞ ≤ ‖f(·; θ0)− y0‖∞ + ‖ynk − y0‖∞ ≤ F (y0) + δk (14)

where δk := ‖ynk−y0‖∞ tends to 0. This contradicts the assumption that F (ynk) > F (y0)+∆.

Throughout the appendix, we will make use of the following notation. Let y ∈ Y be a function and f
a class of functions, we define:

M [y;f] := arg min
θ∈Θf

‖f(·; θ)− y‖∞ (15)

Lemma 8. Let fbe a class of neural networks with a continuous activation function σ. Let Y be a
class of target functions. Denote by fy the unique approximator of y within f. Then, fy is continuous
with respect to y.

Proof. Let y0 ∈ Y be some function. Assume by contradiction that there is a sequence yn → y0,
such that, gn := fyn 6→ fy0 . Then, gn has a sub-sequence that has no cluster points or it has a cluster
point h 6= fy0 .

Case 1: Let gnk be a sub-sequence of gn that has no cluster points. By Assumption 1, there is
a sequence θnk ∈ ∪∞k=1M [ynk ;f] that is bounded in B = {θ | ‖θ‖2 ≤ B}. By the Bolzano-
Weierstrass’ theorem, it includes a convergent sub-sequence θnki → θ0. Therefore, we have:

‖f(·; θnki )− f(·; θ0)‖∞ → 0 (16)

Hence, gnk has a cluster point f(·; θ0) in contradiction.

Case 2: Let sub-sequence fynk that converge to a function h 6= fy0 . We have:

‖h− y0‖∞ ≤ ‖fynk − h‖∞ + ‖fynk − ynk‖∞ + ‖ynk − y0‖∞ (17)

By Lem. 7,
‖fynk − ynk‖∞ → ‖fy0 − y0‖∞ (18)

and also ynk → y0, fynk → h. Therefore, we have:

‖h− y0‖∞ ≤ ‖fy0 − y0‖∞ (19)

Hence, since fy0 is the unique minimizer, we conclude that h = fy0 in contradiction.

Therefore, we conclude that fyn converges and by the analysis in Case 2 it converges to fy0 .
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3 Proofs of the Main Results

3.1 Proving Assumption 2 for Shallow Networks

Lemma 9. Let Y = C([−1, 1]m) be the class of continuous functions y : [−1, 1]m → R. Let f
be a class of 2-layered neural networks of width d with σ activations, where σ is either tanh or
sigmoid. Let y ∈ Y be some function to be approximated. Let f′ be a class of neural networks that
is resulted by adding a neuron to the hidden layer of f. If y /∈ f then, infθ∈Θf

‖f(·; θ) − y‖22 >
infθ∈Θf′ ‖f(·; θ)− y‖22. The same holds for σ = ReLU when m = 1.

Proof. We divide the proof into two parts. In the first part we prove the claim for neural networks
with ReLU activations and in the second part, for the tanh and sigmoid activations.

ReLU activations Let y ∈ Y be a non-piecewise linear function. Let f ∈ fbe the best approxi-
mator of y. Since f is a 2-layered neural network, it takes the form:

f(x) =

d∑
i=1

βi · σ(αix+ γi) (20)

By [3], we note that f is a piece-wise linear function with k pieces. We denote the end-points of
those pieces by: −1 = c0, . . . , ck = 1. Since y is a non-piecewise linear function, there exists a
pair ci, ci+1, where y is non-linear on [ci, ci+1]. With no loss of generality, we assume that y is
non-linear on the first segment. We note that f equals some linear function ax+ b over the segment
[−1, c1]. We would like to prove that one is able to add a new neuron n(x) = βd+1 · σ(γd+1 − x)
to f , for some −1 < γd+1 < c1, such that, f(x) + n(x) strictly improves the approximation of f .
First, we notice that this neuron is non-zero only when x < γd+1. Therefore, for any βd+1 ∈ R
and −1 < γd+1 < c1, f(x) + n(x) = f(x) ∈ [c1, 1]. In particular, the approximation error of
f(x) + n(x) over [c1, 1] is the same as f ’s. For simplicity, we denote γ := γd+1 and β := βd+1.
Assume by contradiction that there are no such γ and β. Therefore, for each γ ∈ [−1, c1], ax+ b is
the best linear approximator of y(x) in the segment [−1, γ]. Hence, for each γ ∈ [−1, c1], β = 0 is
the minimizer of

∫ γ
−1

(y(x)− (β(γ − x) + ax+ b))2 dx. In particular, we have:∫ γ
−1

(y(x)− (β(γ − x) + ax+ b))2 dx

∂β

∣∣∣
β=0

= 0 (21)

By differentiation under the integral sign:

Q(β, γ) =

∫ γ
−1

(y(x)− (β(γ − x) + ax+ b))2 dx

∂β∫ γ

−1

(y(x)− (β(γ − x) + ax+ b))2

∂β
dx

=

∫ γ

−1

2(y(x)− (β(γ − x) + ax+ b)) · (x− γ) dx

=2

∫ γ

−1

y(x)x dx− 2γ

∫ γ

−1

y(x) dx+ 2

∫ γ

−1

β(γ − x)2 dx+ 2

∫ γ

−1

(ax+ b)(γ − x) dx

=2

∫ γ

−1

y(x)x dx− 2γ

∫ γ

−1

y(x) dx+ p(β, γ)

(22)
where p(β, γ) is a third degree polynomial with respect to γ. We denote by Y (x) the primitive
function of y(x), and by Y(x) the primitive function of Y (x). By applying integration by parts, we
have: ∫ γ

−1

y(x)x dx = Y (γ) · γ − (Y(γ)− Y(−1)) (23)

In particular,

Q(β, γ) =2γ(Y (γ)− Y (−1))− 2(Y (γ) · γ − Y(γ) + Y(−1)) + p(β, γ)

=2γY (γ)− 2γY (−1)− 2γY (γ)− 2Y(γ) + 2Y(−1) + p(β, γ)

=− 2Y(γ) + [−2γY (−1) + 2Y(−1) + p(β, γ)]

(24)

9



We note that the function q(β, γ) := −2γY (−1) + 2Y(−1) + p(β, γ) is a third degree polynomial
with respect to γ (for any fixed β). In addition, by Eq. 21, we have, Q(0, γ) = 0 for any value of
γ ∈ (−1, c1). Hence, Y is a third degree polynomial over [−1, c1]. In particular, y is a linear function
over [−1, c1], in contradiction. Therefore, there exist values γ ∈ (−1, c1) and β ∈ R, such that,
f(x) + n(x) strictly improves the approximation of f .

Sigmoidal activations Let y ∈ Y be a target function that is not a member of f. Let f ∈ fbe the
best approximator of y. In particular, f 6= y. Since f is a 2-layered neural network, it takes the form:

f(x) =

d∑
i=1

βi · σ(〈αi, x〉+ γi) (25)

where σ : R→ R is either tanh or the sigmoid activation function, βi, γi ∈ R and αi ∈ Rm.

We would like to show the existence of a neuron n(x) = β · σ(〈a, x〉 + b), such that, f + n has a
smaller approximation error with respect to y, compared to f . Assume the contrary by contradiction.
Then, for any a ∈ Rm, b ∈ R, we have:∫

[−1,1]m
(y(x)− (β · σ(〈a, x〉+ b) + f(x)))2 dx

∂β

∣∣∣
β=0

= 0 (26)

We denote by q(x) := y(x)− f(x). By differentiating under the integral sign:

Q(β, a, b) : =

∫
[−1,1]m

(y(x)− (β · σ(〈a, x〉+ b) + f(x)))2 dx

∂β

= −2

∫
[−1,1]m

β · σ(〈a, x〉+ b)2 dx+ 2

∫
[−1,1]m

q(x) · σ(〈a, x〉+ b) dx

(27)

Therefore, since Q(β, a, b) = 0, we have:

β =

∫
[−1,1]m

q(x) · σ(〈a, x〉+ b) dx∫
[−1,1]m

σ(〈a, x〉+ b)2 dx
(28)

Since σ is increasing, it is non-zero on any interval, and therefore, the denominator in Eq. 28 is
strictly positive for all a ∈ Rm \ {0}, b ∈ R and a = 0, b ∈ R, such that, σ(b) 6= 0. In particular, for
all such a, b, we have: ∫

[−1,1]m
q(x) · σ(〈a, x〉+ b) dx = 0 (29)

By the universal approximation theorem [5, 12], there exist β̂j , b̂j ∈ R and âj ∈ Rm, such that,

f(x)− y(x) =

∞∑
j=1

β̂j · σ(〈âj , x〉+ b̂j) (30)

where âj ∈ Rm \ {0}, b̂j ∈ R and âj = 0, b̂j ∈ R, such that, σ(b̂j) 6= 0. The convergence of the
series is uniform over [−1, 1]m. In particular, the series q(x) ·

∑k
j=1 β̂j · σ(〈âj , x〉+ b̂j) converge

uniformly as k →∞. Therefore, by Eq. 29 and the linearity of integration, we have:∫
[−1,1]m

q(x) ·
∞∑
j=1

β̂j · σ(〈âj , x〉+ b̂j) dx = 0 (31)

This implies that
∫

[−1,1]m
q(x)2 dx = 0. Since q is a continuous function, it must be the zero function

to satisfy this condition. Differently put, f = y in contradiction.

3.2 Existence of a continuous selector

In this section, we prove that for any compact set Y′ ⊂ Y, if any y ∈ Y′ cannot be represented as a
neural network with σ activations, then, there exists a continuous selector S : Y′ → RNf that returns
the parameters of a good approximator f(·;S(y)) of y. Before we provide a formal statement of the
proof, we give an informal overview of the main arguments.
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Proof sketch of Lem. 16 Let Y′ ⊂ Y be a compact class of target functions, such that, any y ∈ Y′
cannot be represented as a neural network with σ activations. We recall that, by Lem. 1, one can
approximate σ using a continuous, identifiability inducing, activation function ρ : R→ R, up to any
error ε > 0 of our choice. By Assumption 1, for each y ∈ Y, there exists a unique best function
approximator g(·; θy) ∈ g of y. Here, g is the class of neural networks of the same architecture as f
except the activations are ρ. By Def. 6, θy is unique up to isomorphisms, assuming that g(·; θy) is
normal (see Def. 5).

In Lem. 11 we show that for any compact set Y′ ⊂ Y, if g(·; θy) is normal for all y ∈ Y′, then,
there exists a continuous selector S : Y′ → RNg that returns the parameters of a best approximator
g(·;S(y)) of y. Therefore, in order to show the existence of S, we need to prove that g(·; θy) is
normal for all y ∈ Y′.
Since any function y ∈ Y′ cannot be represented as a neural network with σ activations,
infy∈Y′ infθf ‖f(·; θ) − y‖∞ is strictly larger than zero (see Lem. 12). In particular, by taking
ρ to be close enough to σ, we can ensure that, infy∈Y′ infθf ‖g(·; θ)− y‖∞ is also strictly larger than
zero. This, together with Assumption 2, imply that g(·; θy) is normal for all y ∈ Y′ (see Lem. 5).
Hence, there exists a continuous selector S for Y′ with respect to the class g. Finally, using Lem. 14,
one can show that if ρ is close enough to σ, S is a good parameter selector for fas well.

Lemma 10. Let ρ : R→ R be a continuous, identifiability inducing, activation function. Let fbe a
class of neural networks with ρ activations and Θf = B be the closed ball in the proof of Lem. 8. Let Y
be a class of normal target functions with respect to f. Then, M [y;f] := arg minθ∈B ‖f(·; θ)− y‖∞
is a continuous multi-valued function of y.

Proof. Assume by contradiction that M is not continuous. We distinguish between two cases:

1. There exists a sequence yn → y and constant c > 0, such that,

sup
θ∈M [y;f]

inf
θ∈M [yn;f]

‖θ1 − θ2‖2 > c > 0 (32)

2. There exists a sequence yn → y and constant c > 0, such that,

sup
θ1∈M [yn;f]

inf
θ2∈M [y;f]

‖θ1 − θ2‖2 > c > 0 (33)

Case 1: We denote by θ1 a member of M [y;f] that satisfies:

∀n ∈ N : inf
θ2∈M [yn;f]

‖θ1 − θ2‖2 > c > 0 (34)

The set ∪∞n=1M [yn;f] ⊂ Θf is a bounded subset of RN , and therefore by the Bolzano-Weierstrass
theorem, for any sequence {θn2 }∞n=1, such that, θn2 ∈ M [yn;f], there is a sub-sequence {θnk2 }∞k=1
that converges to some θ∗2 . We notice that:

‖f(·; θnk2 )− ynk‖∞ = min
θ∈Θf

‖f(·; θ)− ynk‖∞ = F (ynk) (35)

In addition, by the continuity of F , we have: lim
k→∞

F (ynk) = F (y). By Lem. 6, we have:

‖f(·; θ∗2)− y‖∞ = F (y) (36)

This yields that θ∗2 is a member of M [y;f]. Since fy := arg minf∈f‖f − y‖∞ is unique and normal,
by the identifiability hypothesis, there is a function π ∈ Π, such that, π(θ∗2) = θ1. Since the function
π is continuous

lim
k→∞

‖π(θnk2 )− θ1‖2 = lim
k→∞

‖π(θnk2 )− π(θ∗2)‖2 = 0 (37)

We notice that π(θnk2 ) ∈M [ynk ;f]. Therefore, we have:

lim
k→∞

inf
θ2∈M [ynk ;f]

‖θ1 − θ2‖ = 0 (38)

in contradiction to Eq. 34.
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Case 2: Let θn1 ∈M [yn;f] be a sequence, such that,

inf
θ2∈M [y;f]

‖θn1 − θ2‖∞ > c (39)

The set ∪∞n=1M [yn;f] ⊂ Θf is a bounded subset of RN , and therefore by the Bolzano-Weierstrass
theorem, there is a sub-sequence θnk1 that converges to some vector θ0. The function ‖f(·; θ)− y‖∞
is continuous with respect to θ and y. Therefore,

lim
k→∞

min
θ∈Θf

‖f(·; θ)− ynk‖∞ = lim
k→∞

‖f(·; θnk1 )− ynk‖∞ = ‖f(·; θ0)− y‖∞ (40)

By Lem. 7, ‖f(·; θ0)−y‖∞ = minθ∈Θf
‖f(·; θ)−y‖∞. In particular, θ0 ∈M [y;f], in contradiction

to Eq. 39.

Lemma 11. Let ρ : R→ R be a continuous, identifiability inducing, activation function. Let fbe
a class of neural networks with ρ activations and Θf = B be the closed ball in the proof of Lem. 8.
Let Y be a compact class of normal target functions with respect to f. Then, there is a continuous
selector S : Y→ Θf, such that, S(y) ∈M [y;f].

Proof. Let y0 be a member of Y. We notice that M [y0;f] is a finite set. We denote its members by:
M [y0;f] = {θ0

1, . . . , θ
0
k}. Then, we claim that there is a small enough ε := ε(y0) > 0 (depending on

y0), such that, S that satisfies S(y0) = θ0
1 and S(y) = arg minθ∈M [y;f] ‖θ− θ0‖2 for all y ∈ Bε(y0),

is continuous in Bε(y0). The set Bε(y0) := {y | ‖y − y0‖∞ < ε} is the open ball of radius ε around
y0. We denote

c := min
π1 6=π2∈Π

‖π1 ◦ S(y0)− π2 ◦ S(y0)‖2 > 0 (41)

This constant exists since Π is a finite set of transformations and Y is a class of normal functions. In
addition, we select ε to be small enough to suffice that:

max
y∈Bε(y0)

‖S(y)− S(y0)‖2 < c/4 (42)

Assume by contradiction that there is no such ε. Then, for each εn = 1/n there is a function
yn ∈ Bεn(y0), such that,

‖S(y)− S(y0)‖2 ≥ c/4 (43)
Therefore, we found a sequence yn → y0 that satisfies:

M [yn;f] 6→M [y0;f] (44)

in contradiction to the continuity of M .

For any given y1, y2 ∈ Bε(y0) and π1 6= π2 ∈ Π, by the triangle inequality, we have:

‖π1 ◦ S(y1)− π2 ◦ S(y2)‖2 ≥‖π1 ◦ S(y0)− π2 ◦ S(y2)‖2 − ‖π1 ◦ S(y1)− π1 ◦ S(y0)‖2
≥‖π1 ◦ S(y0)− π2 ◦ S(y0)‖2 − ‖π1 ◦ S(y1)− π1 ◦ S(y0)‖2
− ‖π2 ◦ S(y0)− π2 ◦ S(y2)‖2

=‖π1 ◦ S(y0)− π2 ◦ S(y0)‖2 − ‖S(y1)− S(y0)‖2
− ‖S(y0)− S(y2)‖2

≥c− 2c/4 > c/2

(45)

In particular, ‖π ◦ S(y1)− S(y2)‖2 > c/2 for every π 6= Id.

Since M is continuous, for any sequence yn → y ∈ Bε(y0), there are πn ∈ Π, such that:

lim
n→∞

πn ◦ S(yn) = S(y) (46)

Therefore, by the above inequality, we address that for any large enough n, πn = Id. In particular,
for any sequence yn → y, we have:

lim
n→∞

S(yn) = S(y) (47)

This implies that S is continuous in any y ∈ Bε(y0).

We note that {Bε(y0)(y0)}y0∈Y is an open cover of Y. In particular, since Y is compact, there is
a finite sub-cover {Ci}Ti=1 of Y. In addition, we denote by {ci}Ti=1 the corresponding constants
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in Eq. 41. Next, we construct the continuous function S inductively. We denote by Si the locally
continuous function that corresponds to Ci. For a given pair of sets Ci1 and Ci2 that intersect, we
would like to construct a continuous function over Ci1 ∪ Ci2 . First, we would like to show that there
is an isomorphism π, such that, π ◦ Si2(y) = Si1(y) for all y ∈ Ci1 ∩ Ci2 . Assume by contradiction
that there is no such π. Then, let y1 ∈ Ci1∩Ci2 and π1, such that, π1◦Si2(y1) = Si1(y1). We denote
by y2 ∈ Ci1 ∩ Ci2 a member, such that, π1 ◦ Si2(y2) 6= Si1(y2). Therefore, we take a isomorphism
π2 6= π1, that satisfies π2 ◦ Si2(y2) = Si1(y2). We note that:

‖π1 ◦ Si2(y1)− π2 ◦ Si2(y2)‖2 > max{ci1 , ci2}/2 (48)

on the other hand:

‖π1 ◦ Si2(y1)− π2 ◦ Si2(y2)‖2 = ‖Si1(y1)− Si1(y2)‖2 < ci1/4 (49)

in contradiction.

Hence, let π be such isomorphism. To construct a continuous function over Ci1 ∪ Ci2 we proceed as
follows. First, we replace Si2 with π ◦ Si2 and define a selection function Si1,i2 over Ci1 ∪Ci2 to be:

Si1,i2(y) :=

{
Si1(y) if , y ∈ Ci1
π ◦ Si2(y) if , y ∈ Ci2

(50)

Since each one of the functions Si1 and π ◦ Si2 are continuous, they conform on Ci1 ∩ Ci2 and the
sets Ci1 and Ci2 are open, Si1,i2 is continuous over Ci1 ∪ Ci2 . We define a new cover ({Ci}Ti=1 \
{Ci1 , Ci2}) ∪ {Ci1 ∪ Ci2} of size T − 1 with locally continuous selection functions S′1, . . . , S

′
T−1.

By induction, we can construct S over Y.

Lemma 12. Let fbe a class of neural networks with a continuous activation function σ. Let Y be a
compact class of target functions. Assume that any y ∈ Y cannot be represented as a neural network
with σ activations. Then,

inf
y∈Y

inf
θ∈Θf

‖f(·; θ)− y‖∞ > c2 (51)

for some constant c2 > 0.

Proof. Assume by contradiction that:

inf
y∈Y

inf
θ∈Θf

‖f(·; θ)− y‖∞ = 0 (52)

Then, there is a sequence yn ∈ Y, such that:

inf
θ∈Θf

‖f(·; θ)− yn‖∞ → 0 (53)

Since Y is compact, there exists a converging sub-sequence ynk → y0 ∈ Y. By Lem. 7, we have:

inf
θ∈Θf

‖f(·; θ)− y0‖∞ = 0 (54)

This is in contradiction to the assumption that any y ∈ Y cannot be represented as a neural network
with σ activations.

Lemma 13. Let fbe a class of neural networks with a continuous activation function σ. Let Y be a
compact class of target functions. Assume that any y ∈ Y cannot be represented as a neural network
with σ activations. Then, there exists a closed ball B around 0 in the Euclidean space RNf, such that:

min
θ∈B
‖f(·; θ)− y‖∞ ≤ 2 inf

θ∈Θf

‖f(·; θ)− y‖∞ (55)

Proof. Let c2 > 0 be the constant from Lem. 12. By Lem. 12 and Lem. 7, fy is continuous over
the compact set Y. Therefore, there is a small enough δ > 0, such that, for any y1, y2 ∈ Y, such
that, ‖y1 − y2‖∞ < δ, we have: ‖fy1 − fy2‖∞ < c2/2. For each y ∈ Y we define B(y) :=
{y′ | ‖y − y′‖∞ < min{c2/2, δ}}. The sets {B(y)}y∈Y form an open cover to Y. Since Y is a
compact set, it has a finite sub-cover {B(y1), . . . , B(yk)}. For each y′ ∈ B(yi), we have:

‖fyi − y′‖∞ ≤ ‖fyi − fy′‖∞ + ‖fy′ − y′‖∞
≤ c2/2 + ‖fy′ − y′‖∞
≤ 2‖fy′ − y′‖∞

(56)
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Therefore, if we take H = {θi}ki=1 for θi, such that, f(·; θi) = fyi , we have:

min
i∈[n]
‖f(·; θi)− y‖∞ ≤ 2 inf

θ∈Θf

‖f(·; θ)− y‖∞ (57)

In particular, if we take B to be the closed ball around 0 that contains H , we have the desired.

Lemma 14. Let σ : R → R be a L-Lipschitz continuous activation function. Let f be a class of
neural networks with σ activations. Let Y be a compact class of normal target functions with respect
to f. Let ρ be an activation function, such that, ‖σ − ρ‖∞ < δ. Let B = B1 ∪ B2 be the closed ball
around 0, where B1 is be the closed ball in the proof of Lem. 8 and B2 is the ball from Lem. 13. In
addition, let g be the class of neural networks of the same architecture as fexcept the activations
are ρ. Then, for any θ ∈ B, we have:

‖f(·; θ)− g(·; θ)‖∞ ≤ c1 · δ (58)

for some constant c1 > 0 independent of δ.

Proof. We prove by induction that for any input x ∈ X the outputs the i’th layer of f(·; θ) and g(·; θ)
are O(δ)-close to each other.

Base case: we note that:

‖σ(W 1 · x+ b1)− ρ(W 1 · x+ b1)‖1 ≤
h2∑
i=1

∣∣∣σ(〈W 1
i , x〉+ b1i )− ρ(〈W 1

i , x〉+ b1i )
∣∣∣

≤ h2 · δ =: c1 · δ

(59)

Hence, the first layer’s activations are O(δ)-close to each other.

Induction step: assume that for any two vectors of activations x1 and x2 in the i’th layer of the
neural networks, we have:

‖x1 − x2‖1 ≤ ci · δ (60)

By the triangle inequality:

‖σ(W i+1 · x1 + bi+1)− ρ(W i+1x2 + bi+1)‖1
≤‖σ(W i+1 · x1 + bi+1)− σ(W i+1x2 + bi+1)‖1

+ ‖σ(W i+1x2 + bi+1)− ρ(W i+1x2 + bi+1)‖1
≤L · ‖(W i+1 · x1 + bi+1)− (W i+1x2 + bi+1)‖1

+

hi+2∑
j=1

|σ(〈W i+1
j , x〉+ bi+1

j )− ρ(〈W i+1
j , x〉+ bi+1

j )|

=L · ‖W i+1(x1 − x2)‖1 + hi+2 · δ
≤L · ‖W i+1‖1 · ‖x1 − x2‖1 + hi+2 · δ
≤L · ‖W i+1‖1 · ci · δ + hi+2 · δ
≤(hi+2 + L · ‖W i+1‖1 · ci) · δ

(61)

Since θ ∈ B is bounded, each ‖W i+1‖1 is bounded (for all i ≤ k and θ). Hence, Eq. 58 holds for
some constant c1 > 0 independent of δ.

Lemma 15. Let σ : R → R be a L-Lipschitz continuous activation function. Let f be a class of
neural networks with σ activations. Let Y be a compact class of target functions. Assume that any
y ∈ Y cannot be represented as a neural network with σ activations. Let ρ be an activation function,
such that, ‖σ − ρ‖∞ < δ. Let B be the closed ball from Lem. 14. In addition, let g be the class of
neural networks of the same architecture as fexcept the activations are ρ. Then, for any y ∈ Y, we
have: ∣∣∣min

θ∈B
‖f(·; θ)− y‖∞ −min

θ∈B
‖g(·; θ)− y‖∞

∣∣∣ ≤ c1 · δ (62)

for c1 from Lem. 14.
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Proof. By Lem. 14, for all θ ∈ B, we have:

‖f(·; θ)− y‖∞ ≤ ‖g(·; θ)− y‖∞ + c1 · δ (63)

In particular,
min
θ∈B
‖f(·; θ)− y‖∞ ≤ min

θ∈B
‖g(·; θ)− y‖∞ + c1 · δ (64)

By a similar argument, we also have:

min
θ∈B
‖g(·; θ)− y‖∞ ≤ min

θ∈B
‖f(·; θ)− y‖∞ + c1 · δ (65)

Hence, ∣∣∣min
θ∈B
‖f(·; θ)− y‖∞ −min

θ∈B
‖g(·; θ)− y‖∞

∣∣∣ ≤ c1 · δ (66)

Lemma 16. Let σ : R → R be a L-Lipschitz continuous activation function. Let f be a class of
neural networks with σ activations. Let Y be a compact set of target functions. Assume that any
y ∈ Y cannot be represented as a neural network with σ activations. Then, for every ε̂ > 0 there is a
continuous selector S : Y→ Θf, such that, for all y ∈ Y, we have:

‖f(·;S(y))− y‖∞ ≤ 2 inf
θ∈Θf

‖f(·; θ)− y‖∞ + ε̂ (67)

Proof. By Lem. 1, there exists a meromorphic function ρ : D → C, R ⊂ D, ρ(R) ⊂ R that is an
identifiability inducing function, such that, ‖σ − ρ‖∞ < 1

2c2
min(ε̂, c1) =: δ, where c1 and c2 are

the constants in Lems. 14 and 12. Since ρ(R) ⊂ R, and it is a meromorphic over D, it is continuous
over R (the poles of ρ are not in R). We note that by Lems. 14 and 15, for any y ∈ Y, we have:

min
θ∈B
‖g(·; θ)− y‖∞ > c2 − c1 · δ > 0 (68)

where B is the ball from Lem. 14. Therefore, by Lem. 5, each y ∈ Y is normal with respect to the
class g. Hence, by Thm. 11, there is a continuous selector S : Y→ B, such that,

‖g(·;S(y))− y‖∞ = min
θ∈B
‖g(·; θ)− y‖∞ (69)

By Lem. 15, we have: ∣∣∣min
θ∈B
‖f(·; θ)− y‖∞ − ‖g(·;S(y))− y‖∞

∣∣∣ ≤ c1 · δ (70)

By the triangle inequality:∣∣∣min
θ∈B
‖f(·; θ)− y‖∞ − ‖f(·;S(y))− y‖∞

∣∣∣
≤
∣∣∣‖f(·;S(y))− y‖∞ − ‖g(·;S(y))− y‖∞

∣∣∣+
∣∣∣min
θ∈B
‖f(·; θ)− y‖∞ − ‖g(·;S(y))− y‖∞

∣∣∣ (71)

By Eq. 70 and Lem. 14, we have:∣∣∣min
θ∈B
‖f(·; θ)− y‖∞ − ‖f(·;S(y))− y‖∞

∣∣∣ ≤ 2c1 · δ (72)

Since δ < ε̂/2c2, we obtain the desired inequality:

‖f(·;S(y))− y‖∞ ≤ min
θ∈B
‖f(·; θ)− y‖∞ + ε̂

≤ 2 min
θ∈Θf

‖f(·; θ)− y‖∞ + ε̂
(73)

3.3 Proof of Thm. 1

Before we provide a formal statement of the proof, we introduce an informal outline of it.
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Proof sketch of Thm. 1 In Lem. 16 we showed that for a compact class Y of target functions that
cannot be represented as neural networks with σ activations, there is a continuous selector S(y) of
parameters, such that,

‖f(·;S(y))− y‖∞ ≤ 3 inf
θ∈Θf

‖f(·; θ)− y‖∞ (74)

Therefore, in this case, we have: dN (f;Y) = Θ(d̃N (f;Y)). As a next step, we would like to apply
this claim on Y :=Wr,m and apply the lower bound of d̃N (f;Wr,m) = Ω(N−r/m) to lower bound
dN (f;Y). However, both of the classes fand Y include constant functions, and therefore, we have:
f∩Y 6= ∅. Hence, we are unable to assume that any y ∈ Y cannot be represented as a neural network
with σ activations.

To solve this issue, we consider a “wide” compact subset Y′ =Wγ
r,m ofWr,m that does not include

any constant functions, but still satisfies d̃N (f;Wγ
r,m) = Ω(N−r/m). Then, assuming that any non-

constant function y ∈ Wr,m cannot be represented as a neural network with σ activations, implies
that any y ∈ Wγ

r,m cannot be represented as a neural network with σ activations. In particular, by
Lem. 16, we obtain the desired lower bound: dN (f;Wr,m) ≥ dN (f;Wγ

r,m) = Θ(d̃N (f;Wγ
r,m)) =

Ω(N−r/m).

For this purpose, we provide some technical notations. For a given function f : [−1, 1]m → R, we
denote:

‖h‖s,∗r :=
∑

1≤|k|1≤r

‖Dkh‖∞ (75)

In addition, for any 0 ≤ γ1 < γ2 <∞, we define:

Wγ1,γ2
r,m := {f : [−1, 1]m → R | f is r-smooth and ‖f‖sr ≤ γ2 and ‖f‖s,∗r ≥ γ1} (76)

Specifically, we denote,Wγ1
r,m when γ2 = 1. We notice that this set is compact, since it is closed and

subset to the compact setWr,m (see [1]).

Next, we would like to produce a lower bound for the N -width of Wγ
r,m. In [6, 15], in or-

der to achieve a lower bound for the N -width of Wr,m, two steps are taken. First, they
prove that for any K ⊂ L∞([−1, 1]m), we have: d̃N (K) ≥ bN (K). Here, bN (K) :=
supXN+1

sup {ρ | ρ · U(XN+1) ⊂ K} is the Bernstein N -width of K. The supremum is taken over
allN+1 dimensional linear subspacesXN+1 of L∞([−1, 1]m) and U(X) := {f ∈ X | ‖f‖∞ ≤ 1}
stands for the unit ball of X . As a second step, they show that the Bernstein N -width ofWr,m is
larger than Ω(N−r/m).

Unfortunately, in the general case, Bernstein’s N -width is very limited in its ability to estimate the
nonlinear N -width. When considering a set K that is not centered around 0, Bernstein’s N -width
can be arbitrarily smaller than the actual nonlinear N -width of K. For example, if all of the members
of K are distant from 0, then, the Bernstein’s N -width of K is zero but the nonlinear N -width of K
that might be large. Specifically, the Bernstein N -width ofWγ

r,m is small even though intuitively,
this set should have a similar width as the standard Sobolev space (at least for a small enough
γ > 0). Therefore, for the purpose of measuring the width ofWγ

r,m, we define the extended Bernstein
N -width of a set K,

b̃N (K) := sup
XN+1

sup
{
ρ
∣∣ ∃β < ρ s.t ρ · U(XN+1) \ β · U(XN+1) ⊂ K

}
(77)

with the supremum taken over all N + 1 dimensional linear subspaces XN+1 of L∞([−1, 1]m).

The following lemma extends Lem. 3.1 in [6] and shows that the extended Bernstein N -width of a
set K is a lower bound of the nonlinear N -width of K.

Lemma 17. Let K ⊂ L∞([−1, 1]m). Then, d̃N (K) ≥ b̃N (K).

Proof. The proof is based on the proof of Lem. 3.1 in [6]. For completeness, we re-write the proof
with minor modifications. Let ρ < b̃N (K) and let XN+1 be an N + 1 dimensional subspace of
L∞([−1, 1]m), such that, there exists 0 < β < ρ and [ρ · U(XN+1) \ β · U(XN+1)] ⊂ K. If f(·; θ)
is class of functions with Nf = N parameters and S(y) is any continuous selection for K, such that,

α := sup
y∈K
‖f(·;S(y))− y‖∞ (78)
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we let Ŝ(y) := S(y)−S(−y). We notice that, Ŝ(y) is an odd continuous mapping of ∂(ρ·U(XN+1))
into RN . Hence, by the Borsuk-Ulam antipodality theorem [4, 13] (see also [7]), there is a function
y0 in ∂(ρ · U(XN+1)) for which Ŝ(y0) = 0, i.e. S(−y0) = S(y0). We write

2y0 = (y0 −f(·;S(y0))− (−y0 −f(·;S(−y0)) (79)

and by the triangle inequality:

2ρ = 2‖y0‖∞ ≤ ‖y0 −f(·;S(y0)‖∞ + ‖ − y0 −f(·;S(−y0)‖∞ (80)

It follows that one of the two functions y0, −y0 are approximated by f(·;S(y0)) with an error ≥ ρ.
Therefore, we have: α ≥ ρ. Since the lower bound holds uniformly for all continuous selections S,
we have: d̃N (K) ≥ ρ.

Lemma 18. Let γ ∈ (0, 1) and r,m,N ∈ N. We have:

d̃N (Wγ
r,m) ≥ C ·N−r/m (81)

for some constant C > 0 that depends only on r.

Proof. Similar to the proof of Thm. 4.2 in [6] with additional modifications. We fix the integer r and
let φ be a C∞(Rm) function which is one on the cube [1/4, 3/4]m and vanishes outside of [−1, 1]m.
Furthermore, let C0 be such that 1 < ‖Dkφ‖∞ < C0, for all |k| < r. With no loss of generality,
we consider integers N of the form N = dm for some positive integer d and we let Q1, . . . , QN be
the partition of [−1, 1]m into closed cubes of side length 1/d. Then, by applying a linear change
of variables which takes Qj to [−1, 1]m, we obtain functions φ1, . . . , φN with φj supported on Qj ,
such that:

∀k s.t |k| ≤ r : d|k| ≤ ‖Dkφj‖∞ ≤ C0 · d|k| (82)

We consider the linear space XN of functions
∑N
j=1 cj · φj spanned by the functions φ1, . . . , φN .

Let y =
∑N
j=1 cj · φi. By Lem. 4.1 in [6], for p = q =∞, we have:

‖y‖sr ≤ C1 ·Nr/m · max
j∈[N ]

|cj | (83)

for some constant C1 > 0 depending only on r. By definition, for any x ∈ Qj , we have: y(x) =
cj · φj(x). In particular,

‖y‖∞ = max
j∈[N ]

max
x∈Qj

|cj | · ‖φj(x)‖∞ (84)

Therefore, by Eq. 82, we have:

max
j∈[N ]

|cj | ≤ ‖y‖∞ ≤ C0 · max
j∈[N ]

|cj | (85)

Hence,
‖y‖sr ≤ C1 ·Nr/m · ‖y‖∞ (86)

Then, by taking ρ := C−1
1 ·N−r/m, any y ∈ ρ · U(XN ) satisfies ‖y‖sr ≤ 1. Again, by Lem. 4.1 and

Eq. 82, we also have:
‖y‖s,∗r ≥ C2 · ‖y‖sr ≥ C3 ·Nr/m · max

j∈[N ]
|cj | (87)

For some constants C2, C3 > 0 depending only on r. By Eq. 85, we obtain:

‖y‖s,∗r ≥
‖y‖∞ · C3

C0
·Nr/m (88)

Then, for any β > 0, such that,

γ <
β · C3

C0
·Nr/m < 1 (89)

we have: [ρ · U(XN ) \ β · U(XN )] ⊂ Wγ
r,m. Hence, we have:

d̃N (Wγ
r,m) ≥ b̃N (Wγ

r,m) ≥ ρ = C−1
1 ·N−r/m (90)
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Lemma 19. Let σ : R → R be a piece-wise C1(R) activation function with σ′ ∈ BV (R).
Let f be a class of neural networks with σ activations. Let Y = Wr,m and let W0,∞

r,m :=

{f : [−1, 1]m → R | f is r-smooth and ‖f‖sr <∞}. Let F : W0,∞
r,m → W0,∞

r,m be a continuous
functional (w.r.t ‖ · ‖sr). Assume that for any y ∈ Y and α > 0, if y + α · F(y) is non-constant, then
it cannot be represented as a member of f. Then, if d(f;Y) ≤ ε, we have:

Nf = Ω(ε−m/r) (91)

Proof. Let Y1 =W0.1,1.5
r,m ⊂ W0,1.5

r,m (the selection of γ = 0.1 is arbitrary). We note that F(Y1) is a
compact set as a continuous image of Y1. Since ‖ · ‖∗r is a continuous function over F(Y1) (w.r.t
norm ‖ · ‖sr), it attains its maximal value 0 ≤ q <∞ within F(Y1). By the triangle inequality, for
any y ∈ Y1, we have:

‖y + ε · F(y)‖∗r ≥ ‖y‖∗r − ε · ‖F(y)‖sr ≥ 0.1− ε · q (92)

and also,
∀y ∈ Y1 : ‖y − y′‖∞ ≤ ε · q (93)

We denote Y2 := {y + α · F(y) | y ∈ Y1}. This is a compact set as a continuous image of the
function G(y) := y + ε · F(y), over the compact set Y1. In addition, for any constant ε < 0.1/q, by
Eq. 92, any y ∈ Y2 is a non-constant function.

By Eq. 93 and the triangle inequality, we have:

∀y ∈ Y1 : ‖f(·; θ)− y′‖∞ ≤ ‖f(·; θ)− y‖∞ + ε · q (94)

Hence,

sup
y∈Y1

inf
θ
‖f(·; θ)− y′‖∞ ≤ sup

y∈Y1

inf
θ
‖f(·; θ)− y‖∞ + ε · q = d(f;Y1) + ε · q (95)

In particular,
d(f;Y2) = sup

y′∈Y2

inf
θ
‖f(·; θ)− y′‖∞ ≤ d(f;Y1) + ε · q (96)

By the same argument, we can also show that d(f;Y1) ≤ d(f;Y2) + ε · q.

By Lem. 16, there is a continuous selector S : Y2 → Θf, such that,

sup
y′∈Y2

‖f(·;S(y′))− y′‖∞ ≤ 2 sup
y′∈Y2

min
θ∈Θf

‖f(·; θ)− y′‖∞ + ε ≤ 2(d(f;Y1) + ε · q) + ε (97)

We note that d(f;Y1) ≤ 1.5 · d(f;Y) ≤ 1.5ε. Therefore, we have:

sup
y′∈Y2

‖f(·;S(y′))− y′‖∞ ≤ (4 + 2q)ε (98)

In particular, by defining S(y) = S(y′) for all y ∈ Y2, again by the triangle inequality, we have:

d̃(f;Y1) ≤ sup
y∈Y1

‖f(·;S(y))− y‖∞ ≤ (4 + 2q)ε+ ε ≤ (5 + 2q)ε (99)

By [6], we have:
(5 + 2q)ε ≥ d̃(f;Y1) ≥ d̃N (Y1) ≥ C ·N−r/m (100)

for some constant C > 0 and N = Nf. Therefore, we conclude that: Nf = Ω(ε−m/r).

We note that the definition of F(y) is very general. In the following theorem we choose F(y) to be
the zero function. An alternative reasonable choice could F(y) := y

2+y .

Theorem 1. Let σ : R→ R be a piece-wise C1(R) activation function with σ′ ∈ BV (R). Let fbe
a class of neural networks with σ activations. Let Y =Wr,m. Assume that any non-constant y ∈ Y
is not a member of f. Then, if d(f;Y) ≤ ε, we have:

Nf = Ω(ε−m/r) (101)

Proof. Follows immediate from Lem. 19 with F(y) being the zero function for all y ∈ Y.
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3.4 Proofs of Thms. 2 and 3

Lemma 20. Let σ : R→ R be universal, piece-wise C1(R) activation function with σ′ ∈ BV (R).
Let Ee,q be an neural embedding method. Assume that ‖e‖s1 ≤ `1 for every e ∈ e and q is a class of
`2-Lipschitz neural networks with σ activations and bounded first layer ‖W 1

q ‖1 ≤ c. Let Y :=W1,m.
Assume that any non-constant y ∈ Y cannot be represented as a neural network with σ activations.
If the embedding method achieves error d(Ee,q,Y) ≤ ε, then, the complexity of q is:

Nq = Ω
(
ε−min(m,2m1)

)
(102)

where the constant depends only on the parameters c, `1, `2, m1 and m2.

Proof. Assume that Nq = o(ε−(m1+m2)). For every y ∈ Y, we have:

inf
θe,θq

∥∥∥y − q(x, e(I; θe); θq)
∥∥∥
∞
≤ ε (103)

We denote by k the output dimension of e. Let σ ◦W 1
q be the first layer of q. We consider that

W 1
q ∈ Rw1×(m1+k), where w1 is the size of the first layer of q. One can partition the layer into two

parts:
σ(W 1

q (x, e(x; θe))) = σ(W 1,1
q x+W 1,2

q e(I; θe)) (104)

where W 1,1
q ∈ Rw1×m1 and W 1,2

q ∈ Rw1×k. We divide into two cases.

Case 1 Assume that w1 = Ω(ε−m1). Then, by the universality of σ, we can approximate the class
of functions ewith a class d of neural networks of size O(k · ε−m2) with σ activations. To show it,
we can simply take k neural networks of sizes O((ε/`1)−m2) = O(ε−m2) to approximate the i’th
coordinate of e separately. By the triangle inequality, for all y ∈ Y, we have:

inf
θd,θq

∥∥∥y − q(x, d(I; θd); θq)
∥∥∥
∞

≤ inf
θe,θd,θq

{∥∥∥y − q(x, e(I; θe); θq)
∥∥∥
∞

+
∥∥∥q(x, d(I; θd); θq)− q(x, e(I; θe); θq)

∥∥∥
∞

}
≤ sup

y
inf
θd

{∥∥∥y − q(x, e(I; θ∗e); θ∗q )
∥∥∥
∞

+
∥∥∥q(x, d(I; θd); θ

∗
q )− q(x, e(I; θ∗e); θ∗q )

∥∥∥
∞

}
≤ sup

y
inf
θd

∥∥∥q(x, d(I; θd); θ
∗
q )− q(x, e(I; θ∗e); θ∗q )

∥∥∥
∞

+ ε

(105)

where θ∗q , θ
∗
e are the minimizers of

∥∥∥y − q(x, e(I; θe); θq)
∥∥∥
∞

. Next, by the Lipschitzness of q, we
have:

inf
θd

∥∥∥q(x, d(I; θd); θ
∗
q )− q(x, e(I; θ∗e); θ∗q )

∥∥∥
∞
≤ `2 · inf

θd

∥∥∥d(I; θd)− e(I; θ∗e)
∥∥∥
∞
≤ `2 · ε (106)

In particular,
inf
θd,θq

∥∥∥y − q(x, d(I; θd); θq)
∥∥∥
∞
≤ (`2 + 1) · ε (107)

By Thm. 1 the size of the architecture q(x, d(I; θd); θq) is Ω(ε−m). Since Nq = o(ε−(m1+m2)),
we must have k = Ω(ε−m1). Otherwise, the overall size of the neural network q(x, d(I; θd); θq)

is o(ε−(m1+m2)) + O(k · ε−m2) = o(ε−m) in contradiction. Therefore, the size of q is at least
w1 · k = Ω(ε−2m1).

Case 2 Assume that w1 = o(ε−m1). In this case we approximate the class W 1,2
q · e, where

W 1,2
q ∈ Rw1×k, where ‖W 1,2

q ‖1 ≤ c. The approximation is done using a class d of neural networks
of size O(w1 · ε−m2). By the same analysis of Case 1, we have:

inf
θd,θq

∥∥∥y − q̃(x, d(I; θd); θq)
∥∥∥
∞
≤ (`2 + 1) · ε (108)

where q̃ = q′(W 1,1
q x + I · d(I; θd)) and q′ consists of the layers of q excluding the first layer. We

notice that W 1,1
q x+ I ·d(I; θd) can be represented as a matrix multiplication M · (x, d(I; θd)), where
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M is a block diagonal matrix with blocks W 1,1
q and I. Therefore, we achieved a neural network that

approximates y. However, the overall size of q(x, d(I; θd); θq) is o(ε−(m1+m2)) +O(w1 · ε−m2) =
o(ε−m) in contradiction.

Lemma 21. Let σ be a universal piece-wise C1(R) activation function with σ′ ∈ BV (R). Let
neural embedding method Ee,q. Assume that ‖e‖s1 ≤ `1 and the output dimension of e is k = O(1)
for every e ∈ e. Assume that q is a class of `2-Lipschitz neural networks with σ activations. Let
Y :=W1,m. Assume that any non-constant y ∈ Y cannot be represented as neural networks with σ
activations. If the embedding method achieves error d(Ee,q,Y) ≤ ε, then, the complexity of q is:

Nq = Ω
(
ε−m

)
(109)

where the constant depends only on the parameters `1, `2, m1 and m2.

Proof. Follows from the analysis in Case 1 of the proof of Lem. 20.

Theorem 2. Let σ : R→ R be universal, piece-wise C1(R) activation function with σ′ ∈ BV (R).
Let Ee,q be an neural embedding method. Assume that e is a class of continuously differentiable
neural network e with zero biases and bounded spectral complexity C(e) ≤ `1 and q is a class of
neural networks q with σ activations, bounded spectral complexity C(q) ≤ `2 and bounded first layer
‖W 1

q ‖1 ≤ c. Let Y := W1,m. Assume that any non-constant y ∈ Y cannot be represented as a
neural network with σ activations. If the embedding method achieves error d(Ee,q,Y) ≤ ε, then, the
complexity of q is:

Nq = Ω
(
ε−min(m,2m1)

)
(110)

where the constant depends only on the parameters `1, `2, m1 and m2.

Proof. First, we note that since σ′ ∈ BV (R), we have: ‖σ′‖∞ < ∞. In addition, σ is piece-wise
C1(R), and therefore, by combining the two, it is Lipschitz continuous as well. Let e := e(I; θe) and
q := q(x, z; θq) be members of e and q respectively. By Lems 3 and 4, we have:

‖e‖∞ = sup
I∈I
‖e(I; θe)‖1 ≤ `1 · ‖I‖1 ≤ m2 · `1 (111)

and also
Lip(e) ≤ `1 (112)

Since the functions e are continuously differentiable, we have:∑
1≤|k|1≤1

‖Dke‖∞ ≤ ‖∇e‖∞ ≤ Lip(e) ≤ `1 (113)

Hence,
‖e‖s1 ≤ (m2 + 1) · `1 (114)

By similar considerations, we have: Lip(q) ≤ `2. Therefore, by Lem. 20, we have the desired.

Theorem 3. Let σ : R→ R be a universal, piece-wise C1(R) activation function with σ′ ∈ BV (R)
and σ(0) = 0. Let Ee,q be an neural embedding method. Assume that e is a class of continuously
differentiable neural network e with zero biases, output dimension k = O(1) and bounded spectral
complexity C(e) ≤ `1 and q is a class of neural networks q with σ activations, bounded spectral
complexity C(q) ≤ `2. Let Y :=W1,m. Assume that any non-constant y ∈ Y cannot be represented
as a neural network with σ activations. If the embedding method achieves error d(Ee,q,Y) ≤ ε, then,
the complexity of q is:

Nq = Ω
(
ε−(m1+m2)

)
(115)

Proof. Follows from Lem. 21 and the proof of Thm. 2.
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3.5 Proof of Thm. 4

Lemma 22. Let y ∈ Wr,m. Then, {yI}I∈I is compact and F : I 7→ yI is a continuous function.

Proof. First, we note that the set X × I = [−1, 1]m1+m2 is compact. Since y is continuous, it is
uniformly continuous over X × I. Therefore,

lim
I→I0

‖yI − yI0‖∞ = lim
I→I0

sup
x∈X
‖y(x, I)− y(x, I0)‖2 = 0 (116)

In particular, the function F : I 7→ yI is a continuous function. In addition, since I = [−1, 1]m2 is
compact, the image {yI}I∈I of F is compact as well.

Lemma 23. Let σ be a universal, piece-wise C1(R) activation function with σ′ ∈ BV (R) and
σ(0) = 0. Let Ŷ ⊂ Y =Wr,m be a compact set of functions y, such that, yI cannot be represented
as a neural network with σ activations, for any I ∈ I. Then, there are classes g and f of neural
networks with σ and ReLU activations (resp.), such that, d(Hf,g; Ŷ) ≤ ε and Ng = O

(
ε−m1/r

)
,

where the constant depends on m1,m2 and r.

Proof. By the universality of σ, there is a class of neural networks g with σ activations of size:

Ng = O
(
ε−m1/r

)
(117)

such that,
∀p ∈ Wr,m1

: inf
θg∈Θg

‖g(·; θg)− p‖∞ ≤ ε (118)

Let Y′ :=
⋃
I∈I,y∈Ŷ{yI}. We note that, Y′ ⊂ Wr,m1

. Therefore,

∀y ∈ Ŷ ∀I ∈ I : inf
θg∈Θg

‖g(·; θg)− yI‖∞ ≤ ε (119)

By Lem. 16, there is a continuous selector S : Y′ → Θg, such that, for any p ∈ Y′, we have:

‖g(·;S(p))− p‖∞ ≤ 2 inf
θg∈Θg

‖g(·; θg)− p‖∞ + ε ≤ 3ε (120)

We notice that the set I × Ŷ is compact as a product of two compact sets. Since yI is continuous
with respect to both (I, y) ∈ I × Ŷ, we can define a continuous function S′(I, y) := S(yI). Since
S′ is continuous over a compact set, it is bounded as well. We denote by B, a closed ball around 0, in
which the image of S′ lies. In addition, by the Heine-Cantor theorem, we have:

∀δ > 0 ∃ε > 0 ∀I1, I2 ∈ I, y1, y2 ∈ Ŷ :

‖(I1, y1)− (I2, y2)‖ ≤ δ =⇒ ‖S′(I1, y1)− S′(I2, y2)‖2 ≤ ε
(121)

where the metric ‖ · ‖ is the product metric of I and Ŷ. In particular, we have:

∀ δ > 0 ∃ε > 0 ∀I1, I2 ∈ I, y ∈ Ŷ :

‖I1 − I2‖2 ≤ δ =⇒ ‖S′(I1, y)− S′(I2, y)‖2 ≤ ε
(122)

Therefore, since the functions S′y(I) := S′(I, y) (for any fixed y) are uniformly bounded and share
the same rate of uniform continuity, by [9], for any ε̂ > 0, there is a large enough ReLU neural
network f, such that,

sup
y

inf
θf∈Θf

‖S′y(·)− f(·; θf )‖∞ ≤ ε̂ (123)

Since g(x; θg) is continuous over the compact domain, X × B, by the Heine-Cantor theorem, g is
uniformly continuous. Hence, for any small enough ε̂ > 0, we have:

∀y ∈ Ŷ : inf
θf∈Θf

sup
I
‖g(·; f(I; θf ))− g(·;S′y(I))‖∞ ≤ ε (124)

In particular, by Eqs. 120 and 124 and the triangle inequality, we have the desired:

∀y ∈ Ŷ ∀I ∈ I : inf
θf∈Θf

sup
I
‖g(·; f(I; θf ))− yI‖∞ ≤ 4ε (125)
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Theorem 4. Let σ be a universal, piece-wise C1(R) activation function with σ′ ∈ BV (R) and
σ(0) = 0. Let y ∈ Y =Wr,m be a target function, such that, yI cannot be represented as a neural
network with σ activations for all I ∈ I. Then, there is a class, g, of neural networks with σ
activations and a neural network f(I; θf ) with ReLU activations, such that, h(x, I) = g(x; f(I; θf ))

achieves error ≤ ε in approximating y and Ng = O
(
ε−m1/r

)
.

Proof. Follows immediately for Ŷ = {y}.

3.6 Proof of Thm. 5

Theorem 5. Let σ : R → R be a universal Lipschitz continuous activation function, such that,
σ(0) = 0. Let g be a class of neural networks with σ activations. Let y ∈ Y :=Wr,m be a target
function. Assume that there is a continuous selector S ∈ Pr,w,c for the class {yI}I∈I within g. Then,
there is a hypernetwork h(x, I) = g(x; f(I; θf )) that achieves error ≤ ε in approximating y, such
that:

Nf = O(w1+m2/r · ε−m2/r + w ·Ng)

= O(ε−m2/r + ε−m1/r)
(126)

Proof. We would like to approximate the function S using a neural network f of the specified
complexity. Since S ∈ Pr,w,c, we can represent S in the following manner:

S(I) = M · P (I) (127)

Here, P : Rm2 → Rw and M ∈ RNg×w is some matrix of bounded norm ‖M‖1 ≤ c. We recall
that any constituent function Pi are in Wr,m2

. By [14], such functions can be approximated by
neural networks of sizes O(ε−m2/r) up to accuracy ε > 0. Hence, we can approximate S(I) using a
neural network f(I) := M ·H(I), where H : Rm2 → Rw, such that, each coordinate Hi is of size
O(ε−m2/r). The error of f in approximating S is therefore upper bounded as follows:

‖M ·H(I)−M · P (I)‖1 ≤ ‖M‖1 · ‖H(I)− P (I)‖1

≤ c ·
w∑
i=1

|Hi(I)− Pi(I)|

≤ c · w · ε

(128)

In addition,
‖M · P (I)‖1 ≤ ‖M‖1 · ‖P (I)‖1 ≤ c · w (129)

Therefore, each one of the output matrices and biases in S(I) is of norm bounded by c · w.

Next, we denote by W i and bi the weight matrices and biases in S(I) and by V i and di the weight
matrices and biases in f(I). We would like to prove by induction that for any x ∈ X and I ∈ I, the
activations of g(x;S(I)) and g(x; f(I)) are at most O(ε) distant from each other and the norm of
these activations is O(1).

Base case: Let x ∈ X . Since X = [−1, 1]m1 , we have, ‖x‖1 ≤ m1 =: α1. In addition, we have:

‖σ(W 1x+ b1)− σ(V 1x+ d1)‖1 ≤ L‖(W 1x+ b1)− (V 1x+ d1)‖1
≤ L‖W 1 − V 1‖1‖x‖1 + ‖b1 − d1‖1
≤ m1 · L · c · w · ε+ c · w · ε
=: β1 · ε

(130)

Here, L is the Lipschitz constant of σ.

Induction step: let x1 and x2 be the activations of g(x;S(I)) and g(x; f(I)) in the i’th layer.
Assume that there are constants αi, βi > 0 (independent of the size of g, x1 and x2), such that,
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‖x1 − x2‖1 ≤ βi · ε and ‖x1‖1 ≤ αi. Then, we have:

‖σ(W i+1x1 + bi+1)‖1 = ‖σ(W i+1x1 + bi+1)− σ(0)‖1
≤ L · ‖W i+1x1 + bi+1 − 0‖1
≤ L · ‖W i+1x1‖1 + L · ‖bi+1‖1
≤ L · ‖W i+1‖1 · ‖x1‖1 + L · c · w
≤ L · c · w(1 + αi) =: αi+1

(131)

and also:
‖σ(W i+1 · x1 + bi+1)− σ(V i+1x2 + di+1)‖1
≤L · ‖(W i+1 · x1 + bi+1)− (V i+1x2 + di+1)‖1
≤L · ‖W i+1x1 − V i+1x2‖1 + L · ‖bi+1 − di+1‖1
≤L · ‖W i+1x1 − V i+1x2‖1 + L · ε
≤L · (‖W i+1‖1 · ‖x1 − x2‖1 + ‖W i+1 − V i+1‖1 · ‖x2‖1) + L · ε
≤L · (c · w · ‖x1 − x2‖1 + c · w · ε · ‖x2‖1) + L · ε
≤L · (c · w · ‖x1 − x2‖1 + c · w · ε · (‖x1‖1 + ‖x1 − x2‖1)) + L · ε
≤L · (c · w · βi · ε+ c · w · ε · (αi + βi · ε)) + L · ε
≤L(c · w · (2βi + αi) + 1) · ε
=:βi+1 · ε

(132)

If i + 1 is the last layer, than the application of σ is not present. In this case, αi+1 and βi+1 are
the same as in Eqs. 131 and 132 except the multiplication by L. Therefore, we conclude that
‖g(·;S(I))− g(x; f(I))‖∞ = O(ε).

Since f consists of w hidden functions Hi and a matrix M of size w · Ng, the total number of
trainable parameters of f is: Nf = O(w1+m2/r · ε−m2/r + w ·Ng) as desired.
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