
Supplementary Information
Stable and expressive recurrent vision models

Drew Linsley∗, Alekh K Ashok∗, Lakshmi N Govindarajan∗, Rex Liu, Thomas Serre
Carney Institute for Brain Science

Department of Cognitive Linguistic & Psychological Sciences
Brown University

Providence, RI 02912
{drew_linsley,alekh_ashok,lakshmi_govindarajan,

rex_liu,thomas_serre}@brown.edu

1 Extended background

1.1 Backpropagation through time (BPTT)

BPTT is the standard learning algorithm for optimizing recurrent parameters wF w.r.t. a loss L(ỹ, y).
It is implemented by replicating a dynamical system and accumulating its gradients over N steps of
processing (Eq. 1, K = 0). Given a recurrent function F parameterized by wF , which maintains a
latent state ht for each time step t, BPTT is implemented by Eq. 1.

∂L
∂wF

=
∂L
∂ỹ

∂ỹ

∂hT

k=T−1∑
k=K

(
i=T−k∏
i=T

JF (hi)

)
∂F

∂wF
(x, hT−k, wF). (1)

Here, JF (hi) is the Jacobian of F at h on step i. Note that this algorithm stores every ht in memory
during the forward pass, causing a memory footprint that linearly increases with steps.

1.2 Lipschitz Coefficient Penalty

We designed the Lipschitz Coefficient Penalty (LCP) as a hyperparameter-agnostic regularization for
forcing recurrent CNNs to learn contraction maps. As mentioned in the main text, LCP constrains the
vector-Jacobian product (1 · JF,h∗)i < 1 ∀i, where i is a column index.

‖(1 · JF,h∗ − λ)+‖2. (2)

Here, (·)+ denotes element-wise rectification and λ ∈ [0, 1) controls the degree of contraction in F .
To derive LCP, we begin from the first-order Taylor expansion of F (h),

F (h) ≈ F (h̄) + JF,h̄ · (h− h̄) + · · · ,
with which one can show: ∥∥F (h)− F (h̄)

∥∥
2∥∥h− h̄∥∥

2

≈
∥∥JF,h̄ · (h− h̄)

∥∥
2∥∥h− h̄∥∥

2

, (3)

Recalling the necessary condition for F being a contractive map,∥∥F (h)− F (h̄)
∥∥

2
< λ

∥∥h− h̄∥∥
2
, (4)

we can observe that the right hand side of Eq. 3 must be less than or equal to λ ∈ [0, 1) for any h
sufficiently close to h̄. Thus, F (·) will be λ-contractive at least in the neighbourhood of h̄ if the LHS

1These authors contributed equally to this work.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

is forced to be less than λ. We accomplish this goal by explicitly regularizing h̄ = h∗ over the course
of training:

‖JF,h∗ · v̂‖2 < 1, (5)
for all unit vectors v̂, which implies that the largest singular value of JF,h∗ must be less than 1. This
is equivalent to requiring ‖JF,h∗‖2 < 1. Note that ‖h − h∗‖2 may not necessarily be small for
all h’s sampled along our trajectories, and so the Taylor approximation and hence Eq. (3) may not
hold. Nevertheless, in experiments on Pathfinder and Microsoft COCO our regularisation still yields
reasonably stable convergence to fixed points.

Indeed, the matrix 2-norm is bounded from above and below by the 1-norm,

1/
√
n ‖JF,h∗‖1 ≤ ‖JF,h∗‖2 ≤

√
n ‖JF,h∗‖1 , (6)

where
‖JF,h∗‖1 = max

i

∑
j

∣∣∣(JF,h∗)ij

∣∣∣ , (7)

and n is the dimensionality of the Jacobian matrix. So if we can regularize and force
√
n ‖JF,h∗‖1 to

be below 1, then we can ensure that F (·) will be contractive. However, computing Jacobians of large
matrices requires an enormous memory load, and it is far more efficient to compute vector-Jacobian
products instead. We shall instead approximate the 1-norm by taking

max
i

∣∣∣∣∣∣
∑
j

(JF,h∗)ij

∣∣∣∣∣∣ = max
i

(1 · JF,h∗)i , (8)

where 1 denotes the row vector with all entries being 1. We note that in using this approximation, the
right inequality in (6) ceases to be a strict upper bound, but we find that the approximation works
well in practice due to large n.

We regularise model training with this approximation by requiring that (1 · JF,h∗)i < 1 ∀i. This
yields our Lipschitz Coefficient Penalty (LCP):

‖(1 · JF,h∗ − λ)+‖2, (9)

which can be added to any task loss. Here, (·)+ denotes element-wise rectification and λ ∈ [0, 1) is a
hand-selected constant controlling the bound on ‖JF,h∗‖2 and hence the degree of contraction in F .
See Fig. S1 for an example implementation of LCP in pytorch.

1 import torch
2
3 def LCP(last_state, second_last_state, mu=0.9):
4 """Implementing the Lipschitz Coefficient Penalty with autograd."""
5 norm_1_vect = torch.ones_like(last_state) # Compute vector-jacobian product
6 norm_1_vect.requires_grad = False
7 vj_prod = torch.autograd.grad(
8 last_state,
9 second_last_state,

10 grad_outputs=[norm_1_vect],
11 retain_graph=True,
12 create_graph=True,
13 allow_unused=True)[0]
14 vj_penalty = (vj_prod - mu).clamp(0) ** 2 # Clamp at mu and square
15 return vj_penalty.mean() # Minimize the average

Figure S1: Pytorch 1.4 code for computing the LCP.

2 Recurrent Back-prop

We review the Recurrent Back-Prop (RBP) learning algorithm of [1, 2]. Given a transition function
F , which is parameterized by wF and applied to the static drive x, hidden state h over t ∈ {1..N}
steps of processing: ht+1 = F (x, ht, wF). We define a model readout, ỹ = G(hT , wG), where G is

2

a task-optimized readout parameterized by wG. We also introduce a loss L which yields a distance
between predicted and ground-truth outputs. By differentiating the loss with respect to the weights,
we obtain the gradients:

∂L∞
∂wG

=
∂L∞
∂y∞

∂G(x;h∗, wG)

∂wG
, (10)

∂L∞
∂wF

=
∂L∞
∂y∞

∂y∞
∂h∗

∂h∗

∂wF
. (11)

To obtain an expression for ∂h∗/∂wF , we first introduce the auxiliary function

Ψ(wF , h) = h− F (x, h, wF), (12)

where, at a fixed point, Ψ(wF , h
∗) = 0. Differentiating with respect to wF , we obtain

∂Ψ(wF , h
∗)

∂wF
=

∂h∗

∂wF
− dF (x, h∗, wF)

dwF

=

(
I − ∂F (x, h∗, wF)

∂h∗

)
∂h∗

∂wF
− ∂F (x, h∗, wF)

∂wF

= 0.

Rearranging yields

∂h∗

∂wF
= (I − JF,h∗)

−1 ∂F (x, h∗, wF)

∂wF
, (13)

where JF,h∗ is the Jacobian matrix ∂F (x, h∗, wF)/∂h∗. The implicit function theorem guarantees
the existence and uniqueness of a function mapping wF to h∗ and hence of ∂h∗/∂wF provided (i)
Ψ(wF , h) is continuously differentiable and (ii) (I − JF,h∗) is invertible. The main virtue of RBP is
that the memory it requires to train the RNN is constant with respect to the granularity of dynamics
(steps of processing).

3 Recurrent vision models

3.1 Pathfinder

14 20 25

Figure S2: In our variation of the Pathfinder challenge [3, 4],
we ask observers to segment the contour connected to the
white dot. Recurrent CNNs can easily solve it by learning
to incrementally “trace” the target from end to end. Target
contours are made up of 14-, 20-, or 25-dashes.

Horizontal Gated Recurrent Units
The hGRU is a recurrent CNN, which
when placed on top of a conventional
feedforward convolutional layer, im-
plements long-range nonlinear in-
teractions between the feedforward
layer’s units [3]. These interactions
take place over “horizontal connec-
tions” – a concept from neuroscience,
in which anatomical connections be-
tween nearby cortical neurons (in
retinotopic space) are the substrate for
complex recurrent processing. Trac-
ing back to its origins as a neural cir-
cuit model, the hGRU distinguishes itself from other recurrent CNNs as having two distinct stages of
processing with independent kernels in each. The first stage computes suppressive interactions, i.e.,
a unit at location (x, y) inhibits activity in a unit at location (x + n, y), where n is a spatial offset
between these units. The second stage computes facilitative interactions, i.e., a unit (x, y) excites
activity in a unit at location (x, y + n). The hGRU is governed by the following equations:

3

Stage 1:

AS = US ∗H[t− 1] # Compute channel-wise selection

GS = sigmoid(AS) # Compute suppression gate

CS = BN (WS ∗ (H[t− 1]�GS)) # Compute suppression interactions

S =

[
Z−

[
(αH[t− 1] + µ) CS

]
+

]
+

, # Additive and multiplicative suppression of Z

Stage 2:

GF = sigmoid(UF ∗ S) # Compute channel-wise recurrent updates

CF = BN (WF ∗ S) # Compute facilitation interactions

H̃ =
[
ν(CF + S) + ω(CF ∗ S)

]
+

Additive and multiplicative facilitation of S

H[t] = (1−GF)�H[t− 1] + GF � H̃ # Update recurrent state

where BN (R; δ, ν) = ν + δ � R− Ê[R]√
V̂ar[R] + η

.

Here, H,Z ∈ RX×Y×C are the hidden state and static drive from a preceding convolutional layer, re-
spectively, with height/width/channelsX,Y,C. Suppressive interactions in Stage 1 are computed with
WS ∈ RE×E×C×C, and faciliative interactions in Stage 2 are computed with WF ∈ RE×E×C×C,
where E is the spatial extent of the horizontal connection kernel. In most of our experiments we set
E = 15, as in [3] (other kernel sizes were tested in our parameter efficiency analysis in Fig. 2b). The
hGRU also contains gates to modulate input activity and interpolate the previous hidden state with
the current step’s state, US , UF ∈ R1×1×C×C. Steps of processing are indexed by t ∈ {1..N}, and
rectification using softplus pointwise nonlinearities is denoted by [·]+, which ensures non-negativity in
each stage, and hence, guarantees on suppression vs. facilitation. Lastly, we use batch normalization
in the module to control exploding/vanishing gradients [5]. This introduces two learned kernels, δ,
ν ∈ R1×1×C , which control the scale and bias of normalization over input feature maps R, and are
shared across steps of processing (η is a small constant that protects divide-by-zero errors). As is
standard in batch normalization, Ê and V̂ar are estimated on-line during training.

Convolution LSTM We use a standard implementation of convolutional LSTMs from [6]. These
models used kernels with the same dimensions as those described above for the hGRU.

3.2 State space analysis

We analyzed the state space of recurrent models trained to solve Pathfinder. This classic technique
from dynamical systems has shown promise for analyzing computations of task-optimized recurrent
neural networks [7]. Our approach to visualizing model state spaces involved the following steps: (i)
Extract model hidden states for steps t ∈ {1..T} elicited by a Pathfinder-14 image. (ii) Reduce hidden
state dimensionality with a global average pool across spatial dimensions, yielding C-dimensional
vectors. (iii) Fit a PCA using the t ∈ {1..N} task-optimized steps of processing. (iv) Project all
t ∈ {1..T} hidden states onto the extracted eigenvectors.

3.3 Panoptic Segmentation

As a proof-of-concept of C-RBP on large-scale computer vision challenges, we developed a straight-
forward recurrent extension to the leading feedforward approach to the MSCOCO Panoptic Segmen-
tation challenge: the FPN-ResNet. This model uses a ResNet backbone (either 50- or 101-layers)
pretrained on ImageNet, which passes its activities to a feature pyramid network (FPN; [8]). FPN
activities are then sent to a linear readout for semantic segmentation (to identify the “stuff” in images)
and a Mask-RCNN for instance segmentation (to identify and individuate the “things”). We replace
the Mask-RCNN head, which consists of 4-layers of convolutions and linear rectifications, with
a single hGRU module (for both our version and the standard, activities from this stage are next

4

upsampled, rectified, and linearly transformed into predictions). The hGRU that we used is slightly
different than the one for the Pathfinder challenge above. Batch normalization was replaced with
group normalization [9], which is standard for Panoptic segmentation. We also used a modification of
the input gate, following [10], which was found to improve performance for natural image processing.
Standard feedforward FPN-ResNets were approximately twice as fast to train as our 20-step C-RBP
R-FPN-ResNets. Models with ResNet-50 backbones took between one and two days to train, whereas
models with ResNet-101 backbones took two and four days to train.

4 Extended discussion

4.1 Related work

Recurrent vision models There are many successful applications of recurrent CNNS in computer
vision, including object recognition, segmentation, and super-resolution tasks [6, 11–16]. These
models often augment popular feedforward CNN architectures with local (within a layer) and/or
long-range (between-layer) recurrent connections.

Others have found that augmenting recurrent CNNs with connectivity patterns or objective functions
that are inspired by the anatomy or the physiology of the visual cortex can improve performance in
visual reasoning, prediction, and recognition of occluded objects [6, 14–20].

Lipschitz constraints for stable training There are many examples of using constraints on Lip-
schitz continuity to stabilize deep network training. This is especially popular for generative ad-
versarial networks (GANs), where stability is enhanced by constraining the spectral norm of the
weights [21, 22], or Jacobians of each layer of the discriminator [23], or through Monte Carlo estima-
tion of the discriminator’s Jacobian [24, 25]. Penalizing the spectral norm of Jacobians can also yield
better Auto Encoders [26], and adversarial robustness in CNNs [23]. In contrast to prior works on
penalizing network Jacobians, in the current work we describe (i) an application to recurrent vision
models, which (ii) enforces contractions only locally around equilibrium points (rather than globally
across a hierarchy), which is a weaker constraint on model expressivity that still supports our key
goal of stability during inference.

RNNs are notoriously challenging to train [27], and the classic solution is to constrain Lipschitz
continuity by introducing learnable gates [28, 29]. It should be emphasized that our models also take
advantage of gates, and while these control vanishing and exploding gradients to stabilize training,
they are not sufficient to yield contractive mappings. More generally, it has been found that stability is
critical to train RNNs that can solve sequence modeling tasks [30], but that stability is less critical for
BPTT [29]. Other recent approaches induce stability via other architectural constraints, like weight
orthogonalization via SVD [31].

Deep networks as ODEs Neural ODEs exploit the observation that the residual networks can be
treated as a discrete-time ODE. By using black-box ODE solvers in the forward and backward passes
of the network, this discretization can be taken towards zero [32]. These models are trained with
back-propagation through a latent trajectory derived from an adjoint system, giving them constant
memory efficiency w.r.t. the granularity of dynamics, and they have shown promise in modeling
continuous-time data and normalizing flows. However, Neural ODEs face several issues for computer
vision applications. (i) Neural ODEs are difficult to optimize because input-output mappings become
arbitrarily complex over the course of training. (ii) The adjoint method is slow to compute. (iii)
Neural ODEs require feature engineering to fit certain classes of non-linear data manifolds [33], and
(iv) they (along with the recent Augmented Neural ODEs [33]) do not compare favorably to standard
feedforward models on simple computer vision benchmarks like CIFAR.

Deep Equilibrium Models A recent extension to RBP includes a Neumann-series computation
to approximate the inverse of a dynamical system’s Jacobian [34]. Separately, deep equilibrium
models (DEQ) use root-finding algorithms to exploit an identical formulation as in Eq. 3 to compute
the steady state h∗ [35]. Both RBP and DEQ algorithms are effective for sequence modeling and
meta-learning tasks, but have yet to be extended to vision. We attempted to train our hGRU models
on Pathfinder 14 with DEQ, but it performed as poorly as the RBP-trained model, while using more
GPU memory and taking longer to train.

5

t=1

t=1

t=1

t=N

t=N

t=N

t>N

t>N

t>N

PC1 (91% variance)

PC
2

(5
%

 v
ar

ia
nc

e)
PC

2
(2

3%
 v

ar
ia

nc
e)

PC
2

(9
%

 v
ar

ia
nc

e)

-5 155 100

-15 5-5 0-10

-15 5-5 0-10

10

-2

4

10

-10

0

8

-8

0

PC1 (87% variance)

PC1 (42% variance)

Pathfinder 14

LabelExample

hGRU C-RBP

LSTM BPTT

LSTM C-RBP

LS
TM

B
PT

T
LS

TM

C
-R

B
P

hG
R

U
C

-R
B

P

De
ns

ity
 (l

og
10

)

0

0.01

0.0 2.5 5.0 7.5 9.0

hGRU C-RBP

LSTM C-BPTT
LSTM
BPTT

Per-image L2 distance for t=N vs. t=T (final)

n.s. p < 0.001

(a)

(b)

(c)

p < 0.001

steps

N

1

t ∈ {1..N} t=T

Figure S3: Convolutional LSTMs trained with (BPTT) exhibit unstable dynamics, like the BPTT-
trained hGRUs examined in the main text. Once again, LCP corrects this pathology. (a) Visualization
of convLSTM and hGRU state spaces following the state space method described in Section . Here,
the BPTT-LSTM was trained for 6 steps, the C-RBP LSTM for 60 steps, and the C-RBP hGRU for
40 steps. Grey dots are the 2D-histogram of projected hidden states, red contours are hidden state
densities up to the task-optimized N steps, and blue contours are hidden state densities beyond that
point (t > N). Exemplar dynamics for a single image are plotted in yellow. While dynamics of the
BPTT trained model diverge when t > N , models trained with LCP did not. (b) Model dynamics
are reflected in their performance on Pathfinder-14 at t = N and t = T steps of processing. (c)
Two-sample KS-tests indicate that the distance in state space between t = N and t = T hidden states
is significantly greater for the BPTT-trained convLSTM than for either of the models trained with
C-RBP (n.s. = not significant).

6

t=1

t=1

t=1

t=N

t=N

t=N

t>N

t>N

t>N

PC1 (91% variance)

PC
2

(5
%

 v
ar

ia
nc

e)
PC

2
(2

%
 v

ar
ia

nc
e)

PC
2

(1
%

 v
ar

ia
nc

e)

-10 100 5-5

-10 100 5-5

-15 5-5 0-10

5

-1

2

7

-1

3

8

-8

0

PC1 (99% variance)

PC1 (98% variance)

Pathfinder 14

LabelExample

hGRU C-RBP

BPTT
per-step supervision

T-BPTT

B
PT

T
pe

r-
st

ep
T-

B
PT

T
C

-R
B

P

t=N t=T

De
ns

ity

0

2

4

6

0.0 2.5 5.0 7.5 9.0

C-RBP

T-BPTT

BPTT
per-step

Per-image L2 distance for t=N vs. t=T (final)

n.s.

p < 0.001

p < 0.001

(a)

(b)

(c)

Figure S4: Additional state space analyses showed that alternatives to BPTT do not resolve the
unstable dynamics we observed for recurrent CNNs. Here, BPTT per-step supervision refers to a
model which was optimized with a loss evaluated on each of its 6 steps of processing. T-BPTT refers
to a model trained with truncated backprop, for which gradients were accumulated over 3 steps of its
6 steps of processing. (a,b,c) These BPTT alternatives train models with unstable dynamics, which
forgot task information after the optimized t = N steps of processing. The distances between t = N
and t = T hidden states are significantly greater for hGRUs trained with these algorithms than for an
hGRU trained with C-RBP (n.s. = not significant).

BPTT C-BPTT CBP
LabelExample

14

20

25

(b)(a)

In
te

rs
ec

tio
n

ov
er

 u
ni

on
 (I

O
U)

1.00

0.90

0.80

0.70

Path length
14 20 25

Train/test on the same Pathfinder

C-RBP
(6GB)

BPTT
6 timesteps

(10.5GB)

C-BPTT
6 timesteps  

(12GB)

RBP
(6GB)

0.60

0.50

6-layer CNN
(3.4GB, +550K params)

(c)

80 steps

30 steps
20 steps

80 steps

30 steps

20 steps

Figure S5: Exemplars from the (a) Pathfinder challenge, along with (b) model performance on each
of these datasets, and (c) predicted contours from hGRUs trained with the different algorithms.

7

Training step

Training performance
Pathfinder 14 Pathfinder 20 Pathfinder 25

C-RBP
80 timesteps

(6GB)

BPTT
6 timesteps

(10.5GB)

C-BPTT
6 timesteps  

(12GB)

RBP
30 timesteps

(6GB)

In
te

rs
ec

tio
n

ov
er

 u
ni

on

0 25000
20000

15000
10000

5000
0 25000

20000
15000

10000
5000

0 25000
20000

15000
10000

5000

0.0

1.0

0.8

0.6

0.4

0.2

Figure S6: Performance of hGRUs during training on Pathfinder challenge datasets. The RBP-trained
model struggles to fit any dataset, unlike the models trained with BPTT, C-BPTT, or C-RBP.

Training on Pathfinder 14

Training step

Li
ps

ch
itz

 C
oe

ffi
ci

en
t P

en
al

ty
 (L

CP
; L

og
2) 0

-5

-10

-15

-20

-25

0 200 400 600 800 1000 1200 1400

C-RBP
80 timesteps

(6GB)

BPTT
6 timesteps

(10.5GB)

C-BPTT
6 timesteps  

(12GB)

RBP
80 timesteps

(6GB)

Figure S7: The value of our LCP (computed with Eq. 6 in the main text) over the course of training
for models that minimize it (C-RBP, C-BPTT) and models that do not (RBP, BPTT). In other words,
the magnitude of this correlates with the stability/instability of model dynamics.

8

Trained on Pathfinder 14
Test on Pathfinder 14 Test on Pathfinder 20 Test on Pathfinder 25

Timestep

0

0 20 30 4010
0 20 30 40100 20 30 4010

0.0

1.0

0.8

0.6

0.4

0.2

In
te

rs
ec

tio
n

ov
er

 u
ni

on
 (I

O
U)

0.0

1.0

0.8

0.6

0.4

0.2

C-RBP
20 timesteps

(6GB)

BPTT
per-step loss

6 timesteps
(10.5GB)

TBPTT
6 timesteps  

(6GB)

LSTM BPTT
6 timesteps  

(10.5GB)

LSTM C-RBP
20 timesteps  

(6GB)

BPTT
6 timesteps

(10.5GB)

Figure S8: Generalization performance for hGRUs and convLSTMs trained with BPTT and alterna-
tives to BPTT. Models were trained on Pathfinder 14 and tested on Pathfinder 14/20/25. For reference,
performance of the hGRU trained with C-RBP is plotted in both rows. BPTT per-step loss means that
a loss was computed on each of the 6 steps of hGRU training, and weights were optimized with BPTT.
In contrast, a loss was only calculated on the final step for BPTT. TBPTT is truncated backprop
through time, where gradients were computed over 3 steps of the 6 step dynamics. The LSTM trained
with BPTT was trained for 6 steps, whereas the LSTM trained with C-RBP was trained for 60.

9

Pa
no

pt
ic

 Q
ua

lit
y

(P
Q

)

15

20

25

30

36

40

1 5 10 15 20 25 30
Timesteps

CBP FPN
20 timesteps

1 timestep
BPTT FPN

3 timesteps

5 timesteps

0

41.54
41.54

40.94
41.63

C-RBP R-FPN
20 steps

BPTT R-FPN
5 steps
3 steps
1 step

Figure S9: Recurrent model performance on MSCOCO Panoptic Segmentation. Performance was
computed for each of 30 steps of processing for models trained with BPTT and C-RBP. The C-RBP
models achieve better – and more stable – performance.

Feedforward FPN-ResNet 101
(+783,552 parameters)

C-RBP R-FPN
20 steps

Pa
no

pt
ic

 Q
ua

lit
y

(P
Q

)

Memory (GB)

BPTT R-FPN
1 step

43.6

43.4

43.0

43.2

11 12 13 14 15

RBP R-FPN
20 steps

BPTT R-FPN
3 steps

43.8

44.0

Figure S10: Our recurrent Panoptic Segmentation models also outperform the feedforward standard
when both are given ResNet-101 backbones and the 3× training schedule (see https://bit.ly/
dtcon for details on this training routine). The C-RBP model, trained for 20 steps, outperforms any
other tested version of the model.

10

https://bit.ly/dtcon
https://bit.ly/dtcon

Feedforward FPN-ResNet 50 C-RBP Recurrent FPN-ResNet 50

Figure S11: Panoptic predictions from the feedforward ResNet-50 FPN Mask-RCNN (left) and our
recurrent version of the model trained with C-RBP (right).

11

Feedforward FPN-ResNet 50 C-RBP Recurrent FPN-ResNet 50

Figure S12: Panoptic predictions from the feedforward ResNet-50 FPN Mask-RCNN (left) and our
recurrent version of the model trained with C-RBP (right).

12

References
[1] Almeida, L.B.: A learning rule for asynchronous perceptrons with feedback in a combinatorial

environment. In Caudil, M., Butler, C., eds.: Proceedings of the IEEE First International
Conference on Neural Networks San Diego, CA. (1987) 609–618

[2] Pineda, F.J.: Generalization of back-propagation to recurrent neural networks. Phys. Rev. Lett.
59(19) (November 1987) 2229–2232

[3] Linsley, D., Kim, J., Veerabadran, V., Serre, T.: Learning long-range spatial dependencies with
horizontal gated-recurrent units. (May 2018)

[4] Kim*, J., Linsley*, D., Thakkar, K., Serre, T.: Disentangling neural mechanisms for perceptual
grouping. International Conference on Representation Learning (2020)

[5] Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., Courville, A.: Recurrent batch normaliza-
tion. In: International Conference on Learning Representations. (2017)

[6] Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and
unsupervised learning. (May 2016)

[7] Maheswaranathan, N., Williams, A., Golub, M.D., Ganguli, S., Sussillo, D.: Reverse engi-
neering recurrent networks for sentiment classification reveals line attractor dynamics. (June
2019)

[8] Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks
for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (July 2017) 936–944

[9] Wu, Y., He, K.: Group normalization. (March 2018)
[10] Linsley, D., Kim, J., Ashok, A., Serre, T.: Recurrent neural circuits for contour detection.

International Conference on Learning Representations (2020)
[11] Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society (June 2015) 3367–3375

[12] Kim, J., Lee, J.K., Lee, K.M.: Deeply-Recursive convolutional network for image Super-
Resolution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE (June 2016) 1637–1645

[13] Li, R., Li, K., Kuo, Y., Shu, M., Qi, X., Shen, X., Jia, J.: Referring image segmentation via
recurrent refinement networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. (June 2018) 5745–5753

[14] Linsley, D., Kim, J., Veerabadran, V., Windolf, C., Serre, T.: Learning long-range spatial
dependencies with horizontal gated recurrent units. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R., eds.: Advances in Neural Information Processing
Systems 31. Curran Associates, Inc. (2018) 152–164

[15] Tang, H., Schrimpf, M., Lotter, W., Moerman, C., Paredes, A., Ortega Caro, J., Hardesty, W.,
Cox, D., Kreiman, G.: Recurrent computations for visual pattern completion. Proc. Natl. Acad.
Sci. U. S. A. 115(35) (August 2018) 8835–8840

[16] George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi, B., Lou, X., Meng,
Z., Liu, Y., Wang, H., Lavin, A., Phoenix, D.S.: A generative vision model that trains with high
data efficiency and breaks text-based CAPTCHAs. Science 358(6368) (December 2017)

[17] Spoerer, C.J., McClure, P., Kriegeskorte, N.: Recurrent convolutional neural networks: A better
model of biological object recognition. Front. Psychol. 8 (September 2017) 1551

[18] Zamir, A.R., Wu, T.L., Sun, L., Shen, W., Malik, J., Savarese, S.: Feedback networks.
(December 2016)

[19] Wen, H., Han, K., Shi, J., Zhang, Y., Culurciello, E., Liu, Z.: Deep predictive coding network
for object recognition. (February 2018)

[20] Liao, Q., Poggio, T.: Bridging the gaps between residual learning, recurrent neural networks
and visual cortex. (April 2016)

[21] Yoshida, Y., Miyato, T.: Spectral norm regularization for improving the generalizability of deep
learning. arXiv preprint arXiv:1705.10941 (2017)

13

[22] Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative
adversarial networks. International Conference on Learning Representations (2018)

[23] Gu, S., Rigazio, L.: Towards deep neural network architectures robust to adversarial examples.
(December 2014)

[24] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of
wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17, Red Hook, NY, USA, Curran Associates Inc. (December 2017)
5769–5779

[25] Wei, X., Gong, B., Liu, Z., Lu, W., Wang, L.: Improving the improved training of wasser-
stein GANs: A consistency term and its dual effect. International Conference on Learning
Representations (March 2018)

[26] Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit
invariance during feature extraction. In: Proceedings of the 28th International Conference
on International Conference on Machine Learning. ICML’11, Madison, WI, USA, Omnipress
(June 2011) 833–840

[27] Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is
difficult. IEEE Trans. Neural Netw. 5(2) (1994) 157–166

[28] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8) (November
1997) 1735–1780

[29] Miller, J., Hardt, M.: Stable recurrent models. International Conference on Representation
Learning (ICLR) (September 2018)

[30] Simard, P.Y., Ottaway, M.B., Ballard, D.H.: Fixed point analysis for recurrent networks. In
Touretzky, D.S., ed.: Advances in Neural Information Processing Systems 1. Morgan-Kaufmann
(1989) 149–159

[31] Zhang, J., Lei, Q., Dhillon, I.S.: Stabilizing gradients for deep neural networks via efficient
SVD parameterization. (March 2018)

[32] Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., Tang, X.: Prostate segmentation using
2D bridged u-net. (July 2018)

[33] Dupont, E., Doucet, A., Teh, Y.W.: Augmented neural ODEs. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d Alché-Buc, F., Fox, E., Garnett, R., eds.: Advances in Neural Information
Processing Systems 32. Curran Associates, Inc. (2019) 3140–3150

[34] Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R., Zemel, R.:
Reviving and improving recurrent Back-Propagation. (March 2018)

[35] Bai, S., Kolter, J.Z., Koltun, V.: Deep equilibrium models. In: Advances in Neural Information
Processing Systems (NeurIPS). (2019)

14

	Extended background
	Backpropagation through time (BPTT)
	Lipschitz Coefficient Penalty

	Recurrent Back-prop
	Recurrent vision models
	Pathfinder
	State space analysis
	Panoptic Segmentation

	Extended discussion
	Related work

