
A Appendix

A.1 Comparison of EXPO to SENN

We compare against SENN [Alvarez-Melis and Jaakkola, 2018a] on the UCI ‘breast cancer’ dataset
which is a binary classification problem. Because SENN’s implementation outputs class probabilities,
we run the post-hoc explainers on the probability output from the EXPO-regularized model as
well (this differs from the ‘support2’ binary classification problem where we explain each logit
individually). The results are in Table 5.

By comparing the first row, which shows the results for an EXPO-FIDELITY-regularized model whose
regularization weight is tuned for accuracy, to the third row, which shows SENN’s results, we can see
that SENN’s by-design approach to model interpretability seriously impaired its accuracy. However,
SENN did produce a more interpretable model. From these results alone, there is no objective way to
decide if the EXPO or SENN model is better. But, looking at the MAPLE-NF metric, we can see that
its explanations have a standard error of around 4% relative to the model’s predicted probability. This
is reasonably small and probably acceptable for a model that makes a fraction as many mistakes.

Looking at the second row, which shows the results for a EXPO-FIDELITY-regularized model whose
regularization weight has been increased to produce a model that is approximately accurate as SENN,
we can see that the EXPO-regularized model is more interpretable than SENN.

Considering both of these results, we conclude that EXPO is more effective than SENN at improving
the quality of post-hoc explanations.

However, this is a slightly unusual comparison because SENN is designed to produce its own
explanations but we are using LIME/MAPLE to explain it. When we let SENN explain itself, it has a
NF of 3.1e-5 and a Stability of 2.1e-3. These numbers are generally comparable to those of LIME
explaining EXPO-Over Regularized. This further demonstrates EXPO’s flexibility.

Table 5: A comparison of EXPO-FIDELITY, with the regularization weight tuned for accuracy and with it set
too high to intentionally reduce accuracy, to SENN. Results are shown across 10 trials (with the standard error in
parenthesis). EXPO can produce either a more accurate model or an equally accurate but more interpretable
model.

Method Accuracy MAPLE-PF MAPLE-NF MAPLE-S LIME-PF LIME-NF LIME-S

EXPO 0.99 (0.0034) 0.013 (0.0065) 0.039 (0.026) 0.38 (0.27) 0.1 (0.039) 0.1 (0.039) 0.0024 (0.0012)
EXPO- Over Regularized 0.92 (0.013) 0.00061 (0.00031) 0.0014 (0.00079) 0.0085 (0.01) 0.0035 (0.0037) 0.0035 (0.0037) 2.4e-05 (1.2e-05)
SENN 0.92 (0.033) 0.0054 (0.0024) 0.014 (0.0048) 0.097 (0.044) 0.012 (0.0043) 0.013 (0.0045) 0.00075 (0.00012)
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A.2 Expanded Version of Section 2.2

This section provides the details for the results outlined in Section 2.2.

Local explanations vs. Taylor approximations. A natural question to ask is, Why should we sample
from Nx in order to locally approximate f when we could use the Taylor approximation as done in
[Ross et al., 2017, Alvarez-Melis and Jaakkola, 2018a]? The downside of a Taylor approximation-
based approach is that such an approximation cannot readily be adjusted to different neighborhood
scales and its fidelity and stability strictly depend on the learned function. Figure 3 shows that the
Taylor approximations for two close points can be radically different from each other and are not
necessarily faithful to the model outside of a small neighborhood.

Fidelity regularization and the model’s LC or TV. From a theoretical perspective, EXPO-
FIDELITY is similar to controlling the Lipschitz Constant or Total Variation of f across Nx after
removing the part of f explained by e(x, f). From an interpretability perspective, having a large LC
or TV does not necessarily lead to poor explanation quality, which is demonstrated in Figure 4.

Figure 3: A function (blue), its first order Taylor
approximations at x = 0.4 (green) and x = 0.5
(red), and a local explanation of the function (or-
ange) computed with x = 0.5 and Nx = [0, 1].
Notice that the Taylor approximation-based expla-
nations are more strongly influenced by local vari-
ations in the function.

Figure 4: Top: Two functions (blue) and their
local linear explanations (orange). The local ex-
planations were computed with x = 0.5 and
Nx = [0, 1]. Bottom: The unexplained portion
of the function (residuals). Comment: Although
both functions have a relatively large LC or TV,
the one on the left is much better explained and
this is reflected by its residuals.

Standard Regularization. We also consider two standard regularization techniques: l1 and l2

regularization. These regularizers may make the network simpler (due to sparser weights) or smoother,
which may make it more amenable to local explanation. The results of this experiment are in Table 6;
notice that neither of these regularizers had a significant effect on the interpretability metrics.

Table 6: Using l1 or l2 regularization has very little impact impact on the interpretability of the learned model.

Metric Regularizer autompgs communities day housing music winequality.red

MSE None 0.14 0.49 0.001 0.14 0.72 0.65
L1 0.12 0.46 1.7e-05 0.15 0.68 0.67
L2 0.13 0.47 0.00012 0.15 0.68 0.67

MAPLE-PF None 0.016 0.16 0.001 0.057 0.17 0.013
L1 0.014 0.17 1.6e-05 0.054 0.17 0.015
L2 0.015 0.17 3.2e-05 0.05 0.17 0.02

MAPLE-NF None 0.018 0.31 0.0012 0.066 0.18 0.013
L1 0.016 0.32 2.6e-05 0.065 0.18 0.016
L2 0.016 0.32 4.3e-05 0.058 0.17 0.021

MAPLE-Stability None 0.015 1.2 2.6e-07 0.18 0.081 0.0043
L1 0.013 1.2 3e-07 0.21 0.072 0.004
L2 0.011 1.3 3.2e-06 0.17 0.065 0.0058

LIME-PF None 0.04 0.1 0.0012 0.14 0.11 0.033
L1 0.035 0.12 0.00017 0.13 0.1 0.034
L2 0.037 0.12 0.00014 0.12 0.099 0.047

LIME-NF None 0.041 0.11 0.0012 0.14 0.11 0.033
L1 0.036 0.12 0.00018 0.13 0.1 0.034
L2 0.037 0.12 0.00015 0.12 0.099 0.047

LIME-Stability None 0.0011 0.022 0.00015 0.0047 0.011 0.0013
L1 0.0012 0.03 3e-05 0.0048 0.011 0.0016
L2 0.00097 0.032 1.7e-05 0.004 0.011 0.0021
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A.3 Model Details and Selection

The models we train are Multi-Layer Perceptrons with leaky-ReLU activations. The model archi-
tectures are chosen by a grid search over the possible widths (100, 200, 300, 400, or 500 units) and
depths (1, 2, 3, 4, or 5 layers). The weights are initialized with the Xavier initialization and the biases
are initialized to zero. The models are trained with SGD with the Adam optimizer and a learning rate
of 0.001. For each dataset, the architecture with the best validation loss is chosen for final evaluation
as the “None” model. Then, we use that same architecture and add the EXPO regularizer with weights
chosen from 0.1, 0.05, 0.025, 0.01, 0.005, or 0.001. Note that these are not absolute weights and are
instead relative weights: so picking 0.1 means that the absolute regularization weight is set such that
the regularizer has 1/10th the weight of the main loss function (estimated using a single mini-batch
at the start of training and then never changed). This makes this hyper-parameter less sensitive to
the model architecture, initialization, and dataset. We then pick the best regularization weight for
each dataset using the validation loss and use that for the final evaluation as the EXPO model. Final
evaluation is done by retraining the models using their chosen configurations and evaluating them on
the test data.
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A.4 Defining the Local Neighborhood

Choosing the neighborhood shape. Defining a good regularization neighborhood, requires con-
sidering the following. On the one hand, we would like N

reg
x to be similar to Nx, as used in Eq. 1

or Eq. 2, so that the neighborhoods used for regularization and for evaluation match. On the other
hand, we would also like N

reg
x to be consistent with the local neighborhood defined internally by

e, which may differ from Nx. LIME can avoid this problem since the internal definition of the
local neighborhood is a hyperparameter that we can set. However, for our experiments, we do not
do this and, instead, use the default implementation. MAPLE cannot easily avoid this problem
because the local neighborhood is learned from the data, and hence the regularization and explanation
neighborhoods probably differ.

Choosing � for Nx and N
reg
x . In Figure 5, we see that the choice of � for Nx was not critical

(the value of LIME-NF only increased slightly with �) and that this choice of � for Nreg
x produced

slightly more interpretable models.
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Figure 5: A comparison showing the effects of the � parameter of Nx and Nreg
x on the UCI Housing dataset.

The LIME-NF metric grows slowly with � for Nx as expected. Despite being very large, using � = 0.5 for
Nreg

x is generally best for the LIME-NF metric.
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A.5 More Examples of EXPO’s Effects

Here, we demonstrate the effects of EXPO-FIDELITY on more examples from the UCI ‘housing’
dataset (Table 7). Observe that the same general trends hold true:

• The explanation for the EXPO-regularized model more accurately reflects the model (LIME-
NF metric)

• The explanation for the EXPO-regularized model generally considers fewer features to be
relevant. We consider a feature to be ‘significant’ if its absolute value is 0.1 or greater.

• Neither model appears to be heavily influenced by CRIM or INDUS. The EXPO-regularized
model generally relies more on LSTAT and less on DIS, RAD, and TAX to make its
predictions.

Table 7: More examples comparing the explanations of a normally trained model (“None”) to those of a EXPO-
FIDELITY-regularized model. For each example we show: the feature values of the point being explained, the
coefficients of the normal model’s explanation, and the coefficients of the EXPO-regularized model’s explanation.
Note that the bias terms have been excluded from the explanations. We also report the LIME-NF metric of each
explanation.

Example Number Value Shown CRIM INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT LIME-NF

1 x -0.36 -0.57 -0.86 -1.11 -0.14 0.95 -0.74 -1.02 -0.22 0.46 0.53
None 0.01 0.03 -0.14 0.31 -0.1 -0.29 0.27 -0.26 -0.07 0.13 -0.24 0.0033
EXPO 0.0 0.01 -0.14 0.25 0.03 -0.16 0.15 -0.1 -0.12 -0.01 -0.47 0.0033

2 x -0.37 -0.82 -0.82 0.66 -0.77 1.79 -0.17 -0.72 0.6 0.45 -0.42
None 0.01 0.06 -0.15 0.32 -0.1 -0.29 0.24 -0.27 -0.12 0.11 -0.24 0.057
EXPO 0.0 0.0 -0.15 0.25 0.01 -0.15 0.15 -0.12 -0.13 0.01 -0.47 0.00076

3 x -0.35 -0.05 -0.52 -1.41 0.77 -0.13 -0.63 -0.76 0.1 0.45 1.64
None -0.01 0.06 -0.16 0.29 -0.08 -0.31 0.27 -0.27 -0.11 0.1 -0.18 0.076
EXPO -0.03 -0.01 -0.13 0.19 -0.0 -0.15 0.14 -0.11 -0.12 0.0 -0.43 0.058

4 x -0.36 -0.34 -0.26 -0.29 0.73 -0.56 -0.51 -0.12 1.14 0.44 0.14
None 0.02 0.06 -0.18 0.29 -0.1 -0.34 0.31 -0.21 -0.09 0.12 -0.27 0.10
EXPO -0.02 0.01 -0.13 0.21 0.02 -0.16 0.17 -0.11 -0.12 -0.0 -0.47 0.013

5 x -0.37 -1.14 -0.88 0.45 -0.28 -0.21 -0.86 -0.76 -0.18 0.03 -0.82
None 0.02 0.08 -0.17 0.33 -0.11 -0.36 0.29 -0.27 -0.08 0.1 -0.28 0.099
EXPO -0.0 -0.0 -0.14 0.26 0.0 -0.16 0.15 -0.11 -0.15 0.01 -0.47 0.0021

The same comparison for examples from the UCI ‘winequality-red’ are in Table 8. We can see that
the EXPO-regularized model depends more on ‘volatile acidity’ and less on ‘sulphates’ while usually
agreeing about the effect of ‘alcohol’. Further, it is better explained by those explanations than the
normally trained model.

Table 8: The same setup as Table 7, but showing examples for the UCI ‘winequality-red’ dataset

Example Number Value Shown fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol LIME-NF

1 x -0.28 1.55 -1.31 -0.02 -0.26 3.12 1.35 -0.25 0.41 -0.2 0.29
None 0.02 -0.11 0.14 0.08 -0.1 0.05 -0.15 -0.13 -0.01 0.31 0.29 0.021
EXPO 0.08 -0.22 0.01 0.04 -0.04 0.06 -0.12 -0.09 -0.01 0.17 0.3 6.6e-05

2 x 1.86 -1.91 1.22 0.87 0.39 -1.1 -0.69 1.48 -0.22 1.96 -0.35
None 0.02 -0.15 0.11 0.07 -0.08 0.07 -0.23 -0.09 -0.06 0.3 0.27 0.033
EXPO 0.09 -0.23 0.02 0.04 -0.05 0.06 -0.13 -0.09 -0.0 0.18 0.3 0.0026

3 x -0.63 -0.82 0.56 0.11 -0.39 0.72 -0.11 -1.59 0.16 0.42 2.21
None 0.03 -0.1 0.13 0.05 -0.06 0.12 -0.21 -0.19 -0.08 0.38 0.29 0.11
EXPO 0.09 -0.22 0.02 0.04 -0.04 0.06 -0.12 -0.09 -0.0 0.18 0.3 8.2e-05

4 x -0.51 -0.66 -0.15 -0.53 -0.43 0.24 0.04 -0.56 0.35 -0.2 -0.07
None 0.03 -0.16 0.12 0.05 -0.13 0.09 -0.21 -0.13 -0.05 0.35 0.24 0.61
EXPO 0.09 -0.22 0.01 0.04 -0.04 0.06 -0.12 -0.09 -0.01 0.18 0.3 6.8e-05

5 x -0.28 0.43 0.1 -0.65 0.61 -0.62 -0.51 0.36 -0.35 5.6 -1.26
None 0.03 -0.12 0.09 0.12 -0.11 0.03 -0.19 -0.13 -0.03 0.13 0.24 0.19
EXPO 0.08 -0.22 0.02 0.04 -0.05 0.05 -0.13 -0.09 -0.0 0.16 0.3 0.0082
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A.6 Quantitative Results on the ‘support2’ Dataset

In Table 9, we compare EXPO-regularized models to normally trained models on the ‘support2’
dataset.

Table 9: A normally trained model (“None”) vs. the same model trained with EXPO-FIDELITY or EXPO-1D-
FIDELITY on the ‘support2’ binary classification dataset. Each explanation metric was computed for both the
positive and the negative class logits. Results are shown across 10 trials (with the standard error in parenthesis).
Improvement due to FIDELITY and 1D-FIDELITY over the normally trained model is statistically significant
(p = 0.05, t-test) for all of the metrics.

Output Regularizer LIME-PF LIME-NF LIME-S MAPLE-PF MAPLE-NF MAPLE-S

None 0.177 (0.063) 0.182 (0.065) 0.0255 (0.0084) 0.024 (0.008) 0.035 (0.010) 0.34 (0.06)
Positive FIDELITY 0.050 (0.008) 0.051 (0.008) 0.0047 (0.0008) 0.013 (0.004) 0.018 (0.005) 0.13 (0.05)

1D-FIDELITY 0.082 (0.025) 0.085 (0.025) 0.0076 (0.0022) 0.019 (0.005) 0.025 (0.005) 0.16 (0.03)

None 0.198 (0.078) 0.205 (0.080) 0.0289 (0.0121) 0.028 (0.010) 0.040 (0.014) 0.37 (0.18)
Negative FIDELITY 0.050 (0.008) 0.051 (0.008) 0.0047 (0.0008) 0.013 (0.004) 0.018 (0.005) 0.13 (0.03)

1D-FIDELITY 0.081 (0.026) 0.082 (0.027) 0.0073 (0.0021) 0.019 (0.006) 0.024 (0.007) 0.16 (0.06)

Accuracy (%): None: 83.0 ± 0.3, FIDELITY: 83.4 ± 0.4, 1D-FIDELITY: 82.0 ± 0.3.
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A.7 User Study: Additional Details

Data Details. Figure 6 shows the histogram of the number of steps participants take to complete
each round. We use 150 as our cut-off value for removing participant’s data from the final evaluation.
Figure 7 shows a histogram of the number of steps participants take to complete each round. There is
no evidence to suggest that the earlier rounds took a different amount of time than the later rounds.
So learning effects were not significant in this data.

Figure 6: A histogram showing the number of
steps participants take to complete each round.

Figure 7: A series of histograms showing how
many steps participants take to complete each
round for each condition. Generally, there is no
evidence of learning effects over the course of the
five rounds.

Algorithmic Agent. In addition to measuring humans’ performance on this task (see Section 5 for
details), we are also interested in measuring a simple algorithmic agent’s performance on it. The
benefit of this evaluation is that the agent relies solely on the information given in the explanations
and, as a result, does not experience any learning affects that could confound our results.

Intuitively, we could define a simple greedy agent by having it change the feature whose estimated
effect is closest to the target change. However, this heuristic can lead to loops that the agent will
never escape. As a result, we consider a randomized version of this greedy agent.

Let � the degree of randomization for the agent, y denote the model’s current prediction, t denote the
target value, and ci denote the explanation coefficient of feature i. Then the score of feature i, which
measures how close this features estimated effect is to the target change, is: si = �� ⇤ ||ci| � |y � t||.
The agent then chooses to use feature i with probability esiP

j
esj .

Looking at this distribution, we see that it is uniform (i.e., does not use the explanation at all) when
� = 0 and that it approaches the greedy agent as � approaches infinity.

In Figure 8, we run a search across the value of � to find a rough trade-off between more frequently
using the information in the explanation and avoiding loops. Note that the agent performs better for
the EXPO-regularized model.

Figure 8: A comparison of the average number of steps it takes for either a human or an algorithmic agent to
complete our task. The x-axis is a measure of the agent’s randomness: 0 corresponds to a totally random agent
with increasing values indicating a greedier agent. Both humans and the agent find it easier to complete the task
for the EXPO-regularized model.
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A.8 Non-Semantic Features

When X consists of non-semantic features, we cannot assign meaning to the difference between x

and x
0 as we could with semantic features. Hence it does not make sense to explain the difference

between the predictions f(x) and f(x0) and fidelity is not an appropriate metric.

Instead, for non-semantic features, local explanations try to identify which parts of the input are partic-
ularly influential on a prediction [Lundberg and Lee, 2017, Sundararajan et al., 2017]. Consequently,
we consider explanations of the form Ens := Rd, where d is the number of features in X , and our
primary explanation metric is stability. Note that we could consider these types of local explanations
for semantic features as well, but that they answer a different question than the approximation-based
local explanations we consider.

Post-hoc explainers. Various explainers [Sundararajan et al., 2017, Zeiler and Fergus, 2014, Shriku-
mar et al., 2016, Smilkov et al., 2017] have been proposed to generate local explanations in Ens for
images. However, it should be noted that the usefulness and evaluation of these methods is uncertain
[Adebayo et al., 2018, Tomsett et al., 2019]. For our experiment, we will consider saliency maps
[Simonyan et al., 2013] which assign importance weights to image pixels based on the magnitude of
the gradient of the predicted class with respect to the corresponding pixels.

Stability Regularizer. For EXPO-STABILITY, we simply require that the model’s output not change
too much across Nreg

x (Algorithm 2). A similar procedure was explored previously in [Zheng et al.,
2016] for adversarial robustness.

Experimental setup. For this experiment, we compared a normally trained convolutional neural
network on MNIST to one trained using EXPO-STABILITY. Then, we evaluated the quality of saliency
map explanations for these models. Both Nx and N

reg
x where defined as Unif(x � 0.05, x+ 0.05).

Both the normally trained model and model trained with EXPO-STABILITY achieved the same
accuracy of 99%. Quantitatively, training the model with EXPO-STABILITY decreased the stability
metric from 6.94 to 0.0008. Qualitatively, training the model with EXPO-STABILITY made the
resulting saliency maps look much better by focusing them on the presence or absence of certain pen
strokes (Figure 9).

Algorithm 2 Neighborhood-stability regular-
izer
input f✓ , x, N reg

x , m
1: Sample points: x0

1, . . . , x
0
m ⇠ N reg

x

2: Compute predictions:

ŷj(✓) = f✓(x
0
j), for j = 1, . . . ,m

output
1
m

Pm
j=1(ŷj(✓)� f(x))2

Figure 9: Original images (left) and saliency
maps of an normally trained model (middle) and a
EXPO-STABILITY-regularized model (right).
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