Supplementary Material:

Consistency Regularization for Certified Robustness of
Smoothed Classifiers

A Details on experimental setups

A.1 Training details

We train every model via stochastic gradient descent (SGD) with Nesterov momentum of weight
0.9 without dampening. We set a weight decay of 10~ for all the models. We use different training
schedules for each dataset: (a) MNIST: The initial learning rate is set to 0.01; We train a model for
90 epochs with mini-batch size 256, and the learning rate is decayed by 0.1 at 30-th and 60-th epoch,
(b) CIFAR-10: The initial learning rate is set to 0.1; We train a model for 150 epochs with mini-batch
size 256, and the learning rate is decayed by 0.1 at 50-th and 100-th epoch, and (c) ImageNet: The
initial learning rate is set to 0.1; We train a model for 90 epochs with mini-batch size 200, and the
learning rate is decayed by 0.1 at 30-th and 60-th epoch. When SmoothAdv is used, we adopt the
warm-up strategy on attack radius € [8], i.e., € is initially set to zero, and linearly increased during
the first 10 epochs to a pre-defined hyperparameter.

A.2 Datasets

MNIST dataset [3] consists 70,000 gray-scale hand-written digit images of size 28 x28, 60,000 for
training and 10,000 for testing. Each of the images is labeled from 0 to 9, i.e., there are 10 classes.
When training on MNIST, we do not perform any pre-processing except for normalizing the range
of each pixel from 0-255 to 0-1. The full dataset can be downloaded at http://yann.lecun.com/
exdb/mnist/.

CIFAR-10 dataset [2] consist of 60,000 RGB images of size 32x32 pixels, 50,000 for training
and 10,000 for testing. Each of the images is labeled to one of 10 classes, and the number of data
per class is set evenly, i.e., 6,000 images per each class. We follow the same data-augmentation
scheme used in Cohen et al. [1], Salman et al. [8] for a fair comparison, namely, we use random
horizontal flip and random translation up to 4 pixels. We also normalize the images in pixel-wise by
the mean and the standard deviation calculated from the training set. Here, an important practical
point is that this normalization is done after a noise is added to input when regarding randomized
smoothing, following Cohen et al. [1]. This is to ensure that noise is given to the original image
coordinates. In practical implementations, this can be done by placing the normalization as the first
layer of base classifiers, instead of as a pre-processing step. The full dataset can be downloaded at
https://www.cs.toronto.edu/"kriz/cifar.html

ImageNet classification dataset [7] consists of 1.2 million training images and 50,000 validation
images, which are labeled by one of 1,000 classes. For data-augmentation, we perform 224 x224
random cropping with random resizing and horizontal flipping to the training images. At test
time, on the other hand, 224 x224 center cropping is performed after re-scaling the images into
256x256. This pre-processing scheme is also used in Cohen et al. [1], Salman et al. [8] as well.
Similar to CIFAR-10, all the images are normalized after adding a noise in pixel-wise by the pre-
computed mean and standard deviation. A link for downloading the full dataset can be found in
http://image-net.org/download.

Table 1: Detailed specification of hyperparameters used in the best-performing SmoothAdv models.

Dataset o Method #steps e m
0.25 PGD 10 255 4

CIFAR-10 0.50 PGD 10 512 2
1.00 PGD 10 512 2

ImaceNet 0.50 PGD 1 255 1
£ 100  PGD 1 512 1
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Table 2: Comparison of approximate certified test accuracy on MNIST dataset. For each model,
training and certification are done with the same smoothing factor specified in o. Each of the values
indicates the fraction of test samples those have /5 certified radius larger than the threshold specified
at the top row. We set our result bold-faced whenever the value improves the baseline. For ACR, we
underlined the best-performing model per each o.

o Models (MNIST) ACR 000 025 050 0.75 1.00 125 150 175 200 225 250
Gaussian [1] 0911 992 985 967 933 00 00 00 00 00 00 00
+ Consistency (A =10) 0928 995 989 980 960 00 00 00 00 00 00 00
025 SmoothAdv [8] 0932 994 990 982 9.8 00 00 00 00 00 00 00
' + Consistency (A =1) 0932 993 989 981 968 00 00 00 00 00 00 00
Stability training [4] 0915 993 986 97.1 938 00 00 00 00 00 00 00
MACER [9] 0920 993 987 975 948 00 00 00 00 00 00 00
Gaussian [1] 1.553 992 983 96.8 943 89.7 819 673 436 00 00 00
+ Consistency (A =5) 1.657 992 98.6 97.6 959 930 878 785 605 00 00 00
050 SmoothAdv [8] 1.687 99.0 983 973 958 932 885 8l.1 675 00 00 0.0
’ + Consistency (A =1) 1.697 98.6 98.1 970 953 927 885 8.2 705 00 00 00
Stability training [4] 1.570 992 985 97.1 948 90.7 832 692 454 00 00 00
MACER [9] 1.594 985 975 962 937 90.0 837 722 540 00 00 00
Gaussian [1] 1.620 964 944 914 87.0 799 71.0 59.6 462 326 19.7 10.8
+ Consistency (A =5) 1.740 950 930 89.7 854 797 727 63.6 530 417 308 203
1.00 SmoothAdv [8] 1.779 958 939 90.6 86.5 80.8 737 646 539 433 328 222
’ + Consistency (A =1) 1819 942 920 88.6 843 79.0 721 640 546 455 372 280
Stability training [4] 1.634 965 946 91.7 874 80.6 720 605 468 33.1 200 112
MACER [9] 1.570 920 885 84.0 781 715 638 553 463 365 262 163
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Figure 1: Comparison of approximate certified accuracy via randomized smoothing for various
training methods on MNIST. A sharp drop of certified accuracy in the plots exists since there is a
hard upper bound that CERTIFY can output for a given o and n = 100, 000.

A.3 Detailed configurations of SmoothAdv models

In Table 1, we specify the exact configurations used in our evaluation for the best-performing
SmoothAdv models. These configurations have originally explored by Salman et al. [8] via a grid
search over 4 hyperparameters: namely, (a) attack method (Method): PGD [5] or DDN [6], (b) the
number of steps (# steps), (c) the maximum allowed /- perturbation on the input (¢), and (d) the
number of noise samples (1m). We choose one pre-trained model per o for CIFAR-10 and ImageNet,
among those officially released and classified as the best-performing models by Salman et al. [8]. The
link to download all the pre-trained models can be found in https://github.com/Hadisalman/
smoothing-adversarial.

B Results on MNIST

We train every MNIST model for 90 epochs. We consider a fixed configuration of hyperparameters
when SmoothAdv is used in MNIST: specifically, we perform a 10-step projected gradient descent
(PGD) attack constrained in {5 ball of radius € = 1.0 for each input, while the objective is approxi-
mated with m = 4 noise samples. For the MACER models, on the other hand, we generally follow
the hyperparameters specified in the original paper [9]: we set m = 16, A = 16.0, v = 8.0 and
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B =16.0." In ¢ = 1.0, however, we had to reduce ) to 6 for a successful training. Nevertheless, we
have verified that the ACRs computed from the reproduced models are comparable to those reported
in the original paper. We use A = 2 when stability training [4] is applied in this section.

We report the results in Table 2 and Figure 1. Overall, we observe that our consistency regularization
stably improve Gaussian and SmoothAdyv baselines in ACR, except when applied to SmoothAdv on
o = 0.25. This corner-case is possibly due to that the model is already achieve to the best capacity
via SmoothAdy, regarding that MNIST on o = 0.25 is relatively a trivial task. For the rest non-trivial
cases, nevertheless, our regularization shows a remarkable effectiveness in two aspects: (a) applying
our consistency regularization on Gaussian, the simplest baseline, dramatically improves the certified
test accuracy and ACR even outperforming the recently proposed MACER by a large margin, and
(b) when applied to SmoothAdyv, our method could further improve ACR. In particular, one could
observe that our regularization significantly improves the certified accuracy especially at large radii,
where a classifier should attain a high value of p(*) (5), i.e., a consistent prediction is required.

C Variance of results over multiple runs

In our experiments, we compare single-run results following other baselines considered in this paper
[1, 8, 4, 9]. In Table 3, we report the mean and standard deviation of ACRs across 5 seeds for the
MNIST results reported in Table 2. In general, we observe ACR of a given training method is fairly
robust to network initialization.

Table 3: Comparison of ACR for various training methods on MNIST. The reported values are
the mean and standard deviation across 5 seeds. We set our result bold-faced whenever the value
improves the baseline, and the underlined are best-performing model per o.

ACR (MNIST) o =0.25 o =0.50 o =1.00

Gaussian [1] 0.9108+0.0003  1.5581+0.0016  1.6184+0.0021
+ Consistency  0.9279+0.0003  1.6549+0.0011  1.7376=+0.0017

SmoothAdv [8] 0.9322+00005 1.6872+0.0007  1.7786+0.0017
+ Consistency ~ 0.9323+0.0001  1.6957-+0.000s  1.8163-+0.0020

Stability [4] 0.9152+0.0007  1.5719+00028  1.6341+0.0018
MACER [9] 0.9201+0.0006  1.5899+0.0069  1.5950+0.0051

D Detailed results in ablation study

We report the detailed results for the experiments performed in ablation study (see Section 4.6 in
the main text). Table 4, 5, and 6 are corresponded to Figure 4(a), 4(b), and 4(c) in the main text,
respectively.

Table 4: Comparison of approximate certified test accuracy (%) on MNIST, for varing loss functions
and A\. We set our result bold-faced whenever the value improves the baseline. For ACR, we
underlined the best-performing model.

Model A ACR 000 025 050 075 1.00 125 150 1.75 200 225 250
Gaussian 0 1.620 964 944 914 87.0 799 710 59.6 462 326 197 10.8

5 1732 949 929 893 850 793 717 627 525 415 312 213
MSE 20 1.677 936 91.0 875 830 771 699 60.8 503 395 28.6 184
50 1.603 925 90.0 86.1 813 755 677 58.6 474 357 241 145

5 1729 952 930 899 854 79.6 724 629 522 411 303 19.6
KL-divergence 20 1.713 940 91.7 882 835 777 705 615 514 412 311 214
50 1.707 934 90.7 87.1 823 768 694 60.6 509 413 318 22.6

5 1740 950 930 89.7 854 79.7 727 63.6 53.0 41.7 308 20.3
20 1.720 930 903 86.6 823 771 702 61.6 52.0 421 325 234

Cross-entropy

'We refer the readers to Zhai et al. [9] for the details on each hyperparemeter.



Table 5: Comparison of approximate certified test accuracy on MNIST for varying m € {2,4, 8}.
For each model, training and certification are done with the same smoothing factor specified in o.

c m ACR 000 025 050 075 100 125 150 175 200 225 2.50

2 0926 994 989 978 956 00 00 00 00 00 00 0.0

025 4 0928 995 989 979 9.1 00 00 00 00 00 00 00
8§ 0929 994 990 980 9.1 00 00 00 00 00 00 0.0

2 1.657 992 986 976 959 930 878 785 605 0.0 00 00

050 4 1.666 992 986 977 960 933 882 794 623 00 00 00
8 1.667 992 987 976 959 933 886 795 621 00 0.0 0.0

2 1740 950 930 89.7 854 797 727 63.6 53.0 41.7 30.8 203

1.00 4 1756 949 929 898 856 802 733 645 540 427 319 21.0
8 1.762 950 931 900 858 803 737 646 542 431 322 215

Table 6: Comparison of approximate certified test accuracy on MNIST for varying A. We set our
result bold-faced whenever the value improves the baseline (A = 0.0). For ACR, we underlined the
best-performing model.

A ACR 000 050 1.00 150 2.00 250 3.00 3.50
00 1619 9.3 914 798 594 325 109 24 00
1.0 1714 960 912 811 635 392 162 42 04
50 1.740 950 897 799 637 419 200 54 0.6

10.0 1.735 941 88.6 785 628 424 221 59 09
150 1731 936 877 778 623 426 229 63 1.0
200 1720 930 86.6 77.1 61.6 421 234 6.7 1.2
250 1226 732 644 539 424 274 145 65 1.2
300 0.846 449 40.1 337 251 17.1 13.6 10.6 6.9
500 0456 152 146 138 128 11.8 106 98 93

Table 7: Comparison of our method to stability training [4] on CIFAR-10 dataset. Each of the values
indicates the fraction of test samples those have /5 certified radius larger than the threshold specified
at the top row. We set our result bold-faced whenever the value improves the baseline.

o Models (CIFAR-10) ACR 000 025 050 075 100 125 150 175 200 225
Gaussian [1] 0424 766 612 422 251 00 00 00 00 00 00
+ Consistency (\ — 20)  0.552 758 67.6 58.1 467 00 00 00 00 00 00
025 Stability [4] (A = 1) 0408 716 578 407 270 00 00 00 00 00 00
Stability [4] (A = 2) 0421 723 580 433 273 00 00 00 00 00 00
Stability [4] (A = 5,10,20) 0.102 107 107 107 107 00 00 00 00 00 00
Gaussian [1] 0525 657 549 428 325 220 141 83 39 00 00
+Consistency (\ = 10) 0720 643 57.5 50.6 432 362 295 228 161 00 00
050 Seability [4] (A = 1) 0496 611 515 409 298 2.1 140 83 36 00 00
Stability [4] (A = 2) 0521 606 515 414 325 239 153 96 50 00 00
Stability [4] (A = 5,10,20) 0206 10.8 108 108 108 108 108 108 108 00 0.0
Gaussian [1] 0542 472 392 340 278 216 174 140 118 100 76
+Consistency (\ — 10) 0756 463 422 38.1 343 30.0 263 229 197 166 138
100 Siability [4] (A = 1) 0526 435 389 328 270 231 191 154 113 78 57
Stability [4] (A = 2) 0414 170 163 154 146 137 126 121 112 103 98
Stability [4] (A = 5,10,20) 0381 100 10.0 100 100 100 100 100 100 10.0 100




E Overview on prior works

For completeness, we present a brief introduction to the prior works mainly considered in our
experiments. We use the notations defined in Section 2 of the main text throughout this section.

E.1 SmoothAdv

Recall that a smoothed classifier f is defined from a hard classifier f : R — ), namely:
f(x) = ar%max[?’(;w\/(o’az[) (flx+0)=k). (1
SN

Here, SmoothAdyv [8] attempts to perform adversarial training [5] directly on f :

min  max E(f;x’7y), 2)
Fo e’ —z[2<e

where £ denotes the standard cross-entropy loss. As mentioned in the main text, however, f is
practically a non-differentiable object when (1) is approximated via Monte Carlo sampling, making
it difficult to optimize the inner maximization of (2). To bypass this, Salman et al. [8] propose to

attack the soft-smoothed classifier F' := E;[F, (2 + 0)] instead of foas F: RY — AK~1 g rather
differentiable. Namely, SmoothAdyv finds an adversanal example via solving the following:
&= argmax L(F;2',y) = argmax (—logE;[F,(z' +4)]). (3)

[z’ —|[2<e [z’ —x||2<e

In practice, the expectation in this objective (3) is approximated via Monte Carlo integration with m
samples of &, namely 81, - - - , 8, ~ N(0,0%1):

1
2= argmax [ —log| — Y F,(z'+6)]|. 4)
|z’z|2<e< (mz Y

To optimize the outer minimization objective in (2), on the other hand, SmoothAdv simply minimize
the averaged loss over (& + 61,y), - , (& + 6y, y), i€, ming = >, L(F;& + &;,y). Notice that
the noise samples 61, - - - , d,,, are re-used for the outer minimization as well.

E.2 MACER

On the other hand, MACER [9] attempts to improve robustness of f via directly maximizing the
certified lower bound over ¢5-adversarial perturbation [1] for (x,y) € D:

min[la —aflo > Z (@71 (p0) - @7 (p)). )
@)y 2

where pt) := P(f(x 4 6) = f(z)) and p@ := max,, i,y P(f(2 + ) = c), as defined in Section 2
in the main text. Again, directly maximizing (5) is difﬁ(iult due to the non-differentiability of f,
thereby MACER instead maximizes the certified radius of F', in a similar manner to SmoothAdyv [8]:

CR(Fiz.9) = G (07 BoIF, o+ 0) — 0~ By [Fila +0) ). ©

Motivated from the O-1 robust classification loss (7), Zhai et al. [9] propose a robust training objective

for maximizing CR(F x,y) along with the standard cross-entropy loss £ on Fasa surrogate loss
for the natural error term:

Le(1) = Bupen (1= LonGwmze] =B Lz VB [Lwmy onganee] O
natural error robust error
~ o ~
Lyacer (F5 2, y) := L(F(z),y) + A - = max{y — CR(F;z,y),0} - 1F(;c)=y’ (8)
————— 2

natural error

robust error
where v, A are hyperparameters. Here, notice that (8) uses the hinge loss to maximize CR(F; x,y),
only for the samples that F( ) is correctly classified to y. In addition, MACER uses an inverse
temperature B > 1 to calibrate F' as another hyperparameter, mainly for reducing the practical gap
between F and f
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