- We would like to thank all reviewers for your constructive and intriguing comments. We have concluded more related
- 2 work, compared with more SOTA, based on your suggestions. We have significantly polished our paper in terms of
- 3 introduction reorganization, grammar correction, fluent expression as well as broader impacts for camera ready.

4 Reviewer #1 and Reviewer #4

- 5 Q1: Comparison with FiLM (AAAI 2018). The experiment is somewhat inadequate.
- 6 A1: Feature-wise Linear Modulation, namely FiLM is proposed to influence neural network computation via a simple,
- 7 feature-wise affine transformation based on conditioning information. Such a novel module has achieved SOTA
- 8 performance on the CLEVR benchmark. The GRU module in FiLM functions similar to the BiLSTM module in our
- 9 porposed SIRI, and the FiLM functions similar to the spatial relation guided distillation module. Besides, positional
- 10 embedding are leveraged in both work. Whereas, the spatial relation guided distillation we introduced induces the
- network with a gate mechanism while FiLM performs feature-wise affine transformation. To fairly compare our SIRI
- with FiLM, we adopt the part II and the part III only in SIRI. Our SIRI has an accuracy @80px of 58.33%, much better
- than FiLM with an accuracy@80px of 52.37%, which demonstrates the effectiveness of our SIRI.

14 Reivewer #2

- 15 Q1: The effect of k (for the number of top-k selected orientation words) is also not studied.
- 16 A1: The accuracies@80px are 51.02%, 58.33% and 59.74% when k is 4, 6 and 8, respectively.
- 17 Q3: The ablation study is not as thorough as it can be (it adds the components in order). Ideally, it would also show the
- effect of 2) and 3) without using 1) (with ResNet features instead of GloRe) and effect of 3) without 2).
- 19 A3: The accuracy @ 80px is 56.24% when the component 2) and 3) are adopted without 1). Besides, the accuracy is
- 20 38.76% when the component 3) is adopted without 1) and 2).
- 21 Q4: It is not clear whether it would be of interest to the broader NeurIPS community.
- 22 A4: We believe that our proposed SIRI with strong novelty and promising performance provides a new insight in terms
- of architecture design for any vision-language tasks, such as VQA, SDR, etc.

Reviewer #3

- 25 Q2: The new extended dataset used in 4.2 should be described more, no details are given on this new data and how it
- 26 was collected.
- 27 A2: Due to the page limitation, the details of the new extended dataset are appended in the supplementray materials.
- 28 We also analyze the word frequency on it and visualize the prediction results on this new dataset.

29 Reviewer #4

- 30 Q2: Although this is a new task, but the solution is compositional and of limited novelty.
- A2: In this paper, we design a novel framework to explicitly tackle the SDR task. Each component is carefully designed
- and well investigated. We believe that such a novel framework can push forward this important task and provides a new
- 33 insight for any other vision-language task.
- Q3: The ablation study in Table 3 only shows three combinations besides pure LingUnet I, I+II and I+II+III, it will be
- better if the author could provide the combinations of II + III, III only and II only. Then we can better evaluate the
- 36 importance of Part II and Part III.
- A3: The accuracies@80px are 56.24%, 38.76% and 44.95% for II + III, III only, II only, respectively.
- Q4: About the generalization ability of Stage II & III.
- 39 A4: Because MAttNet detects objects and scores the RoIs, the Stage II and III in our paper are not suitable to MAttNet.
- We use YOLO-VG(A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV2019) as our baseline, a one
- stage method for visual grounding, which can be end-to-end trained. To investigate the generalization ability of Stage II
- 42 & III, we add the Stage II and III to it. The results show that Stage II and III can improve the performance by 0.9% and
- 43 0.7%, respectively. Thus, our proposed modules can also perform well on other tasks and datasets.
- 44 Q5: The paper has some typos, such as: [Line 92]: adapt should be adopt; [Line 121]: averaged should be summed; [In
- 45 figure 2]: VI (in fact 6) should be IV (4).
- 46 A5: Thanks for pointing out these typos. We have significantly polished this paper for camera ready.