Appendix

This appendix is arranged as follows:

» We derive the lower bound used to train DUNs in Appendix [A]
e We analyse the proposed MLE and VI objectives in Appendix |E

o We discuss how to compute uncertainty estimates with all methods under considera-
tion in Appendix [C!

o We discuss approaches to evaluate the quality of uncertainty estimates in Appendix

e We detail the experimental setup used for training and evaluation in Appendix
e We provide additional experimental results in Appendix

o We discuss the application of DUNs to neural architecture search in Appendix [G]
e We show how standard PyTorch NNs can be adapted into DUNs in Appendix

e We provide some negative results in Appendix

A Derivation of and link to the EM algorithm

Referring to ®={X,Y} with X = {x(™}N_ and Y = {y™}Y_, we show that @ is a
lower bound on log p(D;0) = logp(Y|X; 0):

KL(¢a(d) [| p(d[D;0)) = Eq,, @)[10g ga(d) — log p(d|D)]

= Ega(a) {log Go(d) —log p(ﬂé’.é’(%f(d)

= E,, (a)log ga(d) —log p(Y|X, d; 8) — log p(d) + log p(Y|X; 0)]

= Ey. @[~ logp(Y|X, d; 0)] + KL(ga(d) | p(d)) + log p(Y|X; 0)
=—L(a,0) + logp(Y|X;0). (5)

Using the non-negativity of the KL divergence, we can see that: L(a, 8) <logp(Y|X;8).

We now discuss the link to the EM algorithm introduced in Section Recall that, in our
model, network depth d acts as the latent variable and network weights 8 are parameters.
For a given setting of network weights 8%, at optimisation step k, we can apply Bayes rule
to perform the E step, obtaining the exact posterior over d:

p(d=5) - TI0_, p(y™ |x™, d=j; 6%)
Yo p(d=i) - TTo, p(y™[x(™, d=i; 6%)

The posterior depth probabilities can now be used to marginalise this latent variable and
perform maximum likelihood estimation of network parameters. This is the M step:

ok +! = p(d=j|D;6") =

(6)

N
okt = arg;nax Epo;6%) H ply™ x™, d; 6%)

n=1
D N
= argmax) _ p(d=i|D;0°) | p(y™|x"), d=is6") (7)
=0 n=1

The E step (@ requires calculating the likelihood of the complete training dataset. The M
step requires optimising the weights of the NN. Both operations are expensive when dealing
with large networks and big data. The EM algorithm is not practical in this case, as requires
performing both steps multiple times. We sidestep this issue through the introduction of
an approximate posterior ¢(d), parametrised by «, and a variational lower bound on the
marginal log-likelihood . The corresponding variational E step is given by:

"t = argmax S0 E,) [log p(y™[x™), d; 0%)] — KL(gaw (d) | pa(d)) (8)

16

Because our variational family contains the exact posterior distribution — they are both
categorical — the ELBO is tight at the optima with respect to the variational parameters
. Solving (8)) recovers a such that gur+1(d) =p(d|D; @%). This step can be performed with
stochastic gradient optimisation.

We can now combine the variational E step and M step updates, recovering , where
a and 6 are updated simultaneously through gradient steps:

L(e,0) =N E,) [logp(y™|x™, d;8)] — KL(¢a(d) || p(d))

This objective is amenable to minibatching. The variational posterior tracks the true
posterior during gradient updates. Thus, , allows us to optimise a lower bound on the
data’s marginal log-likelihood which is unbiased in the limit.

B Comparing VI and MLL Training Objectives

In this section, we further compare the MLL (1)) and VI . 3) training objectives presented in
Section[3.2] Our probabilistic model is atyplcal in that it can have millions of hyperparameters,
NN weights, while having a single latent variable, depth. For moderate to large datasets,
the posterior distribution over depth is determined almost completely by the setting of the
network weights. The success of DUNs is largely dependent on being able to optimise these
hyperparameters well. Even so, our probabilistic model tells us nothing about how to do
this. We investigate the gradients of both objectives with respect to the hyperparameters.
For MLL:

0 0
2 logp(®;0) = 8elogsumexpd(logp(©|d 0) + log p(d))
D

& p@ld=ib)pld=i) 0
i= osz—op(g‘d:ﬁ 0)p(d=j) 20

log p(®|d=i; 0)

_Zp =i|D; 9 0 logp(©|d i;0)

0
= Ep(d|©;0)[% log p(D|d; 6] 9)

The gradient of the marginal log-likelihood is equivalent to expectation, under the posterior
over depth, of the gradient of the log-likelihood conditioned on depth. The weights of the
subnetwork which is able to best explain the data at initialisation will receive larger gradients.
This will result in this depth fitting the data even better and receiving larger gradients
in successive iterations while the gradients for subnetworks of different depths vanish, i.e.
the rich get richer. We conjecture that the MLL objective is prone to hard-to-escape local
optima, at which a single depth is used. This can be especially problematic if the initial
posterior distribution has its maximum over shallow depths, as this will reduce the capacity
of the NN.

On the other hand, VI decouples the likelihood at each depth from the approximate posterior
during optimisation:

a D)
8795(9 o) = an(d)89 log p(D|d=i; 6)

qa(d=i) —(log ga (d=i) — log p(d=i) + 1)%

0 . 0
@ﬁ(& a) =logp(D|d=i; 0) —

e d=i
e o (d=1)

I
(10)

For moderate to large datasets, when updating the variational parameters «, the data
dependent term (I) of the ELBO’s gradient will dominate. However, the gradients that reach
the variational parameters are scaled by the log-likelihood at each depth. In contrast, in @7
the likelihood at each depth scales the gradients directly. We conjecture that, with VI,

17

0 - 4 —
— MLL
@& —5000 E —— ELBO
g
~10000 E
—15000 T T T T T — T T T T T
100 7= E p(d=0)
[}
)
£ o NINTA iy
E 107" o n p(d=2)
2 102 1 - p(d=3)
% p(d=4)
10-3 ? * : < ? < ? - p(d=5)
0 20 40 60 80 0 20 40 60 80 100
epochs epochs

Figure 7: Top row: progression of the MLL and ELBO during training of ResNet-50 DUNs on
the Fashion dataset. Bottom: progression of depth posterior probabilities. The left column
corresponds to MLL optimisation and the right to VI. For the latter, approximate posterior
probabilities are shown. We perform an additional 10 epochs of “finetunning” on the VI
DUN with the MLL objective. These are separated by the vertical black line. True posterior
probabilities are shown for these 10 epochs. The posterior over depth, ELBO and MLL
values shown are not stochastic estimates. They are computed using the full training set.

will converge slower than the true posterior does when optimising the MLL directly. This
allows network weights to reach to solutions that explain the data well at multiple depths.

We test the above hypothesis by training a ResNet-50 DUN on the Fashion-MNIST dataset,
as shown in Figure [7. We treat the first 7 residual blocks of the model as the DUNs input
block and the last 3 as the output block. This leaves us with the need to infer a distribution
over 5 depths (7-12). Both the MLL and VI training schemes run for 90 epochs, with
scheduling described in Appendix We then fine-tune the DUN that was trained with VI
for 10 additional epochs using the MLL objective. Both training schemes obtain very similar
MLL values. The dataset under consideration is much larger than the one in Section 4.1}
but the dimensionality of the latent variable stays the same. Hence, the variational gap is
small relative to the MLL. Nevertheless, unlike with the MLL objective, VI training results
in posteriors that avoid placing all of their mass on a single depth setting.

—100
—— MLL
200 —— ELBO
b2
]
s ~c— \/\/—\/
—300 T~ 8
—400 -1 T T T
100 3
. e |~ e
S 101 - o pl=1)
E —— p(d=2)
< 1 —4— p(d=3)
2 1072 =
8 3 e p(d:4)
e ; —— p(d=5)
1073 3
1 1 1 1
80 85 90 95 100
epochs

Figure 8: Zoomed-in view of the last 20 epochs of Figure'ﬂ The vertical black line denotes the
switch from VI training to MLL optimisation. Probabilities to the left of the line correspond
to the variational posterior q. The ones to the right of the line correspond to the exact
posterior. In some steps of training, the ELBO appears to be larger than the MLL due to
numerical error.

18

Zooming in on the last 20 epochs in Figure [8] we see that after converging to a favorable
solution with VI, optimising the MLL objective directly does not result in the posterior
collapsing to a single depth. Instead, it remains largely the same as the VI surrogate posterior.
VI optimisation allowed us to find an optima of the MLL where multiple depths explain the
data similarly well.

In Figure[9]and Figure [L0] we show the MLL, ELBO and posterior probabilities obtained with
our two optimisation objectives, and , on the Boston and Wine datasets respectively.
Like in Section [4.1] we employ 5 hidden layer DUNs without residual connections and 100
hidden units per layer. The input and output blocks consist of linear layers. Both approaches
employ full-batch gradient descent with a step-size of 1072 and momentum of 0.9.

1500

— MLL
L, 1000 1 —— ELBO
§2)
< 500 - -1 Ll vad ()
=1 - o 7
04 4 7~ SN
~500 T T T T T T T T
o 109 4 r —*— p(d=0)
B p(d=1)
::g 1071 E —— p(d=2)
2 102 . —— p(d=3)
8 , e p(d=4)
o 10 i 1 1 1 1 1 i 1 1 1 1 1 p(d:s)
0 1000 2000 3000 4000 0 1000 2000 3000 4000
epochs epochs

Figure 9: Top row: progression of MLL and ELBO during training of DUNs on the Boston
dataset. Bottom: progression of depth posterior probabilities. The left column corresponds
to MLL optimisation and the right to VI. For the latter, approximate posterior probabilities
are shown.

3000 . —— MLL
w2000 - —— ELBO
33
T 1000 -

01 M T
—1000 =7 T T 1 1 T
7 100 o _ —-— p(j:(l))
- i p(d=1)
= —— p(d=2)
§ 102 - e —— p(d=3)
g 103 e < 4 —e— p(d=4)
a —+— p(d=5)

T T T T T T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

epochs epochs

Figure 10: Top row: progression of MLL and ELBO during training of DUNs on the Wine
dataset. Bottom: progression of depth posterior probabilities. The left column corresponds
to MLL optimisation and the right to VI. For the latter, approximate posterior probabilities
are shown.

The MLL objective consistently reaches parameter settings for which the posterior over
depth places all its mass on a single depth. We found the depth to which the posterior
collapses to change depending on weight initialisation. However, converging to a network
where no hidden layers were used p(d=0)=1 seems to be the most common occurrence.
Even when the chosen depth is large, as in the Wine dataset example, we are able to reach
significantly larger likelihood values when optimising the ELBO. Even though the variational
gap becomes very small by the end of training, the approximate posterior probabilities found
with VI place non-0 mass over more than one depth; training with VI allows us to find
weight configurations which explain the data well while being able to use multiple layers for
prediction.

19

C Computing Uncertainties

In this work, we consider NNs which parametrise two types of distributions over target
variables: the categorical for classification problems and the Gaussian for regression. For
generality, in this section we omit references to model hyperparameters 8 and refer to the
distribution over random variables that induces stochasticity in our networks as ¢(w). In
DUN:s, this is a distribution over depth. It is a distribution over weights in the case of MFVI,
MC Dropout and ensembles.

For classification models, our networks output a probability vector with elements fi(x, w),
corresponding to classes {c;}5_ ;. The likelihood function is p(y|x, w) = Cat(y; f(x, w)).
Through marginalisation, the uncertainty in w is translated into uncertainty in predictions.
For DUNSs, computing the exact predictive posterior is tractable . However, for our
baseline approaches, we resort to approximating it with M MC samples:

Py X", D) = Epiwio) [p(y" X", W)l

1 M
~ W) W g(w)

m=0

In both, the exact and approximate cases, the resulting predictive distribution is categorical.
We quantify its uncertainty using entropy:

K
H(y'[x*,) = 3 ply"=cilx", D) log ply" =ci[x", D)
k=1

For regression, we employ homoscedastic likelihood functions. The mean is parametrised by a
NN and the variance is learnt as a standalone parameter: p(y*|x*, w) = N (y; f(x*, w),o2-I).
For the models under consideration, marginalising over w induces a Gaussian mixture
distribution over outputs. We approximate this mixture with a single Gaussian using
moment matching: p(y*|x*) ~ N (y; tta, 2). For DUNs, the mean can be computed exactly:

D
fo = Z f(x*, w=i)q(w=1)
=0

Otherwise, we estimate it with MC:

o s D0 SO W) W~ g(w)
m=0

The predictive variance is obtained as the variance of the GMM. For DUNs:

D
ol =) q(w=i)f(x*,w=i)> - 2+ o2,
1=0 I

Otherwise, we estimate it with MC:

M
1 ,
ngﬂ f(X7W)2_H3.+\0-2,; w ~ q(w)
m=1 II

I

Here, I reflects model uncertainty — our lack of knowledge about w — while II tells us about
the irreducible uncertainty or noise in our training data.

D Evaluating Uncertainty Estimates

We consider the following approaches to quantify the quality of uncertainty estimates:

20

o Test Log Likelihood (higher is better): This metric tells us about how probable
it is that the test targets where generated using the test inputs and our model. It
is a proper scoring rule (Gneiting and Raftery, [2007) that depends on both the
accuracy of predictions and their uncertainty. We employ it in both classification
and regression settings, using categorical and Gaussian likelihoods, respectively.

o Brier Score (lower is better): Proper scoring rule that measures the accuracy of
predictive probabilities in classification tasks. It is computed as the mean squared
distance between predicted class probabilities and one-hot class labels:

11 &
BS =+ > 74 >y = alx*, D) - 1[y* =)’
n=1 k=1

Erroneous predictions made with high confidence are penalised less by Brier score
than by log-likelihood. This can avoid outlier inputs from having a dominant effect
on experimental results. Nevertheless, we find Brier score to be less sensitive than
log-likelihood, making it harder to distinguish the approaches being compared.
Hence, we favor the use of log-likelihood in Section [4.4

o Expected Calibration Error (ECE) (lower is better): This metric measures the
difference between predictive confidence and empirical accuracy in classification. It
is computed by dividing the [0,1] range into a set of bins {B,}3_, and weighing the
miscalibration in each bin by the number of points that fall into it |Bs|:

S
B
BCE =3 Pelace(s,) - cont(B,))
s=1

Here,
1
acc(B;) = Z 1]y = argmax p(y|x,D)] and
B &
1
conf(By) 1By Z max p(y|x, D)
S xXEDBg

ECE is not a proper scoring rule. A perfect ECE score can be obtained by predicting
the marginal distribution of class labels p(y) for every input. A well calibrated
predictor with poor accuracy would obtain low log likelihood values but also low
ECE. Although ECE works well for binary classification, the naive adaption to the
multi-class setting suffers from a number of pathologies (Nixon et al., 2019). Thus,
we do not employ this metric.

» Regression Calibration Error (RCE) (lower is better): We extend ECE to

regression settings, while avoiding the pathologies described by [Nixon et al. (2019):
We seek to asses how well our model’s predictive distribution describes the residuals
obtained on the test set. It is not straight forward to define bins, like in standard
ECE, because our predictive distribution might not have finite support. We apply the
CDF of our predictive distribution to our test targets. If the predictive distribution
describes the targets well, the transformed distribution should resemble a uniform
with support [0, 1]. This procedure is common for backtesting market risk models
(Dowd, 2013]).
To asses the global similarity between our targets’ distribution and our predictive
distribution, we separate the [0, 1] interval into S equal-sized bins {Bs}5_;. We
compute calibration error in each bin as the difference between the proportion of
points that have fallen within that bin and 1/s:

N

S
RCEzzﬁ.\l_ ‘Bs||- |Bs| = > 1[CDFy o (y™) € By
pet N S N) p(ylx(™)

n=1

Alternatively, we can asses how well our model predicts extreme values with a
“frequency of tail losses” approach (Kupiec,|1995). It might not be realistic to assume

21

the noise in our targets is Gaussian. Only considering calibration at the tails of the
predictive distribution allows us to ignore shape mismatch between the predictive
distribution and the true distribution over targets. Instead, we focus on our model’s
capacity to predict on which inputs it is likely to make large mistakes. This can be
used to ensure our model is not overconfident OOD. We specify two bins { By, B},
one at each tail end of our predictive distribution, and compute Tail Calibration
Error (TCE) as:

1
B 1Bl
TeE=S" 2115,
LimE TN

N N
|Bo| = Z]]‘[C‘DFp(y|x("))(y(n)) <7l; |Bi|= Z MCDFp(y\xmn(y(n)) > (1—7)]
n=1

n=1

We specify the tail range of our distribution by selecting 7. Note that this is slightly
different from [Kupiec| (1995), who uses a binomial test to asses whether a model’s
predictive distribution agrees with the distribution over targets in the tails.

RCE and TCE are not a proper scoring rules. Additionally, they are only applicable
to 1 dimensional continuous target variables.

Please see (Ashukha et al.,|2020; |Snoek et al., [2019) for additional discussion on evaluating
uncertainty estimates of predictive models.

E Experimental Setup

We implement all of our experiments in PyTorch (Paszke et al.| [2019). Gaussian processes
for toy data experiments are implemented with GPyTorch (Gardner et al., |2018]).

E.1 Toy Dataset Experiments

All NNs used for toy regression experiments in Section consist of fully connected models
with ReLU activations and residual connections. Their hidden layer width is 100. Batch
normalisation is applied after every layer for SGD and DUNs. Unless specified otherwise, the
same is true for the additional toy dataset experiments conducted in Appendix Network
depths are defined on a per-experiment basis. DUNs employ linear input and output blocks,
meaning that a depth of d=0 corresponds to a linear model. We refer to depth as the number
of hidden layers of a NN.

Ensemble elements, DUNs and dropout models employ a weight decay value of 1074,
Ensembles are composed of 20 identical networks, trained from different initialisations.
Initialisation parameters are sampled from the He initialisation (He et al.| |2015). Dropout
probabilities are fixed to 0.1. MFVI networks use a AV/(0, I) prior. Gradients of the likelihood
term in the ELBO are estimated with the local reparameterisation trick (Kingma et al.,
2015)) using 5 MC samples. DUNs employ uniform priors, assigning the same mass to each
depth.

Networks are optimised using 6000 steps of full-batch gradient descent with a momentum
value of 0.9 and learning rate of 102, Exceptions to this are: Dropout being trained for
10000 epochs, as we found 6000 to not be enough to achieve convergence, and MFVI using a
learning rate of 102, For MFVI and DUNs, we scale the ELBO by one over the number of
data points N. This makes the scale of the objective insensitive to dataset size.

The parameters of the predictive distributions are computed as described in Appendix [C.
For 1D datasets, we draw 10* MC samples with MFVI and dropout. For 2D datasets, we
draw 103. Plot error bars correspond to the standard deviations of each approach’s mean
predictions. Thus, they convey model uncertainty.

Gaussian processes use a Gaussian likelihood function and radial basis function (RBF) kernel.
For 2d toy experiments, the automatic relevance detection (ARD) version of the kernel is
used, allowing for a different length-scale per dimension. A gamma prior with parameters

22

a=1,8 =20 is placed on the length-scale parameter for the 1d datasets. This avoids local
optima of the log-likelihood function where fast varying patterns in the data are treated
like noise. Noise variance and kernel parameters are learnt by optimising the MLL with 100
steps of Adam. Step size is set to 0.1.

We employ 7 different toy datasets. These allow us to test methods’ capacity to express
uncertainty in-between clusters of data and outside the convex hull of the data. They also
allow us to evaluate methods’ capacity to fit differently quickly varying functions. All of
them can be loaded using our provided code.

E.2 Regression Experiments

E.2.1 Hyperparameter Optimisation and Training

To obtain our results on tabular regression tasks, given in Section we follow [Herndndez
Lobato and Adams|(2015) and follow-up work (Gal and Ghahramani, |2016; Lakshminarayanan
et al., |2017) in performing Hyperparameter Optimisation (HPO) to determine the best
configurations for each method. However, rather than using Bayesian Optimisation (BO)
(Snoek et al.} 2012) we use Bayesian Optimisation and Hyperband (BOHB) (Falkner et al.,
2018). This method, as the name suggests, combines BO with Hyperband, a bandit based
HPO method (Li et al.|[2017). BOHB has the strengths of both BO (strong final performance)
and Hyperband (scalability, flexibility, and robustness).

In particular, we use the HpBandSter implementation of BOHB: https://github.com/
automl/HpBandSter. We run BOHB for each dataset and split for 20 iterations using the
same settings, shown in Table [2| min_budget and max_budget are defined on a per dataset
basis, as shown in Table[3] We find these values to be sufficiently large to ensure all methods’
convergence.

Table 2: BOHB settings.

SETTING | VALUE
eta 3
min_points_in_model None
top_n_percent 14
num_samples 64
random_fraction 1/3
bandwidth_factor 3
min_bandwidth le-3

For each test-train split of each dataset, we split the original training set into a new training
set and a validation set. The validation sets are taken to be the last N elements of the
original training set, where N is calculated from the validation proportions listed in Table
The training and validation sets are normalised by subtracting the mean and dividing by the
variance of the new training set. BOHB performs minimisation on the validation Negative
Log Likelihood (NLL). During optimisation, we perform early stopping with patience values
show in Table Bl

As shown in Table 4l each method has a different set of hyperparameters to optimise. The
BOHB configuration for each hyperparameter is shown in Table 5l It is worth noting that
maximum network depth is a hyperparater which we optimise with BOHB. DUNs benefit
from being deeper as it allows then to perform BMA over a larger set of functions. We
prevent this from disadvantaging competing methods by choosing the depth at which each
one performs best.

All methods are applied to fully-connected networks with hidden layer width of 100. We
employ residual connections, allowing all approaches to better take advantage of depth.
All methods are trained using SGD with momentum and a batch size of 128. No learning
rate scheduling is performed. We use batch-normalisation for DUNs and vanilla networks
(labelled SGD in experiments). All DUNs are trained using VI (). The likelihood term
in the MFVI ELBO is estimated with 3 MC samples per input. For MFVI and Dropout,

23

https://github.com/automl/HpBandSter
https://github.com/automl/HpBandSter

Table 3: Per-dataset HPO configurations.

DATASET \ MiIN BUDGET MAX BUDGET EARLY STOP PATIENCE VAL PROP
Boston 200 2000 200 0.15
Concrete 200 2000 200 0.15
Energy 200 2000 200 0.15
Kin8nm 50 500 50 0.15
Naval 50 500 50 0.15
Power 50 500 50 0.15
Protein 50 500 50 0.15
Wine 100 1000 100 0.15
Yacht 200 2000 200 0.15
Boston Gap 200 2000 200 0.15
Concrete Gap 200 2000 200 0.15
Energy Gap 200 2000 200 0.15
Kin8nm Gap 50 500 50 0.15
Naval Gap 50 500 50 0.15
Power Gap 50 500 50 0.15
Protein Gap 50 500 50 0.15
Wine Gap 100 1000 100 0.15
Yacht Gap 200 2000 200 0.15
Flights 2 25 5 0.05

10 MC samples are used to estimate the test log-likelihood. Ensembles use 5 elements for
prediction. Ensemble elements differ from each other in their initialisation, which is sampled
from the He initialisation distribution (He et al., 2015)). We do not use adversarial training
as, inline with |Ashukha et al.| (2020)), we do not find it to improve results.

Table 4: Hyperparameters optimised for each method.
HYPERPARAMETER | DUN SGD MFVI MC DRrROPOUT
v

Learning Rate v
SGD Momentum v
Num. Layers v
Weight Decay v
Prior Std. Dev.

Drop Prob.

AN

v
v
v

RN NN

Table 5: BOHB hyperparameter optimisation configurations. All hyperparameters were
sampled from uniform distributions.

HYPERPARAMETER\ Lower UpPER DEeFAULT LoG DATA TYPE

Learning Rate 1x 1074 1 0.01 True float
SGD Momentum 0 0.99 0.5 False float
Num. Layers 1 40 5 False int

Weight Decay 1x10°6 0.1 5x107* True float
Prior Std. Dev. 0.01 10 1 True float
Drop Prob. 5x 1073 0.5 0.2 True float

E.2.2 Evaluation

The best configuration found for each dataset, method and split is used to re-train a model
on the entire original training set. For the flights dataset, which does not come with multiple
splits, we repeat this five times. We report mean and standard deviation values across all five.
Final run training and test sets are normalised using the mean and variance of the original

24

training set. Note, however, that the results presented in Section [4.3]are unnormalised. The
number of epochs used for final training runs is the number of epochs at which the optimal
configuration was found with HPO.

Timing experiments for regression models are performed on a 40 core Intel Xeon CPU
E5-2650 v3 2.30GHz. We report computation time for a single batch of size 512, which we
evaluate across 5 runs. Ensembles, Dropout and MFVI require multiple forward passes per
batch. We report the time taken for all passes to be made. For Ensembles, we also include
network loading time.

E.3 Image Experiments
E.3.1 Training

The results shown in Section are obtained by training ResNet-50 models using SGD
with momentum. The initial learning rate, momentum, and weight decay are 0.1, 0.9, and
1 x 1074, respectively. We train on 2 Nvidia P100 GPUs with a batch size of 256 for all
experiments. Each dataset is trained for a different number of epochs, shown in Table [6.
We decay the learning rate by a factor of 10 at scheduled epochs, also shown in Table |6
Otherwise, all methods and datasets share hyperparameters. These hyperparameter settings
are the defaults provided by PyTorch for training on ImageNet. We found them to perform
well across the board. We report results obtained at the final training epoch. We do not use
a separate validation set to determine the best epoch as we found ResNet-50 to not overfit
with the chosen schedules.

Table 6: Per-dataset training configuration for image experiments.
Dataser | No. Epocus LR SCHEDULE

MNIST 90 40, 70
Fashion 90 40, 70
SVHN 90 50, 70
CIFARI10 300 150, 225
CIFAR100 300 150, 225

For dropout experiments, we add dropout to the standard ResNet-50 model (He et al., 2016a)
in between the 2" and 3'? convolutions in the bottleneck blocks. This approach follows
Zagoruyko and Komodakis| (2016) and |Ashukha et al.| (2020) who add dropout in-between
the two convolutions of a WideResNet-50’s basic block. Following their approach, we try
a dropout probability of 0.3. However, we find that this value is too large and causes
underfitting. A dropout probability of 0.1 provides stronger results. We show results with
both settings in Appendix We use 10 MC samples for predictions. Ensembles use 5
elements for prediction. Ensemble elements differ from each other in their initialisation,
which is sampled from the He initialisation distribution (He et al.| 2015). We do not use
adversarial training as, inline with |Ashukha et al.| (2020)), we do not find it to improve results.

We modify the standard ResNet-50 architecture such that the first 7 x 7 convolution is
replaced with a 3 x 3 convolution. Additionally, we remove the first max-pooling layer.
Following |Goyal et al.| (2017), we zero-initialise the last batch normalisation layer in residual
blocks so that they act as identity functions at the start of training. Because the output block
of a ResNet expects to receive activations with a fixed number of channels, we add adaption
layers. We implement these using 1 x 1 convolutions. See Appendix for an example
implementation. Figure [IT shows this modified computational model. Note, however, that
this channel mismatch issue is a specific instance of a more general problem of shape and
size mismatch between layers in a DUN. Consider the following cases where constructing a
DUN requires adaption layers:

e A NN consisting of series of dense layers of different dimensions. E.g. an auto-encoder
or U-Net.

o A NN consisting of a mix of convolutional and dense layers. E.g. LeNet (LeCun
et al., [1998).

25

In the first case, we will have dimensionality mismatches between the different dense layers.
In the second case, we will have shape mismatches between the 3D convolutional layers
and the 1D dense layers, in addition to the potential size mismatches between layers of the
same type. Fortunately, adaption layers can be used to solve any shape and size mismatches.
Size mismatches can be naively solved by either padding or cropping tensors as appropriate.
Another solution is to use (parameter) chealﬂ 1 x 1 convolution layers and low- rankﬁ dense
layers in the case of mismatches between numbers of channels and numbers of dimensions,
respectively.

Ik

~ \

—— =~
"\MAMM ~~—
~>lag |~
E [fi— 3
M—— e
9 g

Figure 11: For network architectures in which the input and output number of channels
or dimensions is not constant, we add adaption layers to the computational model shown
in Figure E The n'h adaption layer a,, takes a number of channels/dimensions /,,_; and
outputs l,, channels/dimensions. Later adaption layers are reused multiple times, reducing
the number of parameters required. Note that block sizes are unrelated to their number of
parameters.

For the MNIST and Fashion-MNIST datasets, we train DUNs with a fixed approximate
posterior g (d) = pg(d) for the first 3 epochs. These are the simplest image dataset we work
with and can be readily solved with shallower models than ResNet-50. By fixing, ¢o(d) for
the first epochs, we ensure all layers receive strong gradients and become useful for making
predictions.

E.3.2 Evaluation

All methods are trained 5 times on each dataset, allowing for error bars in experiments. We
report mean values and standard deviations.

To evaluate the methods’ resilience to out of distribution data, we follow [Snoek et al. (2019).
We train each method on MNIST and evaluate their predictive distributions on increasingly
rotated digits. We also train models on CIFAR10 and evaluate them on data submitted to
16 different corruptions (Hendrycks and Dietterich, [2019) with 5 levels of severity each. Per
severity results are provided.

We simulate a realistic OOD rejection scenario (Filos et al., [2019) by jointly evaluating
our models on an in-distribution and an OOD test set. We allow our methods to reject
increasing proportions of the data based on predictive entropy before classifying the rest. All
predictions on OOD samples are treated as incorrect. In the main text we provide results
with CIFAR10-SVHN as the in-out of distribution dataset pair. Results for the other pairs
are found in Appendix We also perform OOD detection experiments, where we evaluate
methods’ capacity to distinguish in-distribution and OOD points using predictive entropy.

For all datasets, we compute run times per batch of size of 256 samples on two P100 GPUs.
Results are obtained as averages of 5 independent runs. Ensembles and Dropout require
multiple forward passes per batch. We report the time taken for all passes to be made. For

3For ResNet-50, which contains 23.52 M parameters, a DUN over the first 13 blocks (using 1 x 1
convolution adaption layers) contains 26.28 M parameters which is an increase of only 1.17%.

4A low rank dense layer with input of size n; and output of size ny can be constructed by
composing two standard dense layers of size n1 X nz and n3 X na where n3 << ni,ns.

26

Ensembles, we also include network loading time. This is because, in most cases, keeping 5
ResNet-50’s in memory is unrealistic.

E.4 Datasets

We employ the following datasets in Section 4] These are summarized in Table [7]

Regression:

o UCI with standard splits (Hernandez-Lobato and Adams)| [2015)
o UCI with gap splits (Foong et al., 2019b)
o Flights (Airline Delay) (Hensman et al., [2013)

Image Classification:

e MNIST (LeCun et al.| [1998)
o Fashion-MNIST (Xiao et al.| 2017)
o Kuzushiji-MNIST (Clanuwat et al., |2018)

o CIFARI10/100 (Krizhevsky et al., 2009) and Corrupted CIFAR (Hendrycks and
Dietterich, 2019

o SVHN (Netzer et al., 2011)

Table 7: Summary of datasets. For non-UCI datasets, the test and train set sizes are shown
in brackets, e.g. (test & train). For the standard UCI splits 90% of the data is used for
training and 10% for validation. For the gap splits 66% is used for training and 33% for
validation. Note that for the UCI datasets, only the standard number of splits are given
since the number of gap splits is equal to the input dimensionality.

NAME \ SIZE INPUT DIM. No. Crasses No. SPLITS
Boston Housing 506 13 - 20
Concrete Strength 1,030 8 20
Energy Efficiency 768 8 - 20
Kin8nm 8,192 8 - 20
Naval Propulsion 11,934 16 20
Power Plant 9,568 4 - 20
Protein Structure 45,730 9 - 5
Wine Quality Red 1,599 11 20
Yacht Hydrodynamics 308 6 - 20
Airline Delay | 2,055,733 (1,955,733 & 100,000) 8 2
MNIST 70,000 (60,000 & 10,000) 784 (28 x 28) 10 2
Fashion-MNIST 70,000 (60,000 & 10,000) 784 (28 x 28) 10 2
Kuzushiji-MNIST 70,000 (60,000 & 10,000) 784 (28 x 28) 10 2
CIFAR10 60,000 (50,000 & 10,000) 3072 (32 x 32 x 3) 10 2
CIFAR100 60,000 (50,000 & 10,000) 3072 (32 x 32 x 3) 100 2
SVHN 99,289 (73,257 & 26,032) 3072 (32 x 32 x 3) 10 2

F Additional Results

F.1 Toy Datasets

In addition to the 1D toy dataset from Izmailov et al|(2019) and the Wiggle dataset introduced
in Section [4.2] we conduct experiments on another three 1D toy datasets. Similarly to that
of [[zmailov et al. (2019)), the first of these datasets is composed of three disjoint clusters of
inputs. However, these are arranged such that they can be fit by slower varying functions.
We dub it “Simple 1d”. The second is the toy dataset used by Foong et al. (2019b) to
evaluate the capacity of NN approximate inference techniques to express model uncertainty
in between disjoint clusters of data, also know as “in-between” uncertainty. The third is
generated by sampling a function from a GP with a Matern kernel with additive Gaussian

27

noise. We dub it “Matern”. We show all 5 1D toy datasets in Figure where we fit them
with a GP.

Figure 12: Fit obtained by a GP with an RBF covariance function on the following datasets,
from left to right: Simple_1d, (Izmailov et al., [2019), (Foong et al| 2019b), Matern, Wiggle.
Error bars represent the standard deviations of the distributions over functions.

F.1.1 Different Depths

In this section, we evaluate the effects of network depth on uncertainty estimates. We first
train DUNs of depths 5, 10 and 15 on all 1d toy datasets. The results are shown in Figure
DUNSs are able to fit all of the datasets well. However, the 5 layer versions provide noticeably
smaller uncertainty estimates in between clusters of data. The uncertainty estimates from
DUNSs benefit from depth for 2 reasons: increased depth means increasing the number of
explanations of the data over which we perform BMA and deeper subnetworks are able to
express faster varying functions, which are more likely to disagree with each other.

5layer DUN 10 layer DUN 15 layer DUN

= .

Figure 13: Increasing depth DUNs trained on all 1d toy datasets. Each row corresponds to a
different dataset. From top to bottom: Simple_1d, (Izmailov et al. 2019), (Foong et al.,

2019b), Matern, Wiggle.

We also train each of our NN-based baselines with depths 1, 2 and 3 on each of these datasets.
Recall that by depth, we refer to the number of hidden layers. Results are shown in Figure
(14l

[Foong et al.| (2019b)) prove that single hidden layer MFVT and dropout networks are unable to
express high uncertainty in between regions of low uncertainty. Indeed, we observe this in our

28

results. Further inline with the author’s empirical observations, we find that deeper networks
also fail to represent uncertainty in between clusters of points when making use of these
approximate inference methods. Interestingly, the size of the error bars in the extrapolation
regime seems to grow with depth for MFVI but shrink when using dropout. The amount of
in-between and extrapolation uncertainty expressed by deep ensembles grows with depth.
We attribute this to deeper models being able to express a wider range of functions, thus
creating more opportunities for disagreement.

Shallower dropout models tend to underfit faster varying functions, like Matern and Wiggle.
For the latter, even the 3 hidden layer model underfits slightly, failing to capture the effects
of the faster varying, lower amplitude sinusoid. MFVI completely fails to fit fast varying
functions, even for deeper networks. Additionally, the functions it learns look piecewise linear.
This might be the result of variational overprunning (Trippe and Turner, 2018)). Ensembles
are able to fit all datasets well.

29

Ensemble

MEFVI

Dropout

oy

¢ pdop

Figure 14: NN baselines fit on all toy datasets.

30

F.1.2 Overcounting Data with MFVI

In an attempt to fit MEVI networks to faster varying functions, we overcount the importance
of the data in the ELBO. This type of objective targets what is often referred to as a
tempered posterior (Wenzel et al., 2020a): Povercount (W|D) o p(D|w)Lp(w).

N
ELBOovercount = —KL(Q(W)HP(W)) +T- Eq(w) [Z p(y(n) |X(n)7 W)}

n=1

We experiment by setting the overcounting factor T' to the values: 1, 4 and 16. The results
are shown in Figure Although increasing the relative importance of the data dependent
likelihood term in the ELBO helps MFVI fit the Matern dataset and the dataset from [Foong
et al. (2019b), the method still fails to fit Wiggle. Overcounting the data results in smaller
error bars.

overcount: 1

overcount: 4

overcount: 16

v N

» ” e

pe

P A A

Q
P

v s v 5

N2 51._‘ 3 N é 3

PR ¥ored .

"3;:".;'. . : 5"";'5 .
“'_:' - .;':. -
b '] :]

Figure 15: MFVI networks fit on all toy datasets for different overcount settings.

F.1.3 2d Toy Datasets

We evaluate the approaches under consideration on two 2d toy datasets, taken from |Foong
et al| (2019a). These are dubbed Axis, Figure [16, and Origin, Figure [I17. We employ 15
hidden layers with DUNs and 3 hidden layers with all other approaches.

DUNSs and ensembles do not provide significantly increased uncertainty estimates in the
regions between clusters of data on the Axis dataset. Both methods perform well on Origin.
Otherwise, all methods display similar properties as in previous sections.

31

1
3 - . - .
; - S
S S IIE
R I I 1 %4 3
_3 -
I I I I I I 0
3_ -
= 0 - 'A\’ﬁ
73— -
I I I I I I
3 0 3 3 0 3
X1 X1

Figure 16: All methods under consideration trained on the Axis dataset. The top row shows
the standard deviation values provided by each method for each point in the 2d input space.
The bottom plot shows each method’s predictions on a cross section of the input space at
x9=0. From left to right, the following methods are shown: dropout, MFVI, DUN, deep
ensembles, GP.

(ux[.rt)0

=}

(X1 +X2)/2 (JC]-‘er)/Z (X1 +x2)/2 (X1+XZ)/2 (x1+x2)/2

Figure 17: All methods under consideration trained on the Origin dataset. The top row
shows the standard deviation values provided by each method for each point in the 2d input
space. The bottom plot shows each method’s predictions on a cross section of the input
space. From left to right, the following methods are shown: dropout, MFVI, DUN, deep
ensembles, GP.

F.1.4 Non-residual Models

We employ residual architectures for most experiments in this work. This subsection explores
the effect of residual connections on DUNs. We first fit non-residual (MLP) DUNs on all of
our 1d toy datasets. The results are given in Figure The learnt functions resemble those
obtained with residual networks in Figure However, non-residual DUNs tend to provide
less consistent uncertainty estimates in the extrapolation regime, especially when working
with shallower models.

We further compare the in-distribution fits from residual DUNs, MLP DUNSs, and deep
ensembles in Figure Ensemble elements differ slightly from each other in their predictions
within the data dense regions. These predictions are averaged, making for mostly smooth
functions. Functions expressed at most depths of the MLP DUNs seem to vary together
rapidly within the data region. Their mean prediction also varies rapidly, suggesting
overfitting. In an MLP architecture, each successive layer only receives the previous one’s
output as its input. We hypothesize that, because of this structure, once a layer overfits a

32

5layer MLP DUN 10 layer MLP DUN 15 layer MLP DUN

P
Wl
%

i

2

BAE

|

Figure 18: DUNs with an MLP architecture trained on 1d toy datasets.

data point, the following layer is unlikely to modify the function in the area of that data point,
as that would increase the training loss. This leads to most subnetworks only disagreeing
about their predictions out of distribution. Functions expressed by residual DUNs differ
somewhat in-distribution, allowing some robustness to overfitting. We hypothesize that this
occurs because each layer takes a linear combination of all previous layers’ activations as its
input. This prevents re-using the previous subnetworks’ fits.

Ensembles provide diverse explanations both in and out of distribution. This results in both
better accuracy and predictive uncertainty than single models. DUNs provide explanations
which differ from each other mostly out of distribution. They provide uncertainty estimates
out of distribution but their accuracy on in-distribution points is similar to that of a single
model.

33

DUN ResNet

DUN MLP

Deep Ensemble

Figure 19: We fit the Simple_ 1d toy dataset with 15 a layer MLP DUN, a 15 layer residual
DUN and a 20 network deep ensemble with 3 hidden layers per network. The leftmost plot
shows mean predictions and standard deviations corresponding to model uncertainty. The
rightmost plot shows individual predictions from DUN subnetworks and ensemble elements.

F.2 Regression

In Section we discussed the performance of DUNs compared with SGD, Dropout,
Ensembles, and MFVI, in terms of LL, RMSE, TCE, and batch time. In this section, we
elaborate by providing an additional metric: Regression Calibration Error (RCE), discussed
in Appendix [D] We also further investigate the predictive performance to prediction time
trade-off and provide results for the UCI gap splits.

UCIT standard split results are found in Figure As before, we rank methods from 1 to 5
based on mean performance, reporting mean ranks and standard deviations. Dropout obtains
the best mean rank in terms of RMSE, followed closely by Ensembles. DUNs are third,
significantly ahead of MFVI and SGD. Even so, DUNs outperform Dropout and Ensembles
in terms of TCE, i.e. DUNs more reliably assign large error bars to points on which they
make incorrect predictions. Consequently, in terms of LL, a metric which considers both
uncertainty and accuracy, DUNs perform competitively (the LL rank distributions for all
three methods overlap almost completely). However, on an alternate uncertainty metric,
RCE, Dropout tends to outperform DUNs. This is indicative that the Dropout predictive
posterior is better approximated by a Gaussian than DUNSs’ predictive posterior. Ensembles
still performs poorly and is only better than SGD. MFVI provides the best calibrated
uncertainty estimates according to TCE and ties with Dropout according to RCE. Despite
this, its mean predictions are inaccurate, as evidenced by it being last in terms of RMSE.
This leads to MFVI’s LL rank only being better than SGD’s.

Figure [21] shows results for gap splits, designed to evaluate methods’ capacity to express
in-between uncertainty. All methods tend to perform worse in terms of the predictive
performance metrics, indicating that the gap splits represent a more challenging problem.
This trend is exemplified in the naval, and to a lesser extent, the energy datasets. Here,
DUNs outperform Dropout in terms of LL rank. However, they are both outperformed by
MFVI and Ensembles. DUNs consistently outperform multiple forward pass methods in
terms of prediction time.

In Figure [22} we show LL vs batch time Pareto curves for all methods under consideration on
the UCI datasets with standard splits. DUNs are Pareto efficient in 5 datasets, performing
competitively in all of them. Dropout and Ensembles also tend to perform well.

Finally, in Table[8 and Table [9, we provide mean and standard deviation results for both
UCT standard and gap splits.

34

rank |

+
+

5 -

4 -

3 -

2 -

1 -

5 -

4 -

3 -

2 -

1 -

5 -

4 -

3 -

2 -

1 -

|

—
—

RMSE

RCE

batch time

boston concrete energy kin8nm naval power protein wine yacht
~09
~225 28 . ~104
~2507 h ‘ _1'°'+T 12 +] ’ —2.74 * e ~1.0 Hf ~15 *
—2.75 —3.04 t T . * T 7 t T 77
~15 5 114 20+
—3.00 . 4 T 11 H 4.5 T —2.8 - —2.8 11 2.0 * T
324 40
—3.25 2.0 —294 124 a5t
i 29 f 12 +
40 604 T 0.085 4 + 0.006 + .
i 0.68 = 2.5
15 i
3.5+ 5.5 - } 0.080 { 0.004 - ‘ 4.0 - 20 0.66 = } 2.0 -* k
3.0 5.0 * 1.0 00757 + + 0.64 \ 154 *
0.002
25 45 -H} h * 0.070 4 +1 i a5 -+ { 35,8 4| 0624 ‘ 1.0 T
051"8% | 0065+ b LA [051
0.06
0.06 - 0.05 4 0.15 02 57 lT 03
0.03 - 0.04 004
0.05 1 0.04 + 0104 0.02 - 02
0.04 * T * " l 0.02 - 0.1 + l + + o.oa-T+ 1 4 +
04 0.03 0.02 4
0.05 l + oor _H H + oord T { 002 0.1 l +
0.08 - 03 0.10
0125 0.06 4 005 + o5] o104 0.4
0.100 0.06 - 0.2 02 0.04 - ’ 0.08 034
0.075 - 0.04 7 003 - 0064 T 0.06
’ 0.04 - 01 o1 001 02 x
0.050 - l l H o002 -4 L) 0.02 '++ + 0047 l“ 01 -ll
0025 0.02 4 001 0027 002
0.20
. 0.06 0.06 o1s 0.15 0.100 0.04
0.15 02 — 0034
002 4 0.04 0.04 - 0.10 0.10 - ’
+* $ 0109 l 01 0.050 -* l 002 1 +
001 4 0024 4 0.02 * 0.05 - 0.05 + 0.05 . 00251 ® 001 4
R R " ny o® om on o
0.00 A 0.00 4 A 0004 4 000 Al 0004 A 0004 Al 004 Af 0.000 4 4 0.00 =
—eo— DUN —#— Dropout = —4— Ensemble @ —¥— MFVI —4— SGD

Figure 20: Quartiles for results on UCI regression datasets across standard splits. Average
ranks are computed across datasets. For LL, higher is better. Otherwise, lower is better.

35

rank | boston concrete energy kin8nm naval power protein wine yacht

54 —25 ofe ov

4_* + 73@_{ §v N] .”I L +7 N 4_2'9_[m =0{ 7Y, LO-T_(e

~2.0
5] - + -10 114 —3.0 -3.5 + ~15 I
—3.5 - : . -
— 54 400 22
2 ~15 1o T ~3.1 “ -2
~4.0 ! 600 2 —2.0
1 e 20 -3.2 24
—45 09
5 8.0

0.05 -
100 4 0.09 - 48 4 * 554 0.75 2.5
40 75 0.04
% T 751 * 467 0.70 -+ 20
E 35 7 + ™7 " o] \ N T l+ | l
. 5]
5 002 - + _ 0.65 | 15
65 25 “l n 42 ¥ 45 + *

0.07
5 0.15 4 0.20 0.25 T 005 4 0.125 .
0.8 15
4 015 4 0.20 0.03 * 001 L 0.100 0.20
3 8 0107 015 4 061 003 0075 l 010 015
& 0,10-1 i 0.02 - 04 . .
2 0.05 0.10 - 0.02 - 005 0.10 - I
u 7 l 0.05 oot 4 02+ ?l 054 ¢ | ++
1+ v : - 0.01 - v | 005
54 03 0.4 ¥ 0.125 034
034 0.08 0.8 T 0204
4 02 * l 034 0.100 - 034
34 8 ' 02 -+ o 0.06 7 ' 0.6 0.075 - 0.15 . 024 0
B 0.04 4 0.050 0.10 -
27) + 01+ 01 4 04+ - 0.1 i
) . 0.02 l f 0.025 - l + ' 01Ty +
14 \ ¥ 024 v | o005 v
5 - v 0.100 03 0.3 -
0.15 034
Q - i
4 - + E 0.04 - * 0.075 0.3 0.10 0024
R) 02 024 !
- 0.10 o 0.2 - 0.2
3 = 0.050 - L ;
J 0.02 4 01 0054 0.01
= - 4 . 0.1 X
24t s 0025 4T 0.05 . 0.1 ' 0.1
¢’) ¢ &
[}] - on \ 0
[S— 0.00 2] 0.000 4l 0.00 of 004" af 004" af 004" 4 o004 4l 0.00 4 .00 4

—eo— DUN —#— Dropout = —4— Ensemble @ —¥— MFVI —4— SGD

Figure 21: Quartiles for results on UCI regression datasets across gap splits. Average ranks
are computed across datasets. For LL, higher is better. Otherwise, lower is better.

36

boston concrete energy

‘9 29 - ’QO ._.._....]
) A P P / -1.00 4
26 4 o ¥ 304 ¢
| : -125 9,
= i -31 e
0 —1.50 A
27 —32 -
i E !
i ! —1.75 A -
j e 3344 L P
—-3.0 1 4 - v \ SN . —2.00 4 v
1 1 1 1 1 1 1 1 1 1 1
0.000 0.025 0.050 0.075 0.00 0.05 0.10 0.15 0.00 0.05 0.10
kin8nm naval power
12 - ==E gy
1 -
4 o —2.70 - ¢
1.1 i 50 o | !
“ W e L SRS v o5 4
- 1.0 o il i .
= % 4.5 ‘I]
! - 7 — - -
09 44 . 2.80 o Hum
‘l 2.85
0.8 i 40 - s gV .
N v S I
1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
protein wine yacht
.-
26 z: ~1.00 .iﬂ‘-»"" e S
1] iy g s -
4 i e .
4! 4 i
= -105 44
— fo
[—2.0
—2.8 I
-0 II ‘0 o L T i Attt
_ _ ! _ . R R R
29 O O o U 4 25 -
1 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.0 0.1 0.2 0.000 0.025 0.050 0.075
time (s) time (s) time (s)

—o— DUN @& Dropout —4- Ensemble -¥: MFVI A-- SGD

Figure 22: Pareto frontiers showing mean LL vs batch prediction time on the UCI datasets
with standard splits. MFVI and Dropout are shown for 5, 10, 20, and 30 samples. Ensembles
are shown with 1, 2, 3, 4, and 5 elements. Note that a single element ensemble is equivalent
to SGD. Top left is better. Bottom right is worse. Timing includes overhead such as ensemble
element loading.

37

Table 8: Mean values and standard deviations for results on UCI regression datasets across
standard splits. Bold blue text denotes the best mean value for each dataset and each metric.
Bold red text denotes the worst mean value. Note that in some cases the best/worst mean
values are within error of other mean values.

METHOD DUN DUN (MLP) DropoOUT ENSEMBLE MFVI SGD
METRIC DATASET
boston —2.604+0.351 —2.604+0.368 —2.882+1.028 —2.454+0.275 —2.573+0.136 —2.94240.676
concrete —3.005+0.212 —3.051+0.278 —3.051+0.308 —2.886+0.153 —3.190+0.110 —3.214+0.399
energy —1.037+0.159 —1.564+0.383 —0.975+0.500 —1.298+0.210 —1.961+0.648 —1.348+0.225
kin8nm 1.151+0.083 1.111+0.103 1.231+0.086 0.813+1.224 1.055+0.084 0.905+0.778
LL 1 naval 4.245+1.108 4.472+1.239 5.429+0.735 5.081+0.156 3.389+2.801 4.821+0.621
power —2.695+0.086 —2.71940.069 —2.790+0.118 —2.663+0.055 —2.877+0.041 —2.73340.081
protein —2.657+0.044 —2.692+0.020 —2.623+0.036 —2.561+0.026 —2.929+0.038 —2.717+0.064
wine —1.031+0.119 —0.979+0.113 —1.003+0.128 —1.116+0.582 —1.007+0.063 —1.21240.485
yacht —2.420+0.523 —2.463+0.197 —1.330+0.436 —2.441+0.180 —2.238+0.952 —2.52540.354
boston 3.200+0.978 3.157+0.885 2.832+0.768 2.835+0.808 3.218+0.837 3.218+0.904
concrete 4.613+0.607 4.571+0.703 4.610+0.572 4.552+0.582 5.894+0.742 4.983+0.914
energy 0.612+0.157 0.948+0.474 0.571+0.204 0.507+0.110 1.686+1.016 0.797+0.283
kin8nm 0.076+0.005 0.077+0.006 0.070-+0.005 0.304+0.991 0.084+0.007 0.202+0.544
RMSE | naval 0.003+0.002 0.002+0.001 0.001+0.001 0.001+0.000 0.005+0.005 0.002+0.001
power 3.573+0.254 3.671+0.247 3.823+0.350 3.444+0.238 4.286+0.179 3.697+0.272
protein 3.40240.058 3.412+0.076 3.425+0.070 3.260+0.074 4.511+0.145 3.58940.174
wine 0.659+0.061 0.629+0.047 0.642+0.049 1.934+5.708 0.660+0.040 0.652+0.054
yacht 2.51441.985 2.465+0.841 0.876+0.411 1.429+0.483 3.419+7.333 2.35240.905
boston 0.045+0.016 0.043+0.013 0.058+0.037 0.046+0.015 0.049+0.014 0.052+0.032
concrete 0.037+0.011 0.039+0.011 0.036+0.011 0.053+0.020 0.030+0.008 0.040+0.016
energy 0.064-+0.031 0.120=£0.069 0.059-0.047 0.157+0.052 0.070=0.051 0.072=+0.031
kin8nm 0.014+0.007 0.021+0.014 0.014+0.006 0.090+0.199 0.016+0.007 0.028+0.051
RCE | naval 0.134+0.102 0.094+0.123 0.100+0.074 0.191+0.079 0.087+0.108 0.072+0.073
power 0.016+0.004 0.018+0.005 0.015+0.012 0.032+0.005 0.010+0.003 0.017+0.005
protein 0.048-+0.005 0.045-+0.003 0.043-0.006 0.055+0.007 0.014+0.003 0.041+0.011
wine 0.030+0.009 0.031+0.013 0.027+0.009 0.100+0.214 0.028+0.009 0.083+0.195
yacht 0.141+0.078 0.177+0.066 0.117+0.068 0.311+0.089 0.156=+0.190 0.153+0.085
boston 0.053+0.034 0.047-+0.030 0.089+0.076 0.055+0.038 0.060+0.035 0.082+0.075
concrete 0.054+0.027 0.048+0.025 0.047+0.028 0.067+0.032 0.036+0.020 0.060-+0.045
energy 0.072+0.073 0.103+0.112 0.088+0.085 0.221+0.101 0.097=+0.090 0.083+0.057
kin8nm 0.024+0.022 0.042+0.038 0.025+0.021 0.065+0.054 0.024+0.015 0.031+0.022
TCE | naval 0.212+0.159 0.127+0.162 0.153+0.128 0.212+0.147 0.118+0.143 0.112+0.118
power 0.020+0.007 0.022+0.011 0.024+0.026 0.045+0.010 0.015-+0.006 0.020-+0.009
protein 0.069+0.012 0.058+0.011 0.063+0.011 0.094+0.014 0.020+0.008 0.061+0.017
wine 0.05140.028 0.047+0.033 0.040+0.028 0.088+0.201 0.027+0.013 0.109+0.197
yacht 0.122+0.119 0.169+0.131 0.131+0.114 0.341+0.176 0.196+0.207 0.175+0.130
boston 0.003+0.003 0.001+0.000 0.018+0.006 0.016+0.004 0.029+0.021 0.001+0.000
concrete 0.00540.003 0.002+0.001 0.01940.007 0.05040.035 0.05540.042 0.003+0.002
energy 0.007=+0.008 0.005=0.002 0.017+0.007 0.037+0.020 0.043+0.037 0.002=0.001
kin8nm 0.019+0.014 0.011+0.008 0.029+0.009 0.0264+0.008 0.157+0.097 0.002+0.001
batch time | naval 0.019-+0.010 0.012-+0.005 0.029-0.009 0.065-+0.032 0.156+0.128 0.005+0.003
power 0.024+0.007 0.016+0.006 0.023+0.006 0.074+0.038 0.138+0.106 0.007+0.005
protein 0.022+0.008 0.018+0.002 0.024-+0.004 0.051+0.022 0.178+0.099 0.004+0.002
wine 0.046+0.026 0.028+0.009 0.031+0.006 0.046+0.034 0.078+0.048 0.004+0.003
yacht 0.004+0.003 0.003=0.002 0.017+0.005 0.035+0.035 0.038+0.022 0.002+0.002

38

Table 9: Mean values and standard deviations for results on UCI regression datasets across
gap splits. Bold blue text denotes the best mean value for each dataset and each metric.
Bold red text denotes the worst mean value. Note that in some cases the best/worst mean
values are within error of other mean values.

METHOD DUN DUN (MLP) DrorouT ENSEMBLE MFVI SGD
METRIC DATASET
boston —3.107+0.593 —3.033+0.409 —4.001+1.814 —3.106+1.481 —2.703+0.072 —4.217+1.876
concrete —4.222+0.818 —4.152+0.433 —5.170+1.376 —3.631+0.523 —3.460=+0.177 —4.839+1.585
energy —10.730+13.477 —6.477+7.516 —8.102+13.796 —5.423+7.290 —9.093+10.573 —15.295+26.058
kin8nm 1.029+0.133 1.110+0.073 1.215+0.049 0.315+2.397 0.942+0.240 0.991+0.131
LL 1 naval —16.279+10.437 —19.165+11.324 —523.856+570.116 —4.573+7.496 —15.208+43.758 —60.470+53.213
power —2.998+0.325 —2.961+0.089 —3.178+0.224 —2.904+0.110 —2.980+0.184 —3.022+0.141
protein —3.835+0.998 —3.553+0.371 —3.459+0.444 —3.071+0.261 —3.083+0.086 —3.554+0.408
wine —1.417+0.474 —2.121+1.227 —1.267+0.677 —1.126+0.137 —0.965+0.033 —2.026+1.130
yacht —2.12240.584 —2.165+0.235 —2.34440.995 —2.568+1.250 —2.114+0.399 —2.44240.520
boston 3.636+0.493 3.585+0.517 3.597+0.684 3.512+0.573 3.756+0.418 4.593+2.927
concrete 7.196+0.821 7.461+0.948 7.064+0.921 6.853-£0.796 7.548=+0.865 7.367-+0.866
energy 2.938+3.017 3.606+3.927 2.874+2.254 3.364+3.696 8.614+9.390 3.061+2.880
kin8nm 0.080=+0.006 0.078+0.005 0.071+0.003 1.632+4.418 0.095+0.025 0.085+0.007
RMSE | naval 0.022+0.014 0.021+0.007 0.034+0.018 0.018-0.009 0.033+0.041 0.020+0.009
power 4.299+0.416 4.584+0.356 4.688+0.335 4.36940.383 4.680+0.703 4.621+0.339
protein 5.206+0.780 5.101+0.526 5.133+0.636 4.80140.599 5.115+0.208 5.171+0.632
wine 0.697+0.043 0.692+0.041 0.660+0.040 0.673+0.039 0.632+0.029 0.731+0.070
yacht 1.851+0.750 1.852+0.623 2.290+2.108 1.841+0.836 1.836+0.712 2.214+0.793
boston 0.072+0.047 0.068=+0.038 0.126+0.103 0.103=+0.240 0.031+0.014 0.156+0.236
concrete 0.108+0.066 0.097+0.034 0.155+0.072 0.057+0.043 0.030-+0.016 0.134+0.075
energy 0.120+0.149 0.095+0.067 0.117+0.094 0.128+0.076 0.187+0.158 0.162+0.180
kin8nm 0.027+0.021 0.015=+0.012 0.012=+0.010 0.137+0.308 0.017+0.011 0.024+0.023
RCE | naval 0.580+0.321 0.649+0.293 0.719+0.314 0.499-+0.347 0.525+0.353 0.732+0.278
power 0.027+0.039 0.013-0.006 0.046+0.026 0.010=+0.005 0.019+0.017 0.023+0.017
protein 0.087+0.053 0.076+0.027 0.062-0.030 0.034-+0.021 0.217+0.387 0.079-+0.034
wine 0.076+0.057 0.134+0.096 0.047+0.068 0.033=x0.017 0.023:0.009 0.114+0.094
yacht 0.085+0.036 0.075+0.024 0.137+0.173 0.249+0.312 0.102+0.052 0.077+0.045
boston 0.138+0.002 0.132+0.065 0.221+0.154 0.134+0.235 0.037+0.023 0.234+0.231
concrete 0.212+0.004 0.199+0.055 0.280+0.008 0.107+0.088 0.052+0.040 0.248=0.107
energy 0.175+0.211 0.161+0.132 0.180+0.149 0.216+0.137 0.267+0.208 0.227+0.238
kin8nm 0.064+0.051 0.030=0.031 0.025-0.030 0.150-0.303 0.029+0.027 0.048=+0.051
TCE | naval 0.650+0.284 0.714+0.229 0.744+0.296 0.560=+0.334 0.585+0.336 0.763+0.253
power 0.055+0.088 0.033+0.017 0.109+0.049 0.020+0.015 0.034+0.039 0.057+0.040
protein 0.167+0.088 0.157+0.052 0.129-+0.057 0.071+0.050 0.240+0.375 0.159-+0.064
wine 0.153+0.104 0.233+0.135 0.084+0.115 0.073+0.046 0.019-t0.007 0.209=+0.146
yacht 0.133+0.058 0.095+0.073 0.097+0.066 0.289+0.322 0.136+0.107 0.098+0.056
boston 0.029=+0.018 0.037=+0.020 0.032=+0.005 0.044=+0.016 0.047+0.030 0.003:0.001
concrete 0.033+0.018 0.016=0.010 0.022+0.006 0.043+0.030 0.090=x0.078 0.0030.003
energy 0.021+0.021 0.023+0.014 0.029+0.005 0.025+0.006 0.117+0.099 0.002:0.000
kin8nm 0.012+0.007 0.008-£0.004 0.019+0.007 0.040-+0.034 0.244+0.157 0.003:£0.002
batch time | naval 0.013+0.006 0.010+0.005 0.024+0.011 0.040+0.018 0.203+0.196 0.003+0.002
power 0.013+0.002 0.018+0.005 0.023+0.007 0.073+0.037 0.215=+0.125 0.005+0.003
protein 0.023+0.006 0.016-+0.005 0.027+0.007 0.057+0.030 0.258+0.135 0.005+0.003
wine 0.013=+0.007 0.008-0.002 0.018=+0.008 0.065=+0.051 0.102:£0.004 0.005:£0.004
yacht 0.003+0.002 0.004+0.002 0.015+0.003 0.015+0.004 0.021+0.010 0.001-+0.000

39

F.3 Image Classification

Table [10 shows a detailed breakdown of the performance of DUNSs, as well as various
benchmark methods, on image datasets.

Table 10: Mean values and standard deviations for results on image datasets. Bold blue text
denotes the best mean value for each dataset and each metric. Bold red text denotes the
worst mean value. Note that in some cases the best/worst mean values are within error of
other mean values.

DATASET METHOD LL 1 ERROR | BRIER | ECE |
DUN —0.24040.011 0.05640.002 0.092+0.003 0.034+0.002
Depth-Ens (13) —0.143+0.003 0.044+0.000 0.068+0.001 0.006+0.002
Depth-Ens (5) —0.21240.003 0.064+0.001 0.09640.001 0.010+0.001
CIFARIO Dropout —0.211+0.004 0.051+0.002 0.081+0.002 0.028+0.002
Dropout (p =0.3) | —0.222+0.006 0.053+0.001 0.084+0.001 0.027+0.002
Ensemble —0.145+0.002 0.042+0.001 0.063+0.001 0.010+0.001
SGD —0.234+0.008 0.051+0.001 0.084+0.002 0.033+0.001
S-ResNet —0.233+0.009 0.057+0.001 0.090+0.002 0.030+0.003
DUN —1.182+0.018 0.246+0.001 0.377+0.001 0.135=+0.001
Depth-Ens (13) —0.796+0.003 0.210+0.001 0.297+0.001 0.015=+0.002
Depth-Ens (5) —1.046+0.011 0.264+0.002 0.365+0.002 0.038+0.001
CIFAR100 Dropout —1.057+0.020 0.233+0.003 0.347+0.004 0.110+0.002
Dropout (p =0.3) | —1.088+0.007 0.243+0.002 0.358+0.003 0.11140.002
Ensemble —0.821+0.006 0.204+0.001 0.292+0.001 0.047+0.002
SGD —1.15540.014 0.234+0.002 0.363+0.004 0.133+0.002
S-ResNet —1.108+0.034 0.248+0.004 0.368+0.008 0.113+0.008
DUN —0.245+0.029 0.051+0.001 0.087+0.002 0.035+0.002
Depth-Ens (13) —0.141+0.002 0.041+0.001 0.064+0.000 0.011+0.001
Depth-Ens (5) —0.152+0.002 0.044+0.001 0.069+0.001 0.01440.001
Fashion Dropout —0.208+0.006 0.050+0.001 0.081+0.001 0.050+0.000
Dropout (p =0.3) | —0.185+0.004 0.04940.001 0.079+0.002 0.050+0.000
Ensemble —0.180+0.006 0.044+0.001 0.070+0.002 0.050+0.000
SGD —0.27240.006 0.051+0.001 0.087+0.002 0.048+0.000
S-ResNet —0.217+0.025 0.052+0.003 0.084+0.007 0.025+0.006
DUN —0.015+0.004 0.004+0.000 0.006+0.000 0.005+0.003
Depth-Ens (13) —0.009+0.000 0.003+0.000 0.004+0.000 0.001+0.000
Depth-Ens (5) —0.009+0.000 0.003+0.000 0.005+0.000 0.001+0.000
MNIST Dropout —0.011+0.000 0.004+0.000 0.005+0.000 0.040+0.022
Dropout (p =0.3) | —0.010+0.001 0.003+0.000 0.0054+0.000 0.030+0.027
Ensemble —0.010+0.000 0.003+0.000 0.005+0.000 0.050+0.000
SGD —0.012+0.001 0.004+0.000 0.006+0.000 0.050+0.000
S-ResNet —0.031+0.008 0.005+0.004 0.011+0.005 0.015+0.006
DUN —0.20240.021 0.04640.005 0.07440.007 0.019+0.004
Depth-Ens (13) —0.114+0.001 0.027+0.000 0.042+0.000 0.005+0.000
Depth-Ens (5) —0.129+0.001 0.030+0.000 0.047+0.000 0.006=+0.000
SVHN Dropout —0.162+0.014 0.036+0.008 0.057+0.011 0.050+0.000
Dropout (p =0.3) | —0.138+0.002 0.031+0.001 0.049+0.001 0.050+0.000
Ensemble —0.123+0.002 0.027+0.000 0.043+0.000 0.050+0.000
SGD —0.177+0.003 0.033+0.001 0.055+0.001 0.049+0.000
S-ResNet —0.168+0.005 0.035+0.001 0.056+0.001 0.018=+0.001

Figure 23 compares methods’ LL performance vs batch time on increasingly corrupted
CIFARI10 test data. DUNs are competitive in all cases but their relative performance
increases with corruption severity. Dropout shows a clear drop in LL when using a drop rate

of 0.3. Figure [24] shows rejection classification plots for CIFAR10 and CIFAR100 vs SVHN

40

and for Fashion MNIST vs MNIST and KMNIST. Table [I1 shows AUC-ROC values for
entropy based in-distribution vs OOD classification with all methods under consideration.

Severity: 0 Severity: 1
R # 04 ZdO 45— 20
~0.15 oL - o
7 4
. —05 ¢
= -020 ! 0 4
= T L 57 0 D / .
_ .:517-5.0 % st 4 —06 ?.f-fjfoj'iifsi".fo
... ~
~025 4 074 7
[] *
T T T T T T T T
Severity: 2 Severity: 3
—0.6 0 0
[I— i —— 2 [45— _é
;z/-]‘ 4 1.2 1 ;,41""J
~0.8 - ¢ §
14 2
= / 0.d5..20 4
= 10 ,é;.,.r?.Z-.--l ------- P -16 1 ¢/ 57.40..45..80
j P f. DRI
) -18 4 &0
-12 4 ;
P 204 ¢
T T T T T T T T
Severity: 4 Severity: 5
—-1.25 0 5 20
[(IR R -& R T 45
150 »;,,.J— ~1.75 }J—
;/ —2.00 ;/
RS R ‘ s
2 ® 458404580 —2.25 - '?4_5,,;“_4_0.,‘.,45..,‘.30
—2.00 4 DGPTSR L PP
- —250 o4 & &*
* *
—-225 4 :
‘ -275 1 &
T T T T T T T T
0 1 2 3 0 1 2 3
time (s) time (s)
—e— DUN —®- Ensemble - Dropout o-- SGD *- Dropout (0.3)

Figure 23: Pareto frontiers showing LL for all CIFAR10 corruptions vs batch prediction time.
Batch size is 256, split over 2 Nvidia P100 GPUs. Annotations show ensemble elements and
Dropout samples. Note that a single element ensemble is equivalent to SGD.

In some cases, similarly to Section [4, we find that using the exact posterior in DUNSs is
necessary to reduce underconfidence in-distribution. We further investigate this by plotting
the posterior probabilities produced by VI, exact inference with batch-norm in train mode
and exact inference with batch-norm in test mode in Figure All three approaches assign
most probability mass to the final three layers. However, exact inference with BN in test
mode differs in that it assigns vanishing low probability mass to all other layers. This is in
contrast to VI and train mode BN, where the probability mass assigned to each shallower
layer decreases gradually. Predictions are made with BN in test mode. This changes the
BN layers from using batch statistics for normalisation to using weighed moving averages
computed from the train set. Figure [25|suggests that this shift in network behavior results in
predictions from earlier layers being worse and weighing them too heavily in our predictive
posterior results in underconfidence.

In Section Section and Appendix [B] we discussed how DUNs trade off expressively
and explanation diversity automatically. Figure [26 shows confirms that this mechanism is
due to earlier layers obtaining low accuracy. These layers perform representation learning
instead. In turn, these layers are assigned low posterior probabilities such that they contribute
negligibly to predictions.

41

CIFAR10 vs SVHN

CIFAR100 vs SVHN

accuracy

Fashion vs KMNIST

Fashion vs MNIST

accuracy

g asme—

—— DUN
—-— Ensemble

% rejected

Dropout

SGD

100 0 25 50 75 100
% rejected
-- DUN (exact) - Depth-Ens (5) S-ResNet
Dropout (0.3) - Depth-Ens (13)

Figure 24: Rejection-classification plots. The black line denotes the theoretical maximum
performance; all in-distribution samples are correctly classified and OOD samples are rejected

first.

Table 11: AUC-ROC values obtained for predictive entropy based separation of in and out of
distribution test sets. Bold blue text denotes the best mean value for each dataset and each
metric. Bold red text denotes the worst mean value. Note that in some cases the best/worst
mean values are within error of other mean values.

SOURCE CIFAR10 CIFAR100 FASHION MNIST SVHN
TARGET SVHN KMNIST MNIST FasHioN CIFARI10
DUN 0.84+0.06 0.76+0.04 0.95+0.01 0.95+0.01 0.86+0.03 0.92+0.02
DUN (exact) 0.90+0.03 0.77+0.03 0.94+0.01 0.95+0.01 0.87+0.03 0.90+0.03
Depth-Ens (13) | 0.91+0.00 0.80+0.01 0.97+0.00 0.96+0.00 0.9940.00 0.98+0.00
Depth-Ens (5) | 0.84+0.02 0.79+0.02 0.97+0.00 0.96+0.00 0.94+0.04 0.97+0.00
Dropout 0.90+0.01 0.75+0.05 0.96+0.01 0.97+0.01 0.95+0.04 0.94+0.01
Dropout (0.3) 0.88+0.01 0.76+0.03 0.96+0.01 0.96+0.01 0.91+0.06 0.95+0.01
Ensemble 0.93+0.02 0.77+0.01 0.96+0.00 0.96+0.00 0.98+0.00 0.97+0.00
S-ResNet 0.87+0.05 0.79+0.03 0.96+0.01 0.96+0.01 0.86+0.04 0.93+0.01
SGD 0.8940.02 0.76+0.03 0.95+0.01 0.964+0.01 0.94+0.04 0.93+0.01

42

CIFAR10 Depth Posterior

qu (d>
1071 H train BN p(d|D)
test BN p(d|D)
>
B
= 103 4
9
8
[}
-
s ¥
10-5
1077 T T T T T T
0 2 4 6 8 10

depth

Figure 25: Posterior probabilities produced by VI, exact inference with batch-norm in train
mode and exact inference with batch-norm in test mode on the CIFAR10 train-set.

CIFAR10 Per-depth Error Rates

—— DUN
0.8 = T e
0.6 =
=
o
=
g
0.4 -
0.2
'~—~ﬂ———-——~o-——¢——+——+—‘ T
T ! ! : I I
! A p 8 10 12

depth

Figure 26: Comparison of per-depth error rates for the layers of a DUN and depth-ensemble
elements of the same depth.

43

G DUNs for Neural Architecture Search

In this section, we briefly explore the application of DUNs to Neural Architecture Search
(NAS) and how architecture hyperparameters affect the posterior over depth. This section is
based on the previous work (Antoran et al.| 2020). Please see that paper for more information,
including further experimental evaluation and analysis as well as contextualisation of this
technique in the NAS literature.

After training a DUN, as described in Section do(d=1) = cv; represents our confidence
that the number of blocks we should use is . We would like to use this information to prune
our network such that we reduce computational cost while maintaining performance. Recall
our training objective :

L(,0) = 33_, g a) [log p(y™ x(™), d; 0)] — KL(ga(d) || p(d)).

In low data regimes, where both the log-likelihood and KL divergence terms are of comparable
scale, we obtain a posterior with a clear maximum. We choose

dopt=arg max a. (11)

as our fixed depth. In medium-to-big data regimes, where the log-likelihood dominates our
objective, we find that the values of «; flatten out after reaching an appropriate depth. For
examples of this phenomenon, compare the approximate posteriors over depth shown in
Figure [27|and Figure We propose a heuristics for choosing dop¢ in this case. We choose
the smallest depth with a probability larger that 95% of the maximum of ¢:

dopt = min{i : ¢(d=i) > 0.95max ¢(d=j)}. (12)
7 J

Both heuristics aim to keep the minimum number of blocks needed to explain the data well.
We prune all blocks after dop: by setting g (d=dopt) = g (d>dops) and then gq(d>dopt) =0.
Instead of also discarding the learnt probabilities over shallower networks, we incorporate
them when making predictions on new data points x* through marginalisation:

dopt

Py x) = Y p(y*|x*, d=i; 0)qa (d=i). (13)
=0

We refer to pruned DUNs as Learnt Depth Networks (LDNs) and study them, contrasting
them with (standard) Determinisitc Depth Networks (DDNs) in the following experiments.

G.1 Toy Experiments

We generate a 2d training set by drawing 200 samples from a 720° rotation 2-armed spiral
function with additive Gaussian noise of o =0.15. The test set is composed of an additional
1800 samples. Choosing a relatively small width for each hidden layer w =20 to ensure the
task can not be solved with a shallow model, we train fully-connected LDNs with varying
maximum depths D and DDNs of all depths up to D=100. Figure 27]shows how the depths to
which LDNs assign larger probabilities match those at which DDNs perform best. Predictions
from LDNs pruned to dgy; layers outperform DDNs at all depths. The chosen d,p,¢ remains
stable for increasing maximum depths up to D = 50. The same is true for test performance,
showing some robustness to overfitting. After this point, training starts to become unstable.
We repeat experiments 6 times and report standard deviations as error bars.

We further explore the properties of LDNs in the small data regime by varying the layer
width w. As shown in Figure very small widths result in very deep LDNs and worse test
performance. Increasing layer width gives our models more representation capacity at each
layer, causing the optimal depth to decrease rapidly. Test performance remains stable for
widths in the range of 20 to 500, showing that our approach adapts well to changes in this
parameter. The test log-likelihood starts to decrease for widths of 1000, possibly due to
training instabilities.

Setting w back to 20, we generate spiral datasets with varying degrees of rotation while
keeping the number of train points fixed to 200. In Figure 31, we see how LDNs increase

44

100 3

—— dopt il
P I 0975
80 —-= log-like 7’
1 s
P - 0.950
A
60 P, 7 ~ 4\ - 0925
» .
el . /,’ \XR - 0.900 ﬁ
i .
40 -7 (& L o0sns
/,) <
20 4 e I 0.850
’
’ o8
0 T T T T
20 40 60 80 100
D

Figure 27: Left: posterior over depths for a LDN of D = 50 trained on our spirals dataset. Test
log-likelihood values obtained for DDNs at every depth are overlaid with the log-likelihood
value obtained with a LDN when marginalising over d,p,: =9 layers. Right: the LDN’s depth,
chosen using , and test performance remain stable as D increases up until D = 50.

- N L 005 — dom
—-= log-like, d € [0, dopt]
~=~ log-like, d € [0, D]
- 0.90

- 0.85

dopt (No. active blocks)
test log-like

- 0.80

ulxl ulxl 10°
w (layer width)
Figure 28: Evolution of LDNs’ chosen depth and test performance as their layer width w
increases. The results obtained when making predictions by marginalising over all D =20
layers overlap with those obtained when only using the first d,,; layers. The x-axis is
presented in logarithmic scale.

their depth to match the increasing complexity of the underlying generative process of the
data. For rotations larger than 720°, w =20 may be excessively restrictive. Test performance
starts to suffer significantly. Figure [29 shows how our LDNs struggle to fit these datasets
well.

Returning to 720°spirals, we vary the number of training points in our dataset. We plot the
LDNs’ learnt functions in Figure[30. LDNs overfit the 50 point train set but, as displayed
in Figure learn very shallow network configurations. Increasingly large training sets
allow the LDNs to become deeper while increasing test performance. Around 500 train
points seem to be enough for our models to fully capture the generative process of the
data. After this point do,: oscillates around 11 layers and the test performance remains

LDN,dypt =2 LDN,dyyr =3 LDN,dopr =6 LDN,dopt =10 LDN, dopt = 16

2.5

—_

A)d

0.0

(1

—25

o

-25 0.0 25 —25 0.0 25 -25 0.0 25 -25 0.0 25 —25 0.0 25
180° 360° 720° 1080° 1440°

Figure 29: Functions learnt at each depth of a LDN on increasingly complex spirals. Note
that single depth settings are being evaluated in this plot. We are not marginalising all
layers up to dop:.

45

LDN, dopt =4 LDN,dopr =6 LDN, dop =9 LDN, dop = 13

LDN, dop = 11

2.5

=f)d -

([t

o

—25
-25 0.0 25 =25 0.0 25 =25 0.0 25 =25 0.0 25 =25 0.0 2.5

Ntrain: 50 Ntrain: 200 Ntrain: 400 Ntrain: 600 Ntrain: 800

Figure 30: Functions learnt by LDNs trained on increasingly large spiral datasets. Note that
single depth settings are being evaluated in this plot. We are not marginalising all layers up
to dopt-

dopt (No. active blocks)
1 1
1 1

e AR
9 09 =N N\ 4 /./"’k‘\o-{&(/
= A N ~” -
80 o —-—2, — ’,
o 08+ [\\ - {,
3‘”} 07 w1 —— d € [0,dop]
N - --- deo,D]
0.6 4 h -1
T T T T T T T T T T T T T
180 360 540 720 900 1080 1260 1440 50 150 250 350 450 550 650 750
spiral dataset rotation degrees number of train points

Figure 31: The left-side plots show the evolution of test performance and learnt depth as
the data complexity increases. The right side plots show changes in the same variables as
the number of train points increases. The results obtained when making predictions by
marginalising over all D =20 layers overlap with those obtained when only using the first
dopt layers. Best viewed in colour.

constant. Marginalising over D layers consistently produces the same test performance as
only considering the first do,¢. All figures are best viewed in colour.

G.2 Small Image Datasets

We further evaluate LDNs on MNIST, Fashion-MNIST and SVHN. Note that the network
architecture used for these experiments is different from that used for experiments on the
same datasets in Section and Appendix It is described below. Each experiment
is repeated 4 times to produce error bars. The results obtained with D =50 are shown
in Figure The larger size of these datasets diminishes the effect of the prior on the
ELBO. Models that explain the data well obtain large probabilities, regardless of their depth.
For MNIST, the probabilities assigned to each depth in our LDN grow quickly and flatten
out around dop: =~ 18. For Fashion-MNIST, depth probabilities grow slower. We obtain
dopt = 28. For SVHN, probabilities flatten out around d,p; = 30. These distributions and dop;
values correlate with dataset complexity. In most cases, LDNs achieve test log-likelihoods
competitive with the best performing DDNs.

Figure [33| shows more detailed experiments comparing LDNs with DDNs on image datasets.
We introduce expected depth d,,; =round(E,_[d]) as an alternative to the 95" percent
heuristic introduced above. The first row of the figure adds further evidence that the depth
learnt by LDNs corresponds to dataset complexity. For any maximum depth, and both
pruning approaches, the LDN’s learnt depth is smaller for MNIST than Fashion-MNIST and
likewise smaller for Fashion-MNIST than SVHN. For MNIST, Fashion-MNIST and, to a
lesser extent, SVHN the depth given by the 95" percent pruning tends to saturate. On the
other hand, the expected depth grows with D, making it a less suitable pruning strategy.

46

MNIST Fashion

e
o~ o— =0

0 10 20 30 40 50 0 10 20 30 40 5 0 10 20 30 40 50

d d d
Figure 32: Approximate posterior over depths for LDNs of D =50 trained on image datasets.
Test log-likelihoods obtained for DDNs at various depths are overlaid with those from our
LDNs when marginalising over the first d,,; layers. The depth was chosen using

As shown in rows 2 to 5, for SVHN and Fashion-MNIST, 95" percentile-pruned LDNs suffer
no loss in predictive performance compared to expected depth-pruned and even non-pruned
LDNs. They outperform DDNs. For MNIST, 95" percent pruning gives results with high
variance and reduced predictive performance in some cases. Here, DDNs yield better log-
likelihood and accuracy results. Expected depth is more resilient in this case, matching
full-depth LDNs and DDNs in terms of accuracy.

G.3 Experimental Setup for NAS

For experiments on the spirals dataset, our input fy and output fp41 blocks consist of linear
layers. These map from input space to the selected width w and from w to the output size
respectively. Thus, selecting d = 0 = b;=0V: € [1, D] results in a linear model. The functions
applied in residual blocks, f;(-)Vi € [1, D], consist of a fully connected layer followed by a
ReLU activation function and Batch Normalization (Ioffe and Szegedy, [2015)).

Our architecture for the image experiments uses a 5x5 convolutional layer together with a
2x2 average pooling layer as an input block fy. No additional down-sampling layers are used.
The output block, fpy1, is composed of a global average pooling layer followed by a fully
connected residual block, as described in the previous paragraph, and a linear layer. The
function applied in the residual blocks, f;(-) Vi € [1, D], matches the preactivation bottleneck
residual function described by [He et al.| (2016b]) and uses 3x3 convolutions. The outer
number of channels is set to 64 and the bottleneck number is 32.

47

MNIST Fashion SVHN

100 100 100
— D
80 - 80 - 80 4 —— LDN-E
—— LDN-95
60 - 60 - 60 -
o
40 - 40 - 40 -
20 20 20
0 T T T T 0 T T T T 0 T T T T
1.00 1.00 1.00
0.95 0.95 4 0.95 4
0.90 + 0.90 + 0.90 +
— . - .
3 0.85 0.85 0.85
0.80 —+ 0.80 —+ 0.80 —+
—— DDN
0.75 — 0.75 — 0.75 —
—— LDN-95
0.70 T T T T 0.70 T T T T 0.70 T T T T
1.00 1.00 1.00
0.95 0.95 -
0.90 0.90
— i 4
3 0.85 0.85
0.80 — 0.80 —
0.75 —+ 0.75 —+
0.70 —— 0.70
5 20 12 T
o i - — DDN
4 - —— LDN-95
10
[16 -
5 ° Nt
g 147 8 ¢
s
12 ¢ 7 7
6 -
14 10 4
5 -
8 -
0 T T T T T T T T 4 T T T T
5 20
4 18
16
- 3
S 14 -
3
2] 12
1 10 4
8 -
0 T T T T 1 T T T T 4 T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 25 50 75 100

D D D
Figure 33: Comparisons of DDNs and LDNs using different pruning strategies and maximum depths.
LDN-95 and LDN-E refer to the pruning strategy described in and dopt = round(E[g«(d)]),

respectively. 1% row: comparison of dops. 2" row: comparison of test log-likelihoods for DDNs

and LDNs with 95 percent pruning. 3™ row: comparison of test log-likelihoods for LDN pruning
methods. 4" and 5" rows: as above but for tesztl 8error.

H Implementing a DUN

In this section we demonstrate how to implement a DUNs computational model by modifying
standard feed-forward NNs written in PyTorch. First, we show this for a simple MLP and then
for the more realistic case of a ResNet, starting from the default PyTorch implementation.

H.1 Multi-Layer Perceptron

Converting a simple MLP to a DUN requires only around 8 lines of changes, depending on
the specific implementation. Only 4 of these changes, in the forward function, are significant
differences. The following listing shows the git diff of a MLP implementation before and
after being converted.

import torch
import torch.nn as nn

class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):

super (MLP, self).__init__Q)
+ self.output_dim = output_dim
layers = [nn.Sequential(nn.Linear (input_dim , hidden_dim),

nn.ReLU())]
for _ in range(num_layers):
layers.append(nn.Sequential (nn.Linear (hidden_dim, hidden_dim),

nn.ReLU()))

= layers.append(nn.Linear (hidden_dim, output_dim))
+ self .output_layer = nn.Linear (hidden_dim, output_dim)

= self.layers = nn.Sequential (xlayers)
self .layers = nn.Modulelist (layers)

def forward(self, x):

+ act_vec = x.new_zeros (len(self.layers), x.shape[0], self.output_dim)
+ for idx, layer in enumerate(self.layers):

+ x = self.layers[idx](x)

+ act_vec[idx] = self.output_layer (x)

= return self.layers(x)
+ return act_vec

H.2 PyTorch ResNet

To convert the official PyTorch ResNet implementatiorﬂ into a DUN, we just need to make
17 changes. Many of these changes involve changing only a few characters on each line.
Rather than looking at the whole file, which is over 350 lines long, we’ll look only at the
changes.

The first change that needs to be made is to the _make_layer function on line 177 of
resnet.py. This function now needs to return a list of layers rather than a nn.Sequential
container.

base_width=self.base_width, dilation=self.dilati
norm_layer=norm_layer))

- return nn.Sequential (*layers)
+ return layers

Shttps://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

49

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

With that change, we can modify the __init__ function of the ResNet class on line 124 of
resnet.py. We will create a ModuleList container to hold all of the layers of the ResNet.
This change has been made so that our forward function has access to the each layer
individually.

dilate=replace_stride_with_dilation[1]
self. _make_layer (block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation [2]
+ self.layers = nn.ModuleList(self.layerl + self.layer2 +
+ self .layer3 + self.layer4)

self.layer4

Before implementing the forward function, we need to implement the adaption layers that
ensure that inputs to the output block always have the correct number of filters. This is
also done in the __init__ function. Each adaption layer up-scales the number of filters by a
factor of 2. Some layers need to have their outputs up-scaled multiple times which is kept
track of by self.num_adaptions.

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self .fc = nn.Linear (512 * block.expansion, num_classes)

self .num_adaptions = [0] * layers[0] + [1] * layers[1] + \
[2] * layers[2] + [3] * layers[3]

adaptO0 = nn.Sequential (
convixl (64*block.expansion, 128*block.expansion, stride=2),
self. _norm_layer (128*block.expansion), self.relu)

adaptl = nn.Sequential(
convlxl (128*block.expansion, 256*block.expansion, stride=2),
self. _norm_layer (256*block.expansion), self.relu)

adapt2 = nn.Sequential (
convixl (256*block.expansion, 512*block.expansion, stride=2),
self. _norm_layer (512*block.expansion), self.relu)

adapt3 = nn.Identity ()

self.adapt_layers = nn.Sequential (adaptO, adaptl, adapt2, adapt3)

T T T T SR

The changes to the _forward_impl function on line 201 of resnet.py involve iterating over
the layer list, up scaling layer outputs, and saving all of the activations of the output block.

self.relu(x)
self .maxpool (x)

Mo
]

self.layerl (x)

self.layer2(x)

self.layer3(x)

= self.layer4 (x)

act_vec = x.new_zeros (len(self.layers), x.shape[0], self.n_classes)
for layer_idx, layer in enumerate(self.layers):

x = layer(x)

y = self.adapt_layers[self.num_adaptions[layer_idx]:](x)
self .avgpool (x)

+ y = self.avgpool(y)

torch.flatten(x, 1)

+ y = torch.flatten(y, 1)

self.fc(x)

+ y = self.fc(y)

+ act_vec[layer_idx] = y

|
Mo MM
[}

I+ o+ 4+
™
1

I
>
]

I
>
]

- return x
+ return act_vec

The final change is to store the number of classes in the __init__ function so that the
_forward_impl function can pre-allocate a tensor of the correct size.

self .inplanes = 64
self .dilation = 1

50

+ self.n_classes = num_classes

I Negative Results
Here we briefly discus some ideas that seemed promising but were ultimately dead-ends.

Non-local Priors These priors are ones which have zero density in the region of the null
value (often zero). Examples of such priors include the pMOM, piMOM, and peMOM priors
(Johnson and Rossell, 2012; Rossell et al.| [2013)), shown in Figure

We attempted to train DUNs with these priors, hoping that enforcing that each weight in
the network was non-zero would, in turn, force each block of the DUN to make a significantly
different prediction to the previous block. Unfortunately training with non-local priors was
unstable and resulted in poor performance.

0.7 4
— N(0,1)

06 % ~=* pMOM
- HEE —:= piMOM

05 O e peMOM
0.4

= 03 o

0.2

0.1 +

0.0 =

Figure 34: Comparison of non-local priors with the standard normal distribution.

MLE training As described in Appendix [B, MLL training on DUNs tends to get stuck
in local optima in which the posterior over depth collapses to a single arbitrary depth. In
practice we found that VI training greatly reduces this problem.

Concat Pooling This technique combines the
average and max pooling operations by concate- ImageNet Corruption Robustness
nating their results. We tried to apply it before 075 4
the final linear layer in ResNet-50. We suspected
that for DUNs based on ResNets this would be
useful because the output block needs to work
for predictions at multiple resolutions. Unfor- 1
tunately, we found that the extra information
provided by concat pooling over the standard
average pooling resulted in strong overfitting.

error

0.50 =

0.25 o

DUN
== Ensemble

------- Dropout

LL

Scaling ResNet-50 to ImageNet We =5
trained a ResNet-50 DUN on the ImageNet T T T T T T
dataset. However, in line with Havasi et al.
(2020), we found that a ResNet-50 does not
have enough capacity to provide multiple Figure 35: Error and LL for ImageNet at
explanations of the complex ImageNet dataset. varying degrees of corruption. Due to com-
As a result, the depth posterior for ResNet-50 putational costs only a single model was
invariably collapsed to a delta distribution. trained and evaluated for each method.
DUN performance on ImageNet is poorer than As a result, we do not provide error bars.
standard SGD training, as shown in Figure [35!

Note that, while it is clear that DUN performance in this setting is not strong, we only had
enough computational resources to train each model one time. Without error bars, it is
difficult to draw strong conclusions about the results. We hypothesize that a more heavily
over-parameterised ResNet variant, such as ResNet-152 or a wide ResNet-50, would be able
to support a DUN.

corruption

o1

	1 Introduction
	2 Related Work
	3 Depth Uncertainty Networks
	3.1 Probabilistic Model: Depth as a Random Variable
	3.2 Inference in DUNs

	4 Experiments
	4.1 Comparing MLL and VI training
	4.2 Toy Datasets
	4.3 Tabular Regression
	4.4 Image Classification

	5 Discussion and Future Work
	A Derivation of eq:varobjective and link to the EM algorithm
	B Comparing VI and MLL Training Objectives
	C Computing Uncertainties
	D Evaluating Uncertainty Estimates
	E Experimental Setup
	E.1 Toy Dataset Experiments
	E.2 Regression Experiments
	E.2.1 Hyperparameter Optimisation and Training
	E.2.2 Evaluation

	E.3 Image Experiments
	E.3.1 Training
	E.3.2 Evaluation

	E.4 Datasets

	F Additional Results
	F.1 Toy Datasets
	F.1.1 Different Depths
	F.1.2 Overcounting Data with MFVI
	F.1.3 2d Toy Datasets
	F.1.4 Non-residual Models

	F.2 Regression
	F.3 Image Classification

	G DUNs for Neural Architecture Search
	G.1 Toy Experiments
	G.2 Small Image Datasets
	G.3 Experimental Setup for NAS

	H Implementing a DUN
	H.1 Multi-Layer Perceptron
	H.2 PyTorch ResNet

	I Negative Results

