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Assumptions 3.1 and 3.2- Reviewer 2: "[T]his paper... assumes that the feature map is regular (Assumption 3.1)... I2

am worried that the [assumptions] are too restrictive". (Assumption 3.1) is necessary and sufficient for {f ◦φ : f ∈ F}3

to be dense in C(X,Rn) if F is. Indeed, if φ were not continuous then {f ◦ φ : f ∈ F} may fail to belong to4

C(X,Rn). If φ were not injective then there would exist x1, x2 ∈ X such that φ(x1) = φ(x2) and therefore any5

g ∈ {f ◦ φ : f ∈ F} satisfies g(x1) = g(x2), and likewise for limits of any sequence in {f ◦ φ : f ∈ F}. Hence6

{f ◦ φ : f ∈ F} would be a proper closed subset of C(X,Rn) and therefore it could not be dense. (Assumption 3.2) is7

almost sharp and a characterization can be obtained using the Z-sets as defined in [1]. However, it is unlikely that a8

non-pathological example can be generated which fails our assumptions but meets a refinement using Z-sets.9

Examples - Reviewer 3: "Guidelines[/Examples] for building such input and readout maps".10

Aside from the examples arising from classification and Riemannian Exponential/Logarithm map examples discussed11

in Sections 3.1 and 3.2, two examples of feature maps between Euclidean spaces, satisfying the Assumptions 3.1 and12

3.2 are the following. Let g : Rm → Rd be a continuous function, then φ(x) , (x, g(x)) satisfies Assumption 3.1.13

Alternatively, if Ai,j are any full-rank square matrices if j 6= 2 and A2,1 ◦A1,1 is well-defined, then the set of DNNs of14

the form ρ ◦ f ◦ φ where15

ρ(x) =Leaky-ReLU •(A1,Kx+ b1,K) ◦ · · · ◦ Leaky-ReLU •(A1,1x+ b1,1)

f(x) = [A2,2 ◦ •ReLU •(A2,1x+ b2,1) + b2,2]

φ(x) =Leaky-ReLU •(A3,kx+ b3,k) ◦ · · · ◦ Leaky-ReLU •(A3,1x+ b3,1).

(1)

are universal since the input and output maps both satisfy Assumptions 3.1 and 3.2. Note that the matrices Ai,j may be16

highly sparse with at-least m (resp. n) non-zero entries for ρ (resp. φ).17

As a class of non-examples, if A1, . . . , AK , B1, . . . , Bk are any square matrices and C2, C1 are composable matrices18

then, the set of DNNs of the form19
ReLU •(Anx+ bn) ◦ · · · ◦ReLU •(A1x+ b1) (2)

are not universal and the input and output maps violate Assumptions 3.1 and 3.2.20

Deeper Layers -Reviewer 2: "[It’s] common practice [to] change the internal structure of the architecture beyond the21

input and output layers...people often inject a particular inductive bias [into the DNN]".22

Examples (1) and (2) show that in a DNN, the matrices Ai,j (j 6= 2) can be chosen as we like so-long as they are of full-23

rank. Therefore, for a DNN to be universal, we only need the middle two layers, described by f , to be fully-connected.24

In particular, this gives us the flexibility of encoding many "inductive biases" into the architecture since only the two25

middle layers cannot be modified freely, as long as the involved matices’ ranks are preserved.26

Relation to Future Research -Reviewer 3: Example: Generalizability via Dropout but while maintaining approxima-27

tion capabilities. Consider a DNN of the form ρ ◦ (A2,2 ◦ σ • (A1,2x + b1,1) + b2,2) ◦ φ where φ and ρ are as in 1,28

Bi are arbitrary composable matrices and ci are vectors of appropriate dimension. Since 1 only requires defining ρ29

and φ to be of full-rank but can be highly sparse. Therefore, Theorem 3.3 implies that if dropout is used to improve30

generalizability, it can only maintain universal approximation if the dropout procedure is constrained so that it preserves31

the matrix’s rank. This is interesting, since the generalization effects of dropout are well-understood but the impact of32

drop-out on an architecture’s approximation abilities, or more generally sparsely-connected DNNs, is so-far not.33

Numerical Illustrations/Experiments - Reviewers 1-4: To illustrate the effect of properly (or poorly) choosing the34

networks’ input and output layers we implement the architecture of (1) (Good), the architecture defined by (2) (Bad),35

and a shallow feed-forward network with no additional input and output maps (Vanilla) as a baseline model. Our36

implementations are on the California housing dataset [3], with the objective of predicting the median housing value,37

the test-set consists of 30% of the total data, pre-processing as in [2] and would be included in the camera-ready version.38

As anticipated, applying a readout and feature map satisfying our conditions can only improves the performance of our39

the architecture by learning a good representation of the data. In contrast, a poorly chosen feature map degrades the40

model’s performance.41 Good Bad Vanilla

MAE: Test 0.381672 2.073648 0.428122
RMSE: Test 0.420023 2.056685 0.434948

Good Bad Vanilla

MAE: Train 0.316039 5.637205 0.375244
RMSE: Train 0.374318 5.548146 0.391001

Illustration of Stakes - Reviewer 4: "One can hope that something as simple as the softmax function ... does not spoil42

the UA of the previous layers". It is not surprising that the softmax function preserve’s the ability for an architecture43

to approximate any classifier point-wise in [0, 1]n and uniformly in (0, 1)n. However, point-wise convergence of a44

deep-classifier to any "non-fuzzy classifier" (taking values in [0, 1]n − (0, 1)n) is not robust since this means that45

selected network depends on the size of the training set, both in practice and in theory. Theorem 3.9 guarantees, amongst46

other things, that a single network can theoretically be trained which approximately performs the classification task47

with uniform precision on all of X for any classifier, even the "non-fuzzy classifiers" taking values in [0, 1]n − (0, 1)n.48

Similar issues arise with the other mentioned examples and we would be happy to add a brief discussion outlining each.49
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