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Abstract

Modifications to a neural network’s input and output layers are often required
to accommodate the specificities of most practical learning tasks. However, the
impact of such changes on architecture’s approximation capabilities is largely not
understood. We present general conditions describing feature and readout maps
that preserve an architecture’s ability to approximate any continuous functions
uniformly on compacts. As an application, we show that if an architecture is capable
of universal approximation, then modifying its final layer to produce binary values
creates a new architecture capable of deterministically approximating any classifier.
In particular, we obtain guarantees for deep CNNs and deep feed-forward networks.
Our results also have consequences within the scope of geometric deep learning.
Specifically, when the input and output spaces are Cartan-Hadamard manifolds, we
obtain geometrically meaningful feature and readout maps satisfying our criteria.
Consequently, commonly used non-Euclidean regression models between spaces
of symmetric positive definite matrices are extended to universal DNNs. The
same result allows us to show that the hyperbolic feed-forward networks, used
for hierarchical learning, are universal. Our result is also used to show that the
common practice of randomizing all but the last two layers of a DNN produces a
universal family of functions with probability one. We also provide conditions on
a DNN’s first (resp. last) few layer’s connections and activation function which
guarantee that these layer’s can have a width equal to the input (resp. output)
space’s dimension while not negatively effecting the architecture’s approximation
capabilities.

1 Introduction
Modifications made to a neural network’s input and output maps to extract features from a data-set or
to better suit a learning task is prevalent throughout learning theory. Typically, such changes are made
by pre-(resp. post-)composing an architecture with a fixed and untrainable feature (resp. readout) map.
Examples prevail classification by neural networks, random feature maps obtained by randomizing
all but the last few layers of a feed-forward network, and numerous illustrations throughout geometric
deep-learning theory, which we detail below. This motivates the central question of this paper: "Which
modifications to the input and output layers of a neural network architecture preserve its universal
approximation capabilities?"

Specifically, in this paper we obtain a simple sufficient condition on a pair of a feature map φ : X →
Rm and a readout map ρ : Rn→ Y , where X and Y are topological spaces, guaranteeing that if F
is dense in C(Rm,Rn) for the uniform convergence on compacts (ucc) topology then

{ f ∈C(X ,Y ) : ρ ◦ f ◦φ , f ∈F}, (1)
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is dense in C(X ,Y ) in the uniform convergence on compacts topology when Y is metric and, more
generally, in the compact-open topology when Y is non-metrizable (such as in the hard classification
problem). Simplified conditions are obtained when Y is a metrizable manifold, and characterization
of ρ and φ is obtained when both X and Y are smooth manifolds.

The set F represents any expressive neural network architecture. For example, by [35] F can be
taken to be the set of feed-forward networks with one hidden layer and continuous, locally-bounded,
and non-polynomial activation function. Or, by [56], F can be taken to be the set of deep convolution
networks with specific sparsity structures and ReLu activation function. Throughout F is often
referred to as an architecture. The results are not limited to neural networks and remain valid when,
for example, F is taken to be the set of posterior means generated by a Gaussian processes universal
kernel, as in [41]. The central results are motivated by the following consequences.
Implication: Method for Constructing Non-Euclidean Universal Approximators
A natural hub for our results is in geometric deep learning, an emerging field of machine learning,
which acknowledges and makes use of the latent non-Euclidean structures present in many types of
data. Applications of geometric deep learning are prevalent throughout neuroimaging [16], computer-
vision [48], covariance learning [40], and learning from hierarchical structures such as complex social
networks [34], undirected graphs [43], and trees [50].

For instance, in [44], it is shown that low-dimensional representations for complex hierarchical
structures into hyperbolic space outperform the current state-of-the-art high-dimensional Euclidean
embedding methods due to the tree-like geometry of the former. Using the theory of gyro-vector
space, introduced in [55], [17] proposed a hyperbolic-space variant of the feed-forward architecture
and demonstrated its superior performance in learning hierarchical structure from these hyperbolic
representations. A direct application of our main result confirms that this non-Euclidean architecture
can indeed approximate any continuous function between hyperbolic spaces.

More generally, we obtain an explicit construction of feed-forward networks between any Cartan-
Hadamard manifold and a guarantee that our construction is universal. Cartan-Hadamard manifolds
appear throughout applied mathematics from the symmetric positive-definite matrix-valued regression
problems of [16, 40], which we extend to universal approximators, to applications in mathematical
finance in [23], Gaussian processes in [39], information geometric in [4], and to the geometry of the
Wasserstein space [36] commonly used in Generative Adversarial Networks as in [3].
Implication: Universal Approximation Implies Universal Classification
Perhaps the most commonly used readout maps are those used when modifying neural-networks to
perform classification tasks. The currently available theoretical results, found in [15], guarantee that
for a random vector in Rm with random labels, the set of feed-forward networks with one hidden
layer, step activation function σ(x) = I[0,∞)− I(−∞,0], and readout map ρ(x)i = I[ 1

2 ,∞) can approximate
the Bayes’ classifier in probability.

As an application of this paper’s main results, we obtain deterministic guarantees of generic hard
(n-ary) and soft (fuzzy) classification on Rm for any given universal approximator in C(Rm,Rn) once
it’s outputs are modified by a continuous surjection ρ to take values in {0,1}n or (0,1)n, respectively.
For example, our result applies to feed-forward networks with at-least one hidden layer holds when ρ

the component-wise logistic ρ(x)i = I[ 1
2 ,1]
◦ exi

1+exi readout map.

Implication: DNNs with Randomly Generated First Layers are Universal
We show that the commonly employed practice of only training the final layers of a deep feed-forward
network and randomizing the rest preserves its universal approximation capabilities with probability
1. Though widely used, this practice has only recently begun to be studied in [19, 37]. The link with
our results arises from an observation made in [37], stating that the first portion of such a random
architecture can be seen as a randomly generated feature map.
Implication: DNNs Can be Narrowed
In [29, 45] the authors provide lower bounds on a DNN layer’s width, under which it is no longer
a universal approximator. However, there is a wealth of literature which shows that arranging a
network’s neurons to create depth rather than width yields empirically superior performance. As a
final application of our theory, we provide explicit conditions on a DNN’s connections and activation
functions so additional initial and final few layers may be added to a DNN which do not respect the
minimum width requirements of [29, 45] but do not negatively impact the DNN’s approximation
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capabilities. Numerical implementations show that additional depth build using our main results
improve predictive performance additional deep layers failing our assumptions reduced the network’s
predictive performance.

This paper is organized as follows. Section 2 discusses the necessary topological and geometric
background needed to formulate the paper’s central results. Section 3 contains the paper’s main
results discussed above. The conclusion follows in section 4. The proofs of the main results are
contained within this paper’s supplementary material.

2 Background
2.1 General Topology
Before moving on to the main results of the paper, we will require some additional topological
terminology. The interior of a subset A ⊆X of a topological space is the largest open subset
contained in A. For example, in the Euclidean space R, the interior of [0,1) is (0,1). The closure of
A is the smallest closed-set containing A. Therefore, the closure of [0,1) in R is [0,1]. The difference
between the closure of A and its interior is called the boundary of A and is denoted by ∂A. For
example, the boundary of [0,1) in the Euclidean space R is {0,1}. A subset A ⊆ Rm is called a
retract of Rm if there is a continuous map r : Rm→ A such that r ◦ ιA = 1A, where ιA : A→ Rm is the
inclusion map and 1A is the identity map on A. Dually, a continuous right-inverse of a continuous
surjective map is called a section. A covering projection f : Rn → Y is a surjective continuous
function such that for every x ∈Y there is an open set Ux, containing x, such that ρ−1[U ] =

⋃
α∈A Uα

x
and {Uα

x }a∈A is a disjoint collection of open sets for which ρ|Uα
x : Uα

x →Ux is a homeomorphism.
For example, the map x→ e−iπx is a covering projection of R onto the circle.

Lastly, since continuous maps transfer topological information then a continuous bijection with
continuous inverse preserves all topological information. Such a map is called a homeomorphism and
two topological spaces related by a homeomorphism are said to be homeomorphic. For example, the
sigmoid (or logistic) function x 7→ ex

1+ex continuously puts R in bijection with (0,1) and its inverse is

the logit function y 7→ ln
(

y
1−y

)
, which is continuous. Therefore, R and (0,1) are homeomorphic.

A continuous injective map φ : X → Rm such that X is homeomorphic to φ(X ) is called an
embedding.

A topological space X is said to be locally-compact if every x ∈X is contained in an open subset
Ux of X which is in turn contained in an compact subset KU of X . For example, every point
x ∈ R is contained in (x−1,x+1) which is in turn contained in the closed-bounded (and therefore
compact-set by the Heine-Borel theorem) [x− 1,x+ 1]. A topological space is said to be simply
connected, if every two paths between points can be continuously deformed into one another.

Similarly to [8, 11], we say that a subset A of a topological space X is collared if there exists an
open subset U ⊆X containing A and a homeomorphism φ : U → A× [0,1) mapping A to A× [0,1).
In this way the open set U is, in a sense, topologically similar to A itself since one can imagine
shrinking any point (a, t) ∈ A× [0,1) down to (a,0) and then identifying it back with a via ψ .

We denote the set of positive integers by N+.
2.2 Topology of Function Spaces
Let C(Rm,Rn) denote the set of all continuous functions from the Euclidean space Rm to the Euclidean
space Rn. Closeness in C(Rm,Rn) can be described in a number of ways but in the context of universal
approximation theorems of [13, 27, 35] two functions f and g are thought of as being close if they
are uniformly close on compacts, if for a given ε > 0 the following holds:

∞

∑
k=1

sup‖x‖≤k

√
∑

n
i=1 ‖ f (x)i−g(x)i‖2

2k(1+ sup‖x‖≤k

√
∑

n
i=1 ‖ f (x)i−g(x)i‖2)

< ε. (2)

The topology described by (2) is called the topology of uniform convergence on compacts, henceforth
ucc topology. If Rn is replaced by any other topological space Y whose notion of closeness is defined
by a distance function and Rm is replaced by nearly any other topological space then closeness
in the collection of continuous functions from X to Y , denoted by C(X ,Y ), can be described
analogously to (2) by replacing the Euclidean distance on Rn by another distance function d-on Y ,
the compact subsets K ⊆ Rm with compact subsets of X , and taking f ,g ∈C(X ,Y ). The topology
on C(X ,Y ) defined in this way is still called the ucc topology.
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If a distance function cannot describe the topology on Y , for example, we will see that this is the
case for reasonable topologies on C(X ,{0,1}n), then one cannot define the ucc topology. Instead,
consider the smallest topology on C(X ,Y ) containing the sets

{VK,O : /0 6= K ⊆X compact and /0 6= O⊆ Y open} ,VK,O , { f ∈C(X ,Y ) : f (K)⊆ O} . (3)

When the topology on Y is defined by a distance function and X is a locally-compact Hausdorff
space, then the smallest topology containing (3) coincides with the ucc topology. However, unlike the
ucc topology, the smallest topology containing (3) is well-defined on C(X ,Y ) for any topological
spaces X and Y . This generalized ucc topology is called the compact-open topology (co-topology).
2.3 Manifolds
A (topological) manifold is a topological space which "closeup" resembles Euclidean space, whereas
a manifold with boundary locally looks like a part of Euclidean space but possibly with a hard edge.
Definition 2.1 (Metrizable Manifold with Boundary; [8]). A topological space Y is said to be a
metrizable manifold with boundary if

(i) For every y ∈ Y , there is an open Uy ⊆ Y containing y which is homeomorphic to{
(z1, . . . ,zn) ∈ Rn :

√
n

∑
i=1

z2
i < 1 and zn ≥ 0

}
, (4)

(ii) There exists a distance function (metric) d : Y 2→ Y such that the topology on Y coincides
with the smallest topology on Y containing the open balls {Bε(y)}ε>0,y∈Y ; where

Bε(y), {z ∈ Y : d(z,y)< ε} .

We say that d is a metric for Y . The subset of Y consisting of all points y contained in some open
set Uy which is homeomorphic to the interior of (4) is denoted by Int(Y ).

A smooth manifold without boundary, is a manifold for which there is a well-defined differential
calculus admitting arbitrarily many derivatives and which can locally be deformed into Euclidean
space via infinitely differentiable maps with infinitely differentiable inverses.

An m-dimensional Riemannian manifold M is a manifold without boundary which can be locally
smoothly deformed into Euclidean space such that curvature and length can be meaningfully com-
pared, locally, between Rm and M . Amongst other things, this allows the definition of minimal-length
curves connecting points on M , called geodesics. If any two points on M can be connected by
such a minimal length curve then M is said to be complete. Moreover, when M is complete and
connected, the function mapping any two points p,q ∈M to the length of a geodesic connecting
them defines a metric dM . Thus, M has a geometrically meaningful metric structure where distance
represents the length of maximally efficient trajectories and C(X ,M ). The existence of dM also
implies that C(X ,M ) is equipped with the ucc-topology.

Further, when M is complete and connected the Hopf-Rinow Theorem, of [26], affirms that for any
given p ∈M , the map sending any v ∈ Rm lying tangent to p to the point on M arrived at time
t = 1 by traveling along a the geodesic with initial velocity v defines a surjection from Rm onto
M . This map is called the Riemannian Exponential map on M at p and is denoted by ExpM

p . In
[28], it is shown that, in this case, ExpM

p has a smooth inverse outside a low-dimensional subset Cp.
This inverse is denoted by LogM

p and is known to locally preserve length between Rm and M along
geodesics emanating from p. This means that LogM

p and ExpM
p are geometrically meaningful feature

and readout maps, respectively.

However, the set ∂Cp can be pathological or difficult to deal with. This issue is overcome by turning
to the sub-class of Cartan-Hadamard manifolds. A Riemannian manifold M is Cartan-Hadamard if
it is simply connected and has non-positive curvature. Non-positive curvature mean that all triangles
drawn on M by geodesics have internal angles adding-up at-most 180◦.

3 Main Results
Let φ : X → Rm and ρ : Rn→ Y . Subsets of Rn (resp Rm) will be equipped with the (relative) Eu-
clidean topology unless explicitly stated otherwise. Equip C(X ,Y ) with the co-topology, C(Rm,Rn)
with the ucc topology, let F be a dense subset of C(Rm,Rn) such as the architectures studied in
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[35, 38, 56] or the posterior means of a Gaussian process with universal kernel as in [41], and define
the subset Fρ,φ ⊆C(X ,Y ) by

Fρ,φ , {g ∈C(X ,Y ) : g = ρ ◦ f ◦φ where f ∈F} . (5)

The set Fρ,φ is dense in C(X ,Y ) under the following assumptions on φ and ρ .

Assumption 3.1 (Feature Map Regularity). The map φ is a continuous and injective.

Assumption 3.2 (Readout Map Regularity). Suppose that the readout map ρ satisfies the following:
(i) Either of the following hold:

(a) ρ is a continuous and it has a section on Im(ρ),
(b) ρ is a covering projection of Rm onto Im(ρ) and X is connected and simply connected,

(ii) Im(ρ) is dense in Y ,
(iii) ∂ Im(ρ) is collared.

Theorem 3.3 (General Version). Suppose that F is dense in C(Rm,Rn). If Assumptions 3.1 and 3.2
hold then Fρ,φ is dense in C(X ,Y ).
Just as in the filtering literature of [10], one would hope that the outputs of any learning model should
depend continuously on its inputs. Therefore, we only consider feature maps φ which are continuous
functions. In this case, Assumption 3.1 is sharp. We denote the identity map x 7→ x on Rn by 1Rn .

Theorem 3.4 (Assumption 3.1 is Sharp). Let X be a metrizable manifold with boundary, let φ be
continuous, and F ⊆C(Rm,Rn). Then F1Rn ,φ is dense in C(X ,Rn) if and only if φ is injective.

Remark 3.5 (Sharpening Assumption 3.2). Assumption 3.2 is almost sharp and a characterization
can be obtained using the Z -sets studied in [54, 20]. However, it is unlikely that a non-pathological
example can be generated which falls outside the scope of Assumption 3.2.
Theorem 3.4 shows that it is easy to verify if a feature map preserves the universal approximation
property. However, it can be much more challenging to verify if and when the readout map ρ does so.

The following presents a readily applicable case of Theorem 3.3. They highlight the convenient fact
that if ρ is surjective then only Assumptions 3.1 and 3.2 (i) need to be verified.
Corollary 3.6. If φ is a continuous injective map, ρ is a surjective covering projection, and F is
dense in C(Rd ,RD) then Fρ,φ is dense in C(X ,Y ). In particular, φ and ρ may be homeomorphisms.

When both φ and ρ fully preserve topological structure then Corollary 3.6 sharpens.
Proposition 3.7 (Homeomorphic case is Sharp). Let φ and ρ be homeomorphisms. Then F is dense
in C(Rm,Rn) if and only if Fρ,φ is dense in C(X ,Y ).

Corollary 3.8. If φ is a continuous injective map, ρ is a continuous surjection with a section, X is
connected and simply connected, and F is dense in C(Rd ,RD) then Fρ,φ is dense in C(X ,Y ).

When additional structure is assumed of Y , as is common in most applications, Assumption 3.2 (ii)
and (iii) can be omitted and the other assumptions can be simplified. Specifically, the case where
Y is a manifold with boundary is considered. In the case where X and Int(Y ) are smooth, then
Theorem 3.3 can be further streamlined as follows.

Assumption 3.9 (Readout Map Regularity: Geometric Version). Suppose that ρ satisfies:
(i) ρ satisfies Assumption 3.2 (i) and Im(ρ)⊆ Int(Y ),

(ii) Int(Y )− Im(ρ) is a (possibly empty) smooth submanifold of Int(Y ) of dimension strictly
less-than dim(Int(Y ))−n.

Theorem 3.10 (Geometric Version). Let Y be a metrizable manifold with boundary, for which
Int(Y ) is a smooth manifold, X is locally-compact, and F is dense in C(Rm,Rn). If φ satisfies
Assumption 3.1 and ρ satisfies Assumption 3.9 then Fρ,φ is dense in C(X ,Y ).
Consequences of these results in various areas of machine-learning are now considered.

3.1 Dense Families in C(Rm,Rn) Induce Universal Classifiers
Let X be a set, φ : X →Rm be a bijection, and {Li}n

i=1 be a collection of labels describing elements
of X . Let Xi , {x ∈X : x has label Li}. For example, {Xi}n

i=1 are disjoint and cover X then we
obtain the n-ary classification problem, but in general, any x ∈X may simultaneously have distinct
multiple labels. Without loss of generality, we may assume that X is a topological space which is
homeomorphic to Rm since we may equip it with the topology {φ−1[U ] : U open in Rm}. Assume
that the sets {Xi}n

i=1 are open subsets of X .
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In the stochastic case, the Bayes classifier is the golden standard for classification. In the deterministic
case, the standard is clearly the ideal classifier ĥ : X →{0,1}n, introduced here, and defined by

ĥ(x)i , IXi(x), (6)

where IXi is the indicator function of Xi, taking value 1 if x ∈Xi and 0 otherwise.

Since the usual Euclidean topology on {0,1}n coincides with the discrete topology on {0,1}n and
since a continuous functions to a discrete topological space are constant, see [49], then ĥ only
belongs to C(X ,{0,1}n) if it is trivial, i.e.: either Xi = X or Xi = /0 for each i. Moreover, a direct
computation shows that there are exactly 2n functions in C(X ,{0,1}n). Thus, other topologies must
be considered on {0,1}n in order to have a meaningful deterministic classification theory.

When n = 1, there are two other choices of topologies on {0,1}, up to homeomorphism. These are
the trivial topology { /0,{0,1}} and the Sierpiński topology { /0,{1},{0,1}}. The trivial topology is
uninteresting since a direct computation shows that with it every function in C(X ,{0,1}) becomes
indistinguishable, i.e.: the co-topology on C(X ,{0,1}) becomes trivial and therefore density in
C(X ,{0,1}) holds trivially for any non-empty subset. In the case of the Sierpiński topology in [53,
Chapter 7] it is shown that all indicator functions of any open set X from any sufficiently regular
topological space, such as X , is a continuous function to {0,1} with the Sherpiński topology. This
latter property has lead to widespread use of this space in semantics.

The next result shows that ĥ can be approximated on two fronts simultaneously. First, by showing that
ĥ has a natural decomposition as I( 1

2 ,1]
applied component-wise to continuous soft (fuzzy) classifier ŝ,

i.e. ŝ ∈C(X , [0,1]n), satisfying

ŝ−1
i [(1/2,1]] = Xi, (∀i = 1, . . . ,n). (7)

Subsequently, the architecture Fρ,φ is shown to simultaneously approximate ŝ uniformly on compacts
in C(X , [0,1]n) and ĥ in the compact-open topology on C(X ,{0,1}n). Intuitively, (7) represents
the philosophy of logistic regression where one approximates on the interval and the thresholds the
logistic classifier to obtain a strict decision rule, and thus a hard classifier.
Theorem 3.11 (Universal Classification: General Case). Let {0,1}n be equipped with the n-fold
product of the Sierpiński topology on {0,1}, φ be continuous and injective, ρ : Rn→ (0,1)n be a
homeomorphism, α ∈ (0,1), and F ⊆C(Rm,Rn) be dense. Let {Xi}n

i=1 be a set of open subsets of
a metric space X and let ĥ be its associated ideal classifier defined by (6). Then the following hold:

(i) (Hard-Soft Decomposition) There exist continuous functions ŝi ∈C(X , [0,1]) such that

ĥ = I(α,1] • (ŝ1, . . . , ŝn) ŝ−1
i [(α,1]] = Xi,(∀i = 1, . . . ,n)

(ii) (Universal Classification) There exists a sequence { fk}k∈N in F such that:
(a) (Soft Classification) For each non-empty compact subset κ ⊆X and every ε > 0, there is

some K ∈ N+ such that

sup
x∈κ

max
i=1,...,n

|ρ ◦ fk ◦φ(x)i− ŝi(xi)|< ε, (∀k ≥ K)

(b) (Hard Classification) I(α,1] •ρ ◦ fk ◦φ converges to ĥ in C(X ,{0,1}n) for the co-topology.

Furthermore, Fρ,φ is dense in C(X , [0,1]n).

As an application, we now show that most feed-forward DNNs and deep CNNs used in practice for
classifications, are indeed universal classifiers in the sense of Theorem 3.11.

Let σ : R→ R be a continuous activation function, and let N N σ denote the set of feed-forward
networks from Rm to Rn, i.e.: continuous functions with representation

f (x) =W ◦ f (J), f ( j)(x) = σ •
(

W ( j) ◦ f ( j−1)(x)
)
, f (0)(x) = x, j = 1, . . . ,J (8)

where W and W j are affine maps and • denotes component-wise composition. The following results
directly follow from Theorem 3.11 and the central result of [35], and validates the principle way
neural networks are used for classification.
Corollary 3.12 (Universal Classification: Deep Feed-Forward Networks). Let {Xi}n

i=1 be open
subsets of X , and ĥ be their associated ideal classifier. Let φ : X → Rn be a continuous injective
feature map. Let σ be a continuous, locally-bounded, and non-constant activation function. Let
ρ either be the component-wise logistic function. Then there exists a sequence { fk}k∈N+ of DNNs
satisfying the conclusions of Theorem 3.11.
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Define the set of deep CNNs with ReLu activation and sparsity 2≤ s≤ m, denoted by Convs, to be
the collection of all functions from Rn to R represented by

f (x) =W ◦ f (J), f ( j)(x) = σ •
(

w( j) ? ( f ( j−1)(x))−b j
)
, f (0)(x) = x, j = 1, . . . ,J,

where W is an affine map from Rd+Js to R, b( j) ∈ Rd+ js, w( j) = {w( j)
k }

∞
k=−∞

is a convolutional filter
mask where wk ∈ R and wk 6= 0 only if 0≤ k ≤ s, and the convolutional operation of w( j) with the
vectors {v j}J

j=1 is the sequence defined by (w? v)i = ∑
J−1
j=0 wi− jv j and σ(x) = max{0,x}.

Corollary 3.13 (Universal Classification: Deep CNNs). Let 2≤ s≤ n, {Xi}n
i=1 be open subsets of

X , and ĥ be their associated ideal classifier. Let φ : X → Rn be a continuous injective feature map
and let ρ : R→ (0,1) be the logistic function. Then there is a sequence of deep CNNS { fk}k∈N+ in
Convs

ρ,φ satisfying the conclusion of Theorem 3.11.

3.2 Applications in Geometric Deep Learning
This subsection illustrates the applicability of the main results to geometric deep learning. Our
examples focus on two illustrative points, first that many commonly used non-Euclidean regression
models can be extended to non-Euclidean architectures capable of universal approximation and
second, we illustrate how our results can be used to validate the approximation capabilities of certain
geometric deep learning architectures.

For Cartan-Hadamard manifolds, the Cartan-Hadamard Theorem, [30, Corollary 6.9.1], guarantees
that ∂Cp = /0 and in particular LogM

p is a globally-defined homeomorphism between M and Rm.
Thus, the following result follows from Corollary 3.8.
Corollary 3.14 (Cartan-Hadamard Version). Let F be dense in C(Rm,Rn), let M and N be
Cartan-Hadamard manifolds of dimension m and n. Then, FLogM

p ,ExpN
q

is dense in C(M ,N ).
We consider here two consequences of this result.
3.2.1 Symmetric Positive-Definite Matrix Learning
Symmetric positive-definite matrices play a prominent role in many applied sciences, largely due
to their relationship to covariance matrices, in areas ranging from computational anatomy in [47],
computer vision in [46], and in finance [5]. The space P+

d of d× d symmetric positive-definite
matrices is a non-Euclidean subspace of Rd2

. In [1], P+
d is shown to be a Cartan-Hadamard manifold

whose Riemannian exponential and logarithm maps are, respectively, given by

ExpA(B) =
√

Aexp
(√

A
−1

B
√

A
−1)√

A, LogA(B) =
√

A log
(√

A
−1

B
√

A
−1)√

A, (9)

where exp and log denote the matrix exponential and logarithms, respectively. Moreover, the distance
function on this space is given by

d+(A,B),
∥∥∥√A log

(√
A
−1

B
√

A
−1)√

A
∥∥∥

F
,

where ‖ · ‖F denotes the Fröbenius norm and
√

A is well-defined for any matrix in P+
d . Using this

distance, [40] developed non-Euclidean least-squares regression on P+
d . The parameters involved in

these models are typically optimized either using the non-Euclidean line search algorithms of [40] or
the non-Euclidean stochastic gradient approach on P+

d of [6]. The aforementioned regression models
can be extended to form a ucc-dense architecture in C(P+

d ,P+
D ).

Corollary 3.15 (Universal Approximation for Symmetric Positive-Definite Matrices). Let d,D ∈ N+

and F ⊆C(Rd(d+1)/2,RD(D+1)/2) be ucc-dense. Then, for any A ∈ P+
d and B ∈ P+

D , FLogA,ExpB is
ucc-dense in C(P+

d ,P+
D ). In particular, if σ is a continuous, locally-bounded, and non-polynomial

activation function then N N σ

LogA,ExpB
is ucc-dense in C(P+

d ,P+
D ).

3.2.2 Hyperbolic Feed-Forward Networks
For c > 0, the generalized hyperbolic spaces Dn

c of [17] have underlying set {x ∈ Rn : c‖x‖2 < 1}
and their topology is induced by the following non-Euclidean metric

dc(x,y),
2√
c

tanh−1
(√

c
∥∥∥∥ (1− c‖x‖2)y− (1−2cx>y+ c‖y‖2)

1−2cx>y+ c2‖x‖2‖y‖2

∥∥∥∥) .

Though a direct description of hyperbolic feed-forward neural networks would be lengthy, on [17,
page 6], it is shown any hyperbolic feed-forward network from Dm

c to Dn
c can be represented as{

ExpD
k
c

0 ◦ f ◦LogD
k
c

0 : f ∈N N σ

}
, (10)
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where ExpD
k
c

0 is the Riemmanian Exponential map on Dk
c about 0, as in Corollary 3.14. Closed-

form expressions are obtained in [17, Lemma 2] for these feature and readout maps. Since, as
discussed in [17], Dk

c is a complete connected Riemannian manifold of non-positive curvature then
the Cartan-Hadamard Theorem implies that C0 = /0. Whence, Corollary 3.14 yields the following.
Corollary 3.16 (Hyperbolic Neural Networks are Universal). Let σ be a continuous, non-polynomial,
locally-bounded activation function and c > 0. Then for every g ∈C(Dm

c ,Dn
c), every ε > 0, and every

compact subset K ⊆ Dm
c there exists a hyperbolic neural network gε,K,c in (10) satisfying

sup
x∈K

dc(g(x),gε,K,c)< ε.

Next, applications of Theorems 3.3 and 3.10 with Euclidean input and output spaces are considered.
3.3 Universality of Deep Networks with First Layers Randomized
Fix R-valued random variables {Xi}k

i=1 and {Zi}k
i=1 defined on a common probability space (Ω,Σ,P).

Fix an activation function σ : R→ [0,1], and positive integers {di}k
i=1. Using this data, for each

i = 1, . . . ,k define random affine maps Wi : Rdi ×Ω→ Rdi+1 , defined by

(x,ω) 7→ Ai(ω)x+bi(ω), (11)

where the entries of Ai are i.i.d. copies of Xi and the entries of bi are i.i.d. copies of Zi.

The random affine maps (11) define the (random) set of deep feed-forward neural networks with first
k layers randomized and last 2 layers trainable to be the (random) subset of C(Rd ,RD) via

N N σ
2,k(ω), { f ∈C(Rm,Rn) : (∃g ∈N N σ

2 ) f (x) = g◦ [σ •Wk(x,ω)◦σ • · · · ◦σ •W1(x,ω)]} ,
where N N σ

2 is the collection of feed-forward neural networks of the form W2 ◦σ •W1, where
W1 : Rm→ Rd and W2 : Rd → Rn are affine maps and d is a positive integer. Under the following
mild assumptions, the random set N N σ

2,k is dense in C(Rm,Rn) with probability 1.

Assumption 3.17. For each i = 1, . . . ,k
(i) di ≤ di+1 for each i = 1, . . . ,k,

(ii) σ is a strictly increasing and continuous,
(iii) E[Xi] = E[Zi] = 0, E[X2

i ] = E[Z2
i ] = 1,

(iv) For every C > 1, E[|Xi|C],E[|Zi|C]< ∞.
Theorem 3.18. If Assumption 3.17 holds, then there exists a measurable subset Ω′ ⊆{

ω ∈Ω : N N σ
2,k(ω) =C(Rd ,RD)

}
satisfying P(Ω′) = 1.

Corollary 3.19 (Sub-Gaussian Case with Sigmoid Activation). Let Xi = Zi for each i = 1, . . . ,k
be independent standardized sub-Gaussian random-variables, σ(x) = 1

1+e−x , and di = d for each
i = 1, . . . ,k. Then the conclusion of Theorem 3.18 holds.
Corollary 3.20 (Bernoulli Case with PReLU Activation). Suppose that for every i, j = 1, . . . ,k, Xi
and Z j i.i.d. copies of a random variable taking values {−1,1} with probabilities { 1

2 ,
1
2}. Let di = d

for each i = 1, . . . ,k and σ be the PReLU activation function of [22]. Then Assumptions 3.17 are
met; thus the conclusion of Theorem 3.18 holds.

3.4 Feed-Forward Layers of Sub-Minimal Width
In this section, we use Theorem 3.10 to describe how additional layers can be incorporated into a
DNN, which violate the minimum width requirements of m+1 in its hidden layers (see [29, 45]) but
do not negatively impact the architecture’s approximation capabilities. We say that such layers have
sub-minimal width. We derive specific conditions on the activation functions and structure of the
connections between sub-minimal width layer ensuring that Assumptions 3.1 and 3.2 are met.
Proposition 3.21 (Input Layers of Sub-Minimal Width: Continuous Monotone Activations and
Invertible Connections). Let σ be a continuous and strictly increasing activation function, J ∈ N+,
A1, . . . ,AJ be m×m matrices, and b1, . . . ,bJ ∈ Rd . Let φ(x), φJ(x) where

φ j(x), σ •
(
exp(A j)φ j−1(x)+b j

)
φ0(x), x, j = 1, . . . ,J, (12)

where exp is the matrix exponential. Then φ satisfies Assumption 3.1.
Proposition 3.22 (Output Layers of Sub-Minimal Width: Invertible Feed-Forward Layers). In the
setting of Proposition 3.21, if σ is also surjective then φ is a homeomorphism, and in particular it
satisfies Assumption 3.2.
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Example 3.23 (Sub-Minimal Width via Generalized PReLU Activation). Fix α,β ∈ (0,∞), α 6= β .
Then the activation function σ = βxIx≥0 +αxIx<0 is monotone increasing and surjective.
Example 3.24 (ReLU Feed-Forward Layers Cannot Achieve Sub-Minimal Width). Let φ be as
in (12) and let σ(x), max{0,x}. By Theorem 3.4, F1Rn ,φ is not dense in C(Rm,Rn).
3.4.1 Numerical Illustration
The following numerical illustration will also make use of the following method for constructing
feature maps satisfying Assumption 3.1. The method can be interpreted as passing the inputs through
an arbitrary function and feeding them into the model’s input via a skip connection.
Proposition 3.25 (Skip Connections Using Arbitrary Continuous Functions are Good Feature Maps).
Let d ∈ N+ and g ∈C(Rm,Rd). Then φg(x), (x,g(x)) satisfies Assumption 3.1.
Example 3.26 (Pre-Trained DNN with a Skip Connection are Good Feature Maps). Let g ∈N N σ .
Then φg(x), (x,g(x)) satisfies Assumption 3.1.

To illustrate the effect of (in)correctly choosing the networks’ input and output layers we implement
different DNNs whose initial or final layers are build using the above examples or intentionally fail
Assumptions 3.1 or 3.2. Our implementations are on the California housing dataset [31], with the
objective of predicting the median housing value given a set of economic and geo-spacial factors
as described in [18]. The test-set consists of 30% percent of the total 20k training instances. The
implemented networks are of the form ρ ◦ f ◦φ , where f =W2 ◦σ •W1 is a shallow feed-forward
network with ReLU activation and ρ,φ are built using the above examples.

Our reference model (Vanilla) is simply the shallow feed-forward network f . For the first DNN, which
we denote (Bad), ρ and φ are given by as in Example 3.24 and therefore violate Assumption 3.1. For
the second DNN, denoted by (Good), ρ and φ are as in Example (3.23) and Assumptions 3.1 and 3.2
are met. The final DNN, denoted by (Rand), ρ is as in Example 3.23 and φ is as in Example 3.26
where the pre-trained network is generated randomly following in Corollary 3.20.

Test Train

Model Good Rand Bad Vanilla Good Rand Bad Vanilla

MAE 0.318 0.320 0.876 0.320 0.252 0.296 0.887 0.284
MSE 0.247 0.259 1.355 0.257 0.174 0.234 1.409 0.209
MAPE 16.714 17.626 48.051 17.427 12.921 15.668 48.698 14.878

Table 1: Training and test predictive performance.
As anticipated, Table 1 shows that selecting the networks’ initial and final layers according to our
method either improves performance (Good) when all involved parameters are trainable or does
not significantly affect it even if nearly every parameter is random (Rand). However, disregarding
Assumptions 3.1 and 3.2 when adding additional deep layers dramatically degrades predictive
performance, as is the case for (Bad). Table 1 shows that if a DNN’s first and final layers are
structured according to Theorem 3.10 then expressibility can be improved, even if these layers violate
the minimum width bounds of [29, 45]. Python code for these implementations is available at [33].

4 Conclusion
Modifications to the input and output layers of any neural networks, using carefully chosen feature
φ : X → Rm and readout ρ : Rn → Y maps, are common in practice. Theorems 3.3, 3.10, and
Corollary 3.14 provided general conditions on these maps guaranteeing that the new, modified,
architecture can approximate any function in the uniform convergence on compacts (or more generally
the compact-open) topologies between their new input and output spaces.
As a consequence of our main results, we showed that universal approximation implies universal
classification once a component-wise logistic map is applied. This is a deterministic strengthening
of the probabilistic results of [15]. We derived a method for constructing universal approximators
between a wide class of manifolds. In particular, we extended the symmetric positive-definite matrix-
valued regressor of [40] to a universal approximator and we showed that the hyperbolic feed-forward
networks of [17] are universal approximators between hyperbolic spaces.
Our main results also described how to structure the first and final layers of a DNN between Euclidean
spaces, so as to preserve the approximation capabilities of the network’s middle layers. In particular,
we provided conditions on a network’s activation function and connections so that these layers can be
made narrower than the specifications of [29, 45] while maintaining the architecture’s expressibility.
Lastly, we showed that randomly generated DNNs are good feature maps with probability 1.
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Broader Impact

A large portion of available data is non-Euclidean, either in the form of social network data to imaging
data relevant in health applications of deep learning. The tools in this paper open up a generic means
of translating the currently available deep learning technology to those milieus. The automation of
tools in the medical sciences is important to helping reducing waiting times in hospitals and help
make healthcare more accessible to all, so in that way, any automatizing of health science tools helps
move society in that direction. Therefore, we hope that the methods presented in paper form a small
step towards a greater positive advancement of the social and natural sciences.
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