
A Monotone operator theory

We briefly review some of the basic properties of monotone operators that we make use of throughout
this work. A relation or operator (which in our setting will often roughly correspond to a set-valued
function), is a subset of the space F ✓ Rn ⇥ Rn; we use the notation F (x) = {y|(x, y) 2 F}
or simply F (x) = y if only a single y is contained in this set. We make use of a few basic
operators and relations: the identity operator I = {(x, x)|x 2 Rn}; the operator sum (F +G)(x) =
{(x, y + z)|(x, y) 2 F, (x, z) 2 G}; the inverse operator F�1(x, y) = {(y, x)|(x, y) 2 F}; and the
subdifferential operator @f = {(x, @f(x))| 2 domf}. An operator F has Lipschitz constant L if
for any (x, u), (y, v) 2 F

ku� vk2  Lkx� yk2. (A1)

An operator F is monotone if
(u� v)T (x� y) � 0, 8(x, u), (y, v) 2 F (A2)

which for the case of F being a function F : Rn ! Rn is equivalent to the condition
(F (x)� F (y))T (x� y) � 0, 8x, y 2 domF. (A3)

In the case of scalar-valued functions, this corresponds to our common notion of a monotonic function.
The operator F is strongly monotone with parameter m if

(u� v)T (x� y) � mkx� yk2, 8(x, u), (y, v) 2 F. (A4)
A monotone operator F is maximal monotone if no other monotone operator strictly contains it;
formally, most of the convergence properties we use require maximal monotonicity, though we are
intentionally informal about this and merely use the established fact that several well-known operators
are maximal monotone. Specifically, a linear operator F (x) = Gx+ h for G 2 Rn⇥n and h 2 Rn is
(maximal) monotone if and only if G+G

T ⌫ 0 and strongly monotone if G+G
T ⌫ mI . Similarly,

a subdifferentiable operator @f is maximal monotone iff f is a convex closed proper (CCP) function.

The resolvent and Cayley operators for an operator F are denoted RF and CF and respectively
defined as

RF = (I + ↵F)�1
, CF = 2RF � I (A5)

for any ↵ > 0. The resolvent and Cayley operators are non-expansive (i.e., have Lipschitz constant
L  1) for any maximal monotone F , and are contractive (i.e. L < 1) for strongly monotone F .

We will mainly use two well-known properties of these operators. First, when F (x) = Gx + h is
linear, then

RF (x) = (I + ↵G)�1(x� ↵h) (A6)
and when F = @f for some CCP function f , then the resolvent is given by a proximal operator

RF (x) = prox↵f (x) ⌘ argmin
z

1

2
kx� zk22 + ↵f(z). (A7)

Operator splitting approaches refer to methods to find a zero in a sum of operators (assumed here to
be maximal monotone), i.e., find x such that

0 2 (F +G)(x). (A8)
There are many such operator splitting methods, which lead to different approaches in their application
to our subsequent implicit networks, but the two we use mainly in this work are 1) forward-backward
splitting, given by the update

x
k+1 := RG(x

k � ↵F (xk)); (A9)
and 2) Peaceman-Rachford splitting, which is given by the iteration

u
k+1 = CFCG(u

k), x
k = RG(u

k). (A10)
Both methods will converge linearly to an x that is a zero of the operator sum under certain conditions:
a sufficient condition for forward-backward to converge is that F be strongly monotone with parameter
m and Lipschitz with constant L and ↵ < 2m/L

2; for Peaceman-Rachford, the method will
converge for any choice of ↵ for strongly monotone F , though the convergence speed will often vary
substantially based upon ↵.

12

B Proofs

B.1 Proof of Theorem 1

Proof. The proof here is immediate: the forward-backward algorithm applied to the above operators
with ↵ = 1 corresponds exactly to the network’s fixed-point iteration:

z
k+1 = RG(z

k � ↵F (zk))

= prox↵f (z
k � ↵(I �W)zk + ↵(Ux+ b))

= prox1f (Wz
k + Ux+ b).

B.2 Proof of Proposition 1

Proof. First assume W is of this form. Then clearly
(I �W)/2 + (I �W)T /2 = mI +A

T
A ⌫ mI. (B1)

Alternatively, if I �W ⌫ mI () (1�m)I ⌫ (W +W
T)/2, then

(W +W
T)/2 = (1�m)I �A

T
A. (B2)

Thus
W = (W +W

T)/2 + (W �W
T)/2

= (1�m)I �A
T
A+B �B

T
.

B.3 Proof of Theorem 2

Proof. Differentiating both sides of the fixed-point equation z
? = �(Wz

? + Ux+ b) we have

@z
?

@(·) =
@ prox1f (Wz

? + Ux+ b)

@(·)

= J

✓
W

@z
?

@(·) +
@(Wz

? + Ux+ b)

@(·)

◆ (B3)

for J defined in (10) (we require the Clarke generalized Jacobian owing to the fact that the nonlinearity
need not be a smooth function). Rearranging we get

(I � JW)
@z

?

@(·) = J
@(Wz

? + Ux+ b)

@(·)

, @z
?

@(·) = (I � JW)�1
J
@(Wz

? + Ux+ b)

@(·) .

(B4)

To show that this derivative always exists, we need to show that the I � JW matrix is nonsingular.
Owing to the fact that proximal operators are monotone and non-expansive, we have 0  Jii  1.
First, letting �(·) denote the set of eigenvalues of a matrix, note that

�(I � JW) = �(I � J
1/2

WJ
1/2). (B5)

This follows from the similarity transform �(I � JW) = �(J�1/2(I � JW)J1/2) for J > 0 and
the case of Jii = 0 follows via the continuity of eigenvalues taking lim Jii ! 0. Now, using the fact
that 0 � J � I , we have

Re �(I � J
1/2

WJ
1/2)

= Re �(I � J + J
1/2(I �W)J1/2) > 0

(B6)

since I �W ⌫ mI and I � J ⌫ 0.

B.4 Proof of Theorem 3

Proof. We begin with the case where Jii 6= 0 and thus Dii < 1. As above, because proximal
operators are themselves monotone non-expansive operators, we always 0  Jii  1, so that Dii � 0.

13

Now, first assuming that Jii > 0, and hence Dii < 1, we have
u = (I � JW)�T

v

, (I �W
T (I +D)�1)u = v

, W
�T

u� (I +D)�1
u = W

�T
v

, (I +D)W�T
u� u = (I +D)W�T

v

, W
�T

u� u+DW
�T

u = (I +D)W�T
v

, ũ�W
T
ũ+Dũ = (I +D)W�T

v

(B7)

where we define ũ = W
�T

u. To simplify the right hand side of this equation and remove the explicit
W

�T
v terms4 we note that

(I � JW)�T = (I �W
T
J)�1 = I + (I �W

T
J)�1

W
T
J. (B8)

Thus, we can always solve the above equation with the v term of the form W
T
Jv, giving

(I +D)W�T
W

T
Jv = (I +D)Jv = v. (B9)

This gives us a (linear) operator splitting problem with the F̃ and G̃ operators given in (14).

To handle the case where Jii = 0 , Dii = 1, we can simply take the limit Dii ! 1, and note that
all the operators are well-defined for this case. For instance, the resolvent operator

RG̃(u) = (I + ↵(I +D))�1(u+ ↵v) (B10)
and thus

RG̃(u)ii =
u+ ↵v

1 + ↵(1 +Dii)
! 0 (B11)

as Dii ! 1.

Finally, owing to the fact that I � W
T ⌫ mI and Dii � 0, the F̃ and G̃ operators are strongly

monotone and monotone respectively, we conclude that operator splitting techniques applied to the
problem will be guaranteed to converge.

C Convolutional monDEQs

C.1 Inversion via the discrete Fourier transform

First consider the case where W 2 Rs2⇥s2 is the matrix representation of an unstrided (circular)
convolution with a single input channel and single output channel. The convolution operates on
vectorized s⇥s inputs. It is well known that W is diagonalized by the 2D DFT operator Fs = Fs⌦Fs

where Fs is the Fourier basis matrix (Fs)ij = 1
s!

(i�1)(j�1) and ! = exp(2⇡◆/s). We denote
◆ =

p
�1 to avoid confusion with the index i. So

FsWF ⇤
s = D, (C1)

a complex diagonal matrix.

Now take the case where W 2 Rns2⇥ns2 has n input and output channels. Then

(In ⌦ Fs)W (In ⌦ F ⇤
s) = D =

2

664

D11 D12 · · · D1n
D21 D22 · · · D2n

...
...

. . .
...

Dn1 Dn2 · · · Dnn

3

775 (C2)

where In is the n⇥ n identity matrix and each block Dij 2 Cs2⇥s2 is a complex diagonal matrix.
We will denote Fs,n = In ⌦ Fs.

4Although we could solve this operator splitting problem directly, the presence of the W�T v term has two
notable downsides: 1) even if the W matrix itself is nonsingular, it may be arbitrarily close to a singular matrix,
thus making direct solutions with this matrix introduce substantial numerical errors; and 2) for operator splitting
methods that do not require an inverse of W (e.g. forward-backward splitting), it would be undesirable to require
an explicit inverse in the backward pass.

14

It is more efficient to consider the permuted form of D

D̂ =

2

6664

D̂
1 0 · · · 0
0 D̂

2 · · · 0
...

...
. . .

...
0 0 · · · D̂

s2

3

7775
(C3)

where each block D̂
k 2 Cn⇥n, consists of the kth diagonal elements of all the Dij , that is D̂k

ij =

(Dij)kk. Then inverting or multiplying by D̂ reduces to inverting or multiplying by the diagonal
blocks, which is amenable to accelerated batch-wise computation in the form of an s

2 ⇥ n⇥ n tensor.
However, the original form (C2) is more convenient mathematically and we use that here.

To perform the required inversion of the operator
I + ↵(I �W) = (1 + ↵m)I + ↵A

T
A� ↵B + ↵B

T (C4)
we use the fact that Fs,n is unitary and obtain

(1 + ↵m)I + ↵A
T
A� ↵B + ↵B

T

= (1 + ↵m)F ⇤
s,nFs,n + F ⇤

s,n(↵D
⇤
AFs,nF ⇤

s,nDA �DB +D
⇤
B)Fs,n

= F ⇤
s,n((1 + ↵m)I + ↵D

⇤
ADA �DB +D

⇤
B)Fs,n.

(C5)

The inner term here itself has the blockwise-diagonal form (C2). Thus, we can multiply a set of
hidden units z by the inverse of this matrix by considering the permuted form (C3), inverting each
block D̂

i, taking the FFT of z, multiplying each corresponding block of Fs,nz by the corresponding
inverse, then taking the inverse FFT.

C.2 Zero padding

One drawback to the above method is that using the FFT in this manner requires that all convolutions
be circular. While empirically there is little drawback to simply replacing traditional convolutions
with their circular variants, in some cases it may be desirable to avoid this setting, where information
about the image may wrap around the borders. If it is desirable to avoid this, we explicitly remove any
circular dependence by zero-padding the hidden units with (k � 1)/2 border pixels, where k denotes
the receptive field size of the convolution. This zero padding can then be enforced by simply setting
all the border entries to zero within the nonlinearity of the network; because setting an element to
zero is equivalent to the proximal operator for the indicator of the zero set, such operations still fit
within the monotone operator setting.

D Multi-tier monDEQs

D.1 Parameterization

Recall the setting of Section 4.3, with

z =

2

6664

z1 2 Rn1s
2
1

z2 2 Rn2s
2
2

...
zL 2 RnLs2L

3

7775
, W =

2

66664

W11 0 0 · · · 0
W21 W22 0 · · · 0
0 W32 W33 · · · 0
...

...
...

. . .
...

0 0 0 · · · WLL

3

77775
. (D1)

To ensure W has the form (1�m)I �A
T
A+B �B

T , we restrict both A and B to have the same
bidiagonal structure as W . Then the diagonal terms Wii have the form

Wii = (1�m)I �A
T
iiAii �A

T
i+1,iAi+1,i +Bii �B

T
ii (D2)

for i < L and
WLL = (1�m)I �A

T
LLALL +BLL �B

T
LL. (D3)

15

To compute the off-diagonal terms Wi+1,i note that restricting W to be bidiagonal makes the off-
diagonal terms of B redundant. E.g. since W12 = 0, then

�A
T
21A22 �B

T
21 = W12 = 0

) W21 = �A
T
22A21 +B21 = �2AT

22A21.
(D4)

D.2 Inversion via the discrete Fourier transform

Consider W of the form (D1) with convolutions
Wii = (1�m)I �A

T
iiAii �A

T
i+1,iAi+1,i +Bii �B

T
ii

WLL = (1�m)I �A
T
LLALL +BLL �B

T
LL

Wi+1,i = �2AT
i+1,i+1Ai+1,i.

(D5)

Here the Aii and Bii terms are unstrided convolutions with ni input and ni output channels, while
the Ai,i+1 are strided convolutions with ni input channels and ni+1 output channels.

In order to multiply by (I + ↵(I �W))�1, we use back substitution to solve for x in
z = (I + ↵(I �W))x. (D6)

Let W 0 = (I + ↵(I �W)). The back substitution proceeds by tiers, i.e.
x1 = W

0�1
11 z1

x2 = W
0�1
22 (z2 �W

0
21x1)

x3 = W
0�1
33 (z3 �W

0
32x2)

...

(D7)

Therefore only the diagonal blocks W 0
ii need be inverted. The inversion of e.g.

W
0
11 = (1 + ↵m)I + ↵(AT

11A11 +A
T
21A21 +B11 �B

T
11) (D8)

is complicated by the fact that A21 is strided, so that it is no longer diagonalized by the DFT. Instead,
we perform inversion using the following proposition.

Proposition D1. Let A 2 Rn1s
2⇥n1s

2

be an unstrided circular convolution with n1 input and n1

output channels, and B 2 Rn2s
2⇥n1s

2

a strided circular convolution with n1 input and n2 output
channels and stride r where r divides s. Then

(A+B
T
B)�1 = F ⇤

s,n1
(D�1

A �D
�1
A D

⇤
B(In2 ⌦K)DBD

�1
A)Fs,n1 (D9)

where
DA = Fs,n1AF ⇤

s,n1
, DB = Fs,n2BF ⇤

s,n1
,

K = S
T
J(s2r2I + J

T
SDBD

�1
A D

⇤
BS

T
J)�1

J
T
S

(D10)

where J = 1r2 ⌦ Is2/r2 is r2 stacked identity matrices of size (s2/r2)⇥ (s2/r2) and
S = (Ir ⌦ Ss/r,s) is a permutation matrix where Sa,b 2 Rab⇥ab denotes the perfect shuffle matrix
defined by subselecting rows of the identity matrix Iab, here given in MATLAB notation:

Sa,b =

2

664

Iab(1 : b : ab, :)
Iab(2 : b : ab, :)

...
Iab(b : b : ab, :)

3

775 . (D11)

Proof. We will show that

A+B
T
B = F ⇤

s,n1
(DA +D

⇤
B(In2 ⌦ (

1

s2r2
S
T
JJ

T
S))DB)Fs,n1 . (D12)

The desired result then follows by applying the Woodbury matrix idenetity.

We start by breaking B into an unstrided convolution B
0 which can be diagonalized by the DFT and

a matrix Ur,s which performs the striding on each channel:
B = (In2 ⌦ Ur,s)B

0 = (In2 ⌦ Ur,s)F
⇤
s,n2

DBFs,n1 (D13)

16

where Ur,s 2 R(s2/r2)⇥s2 is defined by subselecting rows of the identity matrix:

Ur,s =

2

66664

Is2(1 : r : s, :)
Is2(rs+ 1 : r : (r + 1)s, :)
Is2(2rs+ 1 : r : (2r + 1)s, :)

...
Is2(s

2 � sr + 1 : r : s2 � s(r � 1), :)

3

77775
. (D14)

So
B

T
B = F ⇤

s,n1
D

⇤
B(In2 ⌦ (FsU

T
r,sUr,sF

⇤
s))DBFs,n1 . (D15)

We want to show that FsU
T
r,sUr,sF ⇤

s = 1
s2r2S

T
JJ

T
S. Observe that

U
T
r,sUr,s = (Tr,s ⌦ Tr,s) (D16)

where Tr,s 2 Rs⇥s is given by

(Tr,s)ij =

⇢
1 if i = j and i (mod r) = 1,
0 else.

(D17)

Then by the properties of Kronecker product
FsU

T
r,sUr,sF

⇤
s = (Fs ⌦ Fs)(Tr,s ⌦ Tr,s)(F

⇤
s ⌦ F

⇤
s) = (FsTr,sF

⇤
s)⌦ (FsTr,sF

⇤
s). (D18)

We now show that (FsTr,sF
⇤
s) = L where

Lij =

⇢
1
sr if i ⌘ j (mod s/r),
0 else.

(D19)

To do so we use several properties of the roots of unity z
k = exp(2⇡◆k/s).

1. If a ⌘ b (mod s) then z
a = z

b.
2. If z is a primitive sth root of unity then z

m is a primitive ath root of unity where a = s
gcd(m,s) .

3. The sum of the sth roots of unity
Ps�1

k=0 z
k = 0 if s > 1.

We first compute Lij for the case when i ⌘ j (mod s/r), or in other words i = j + ks
r for some

integer k. We have

Lij =
1

s2

X

p=1:r:s

!
(i�1)(p�1)

!̄
(p�1)(j�1)

=
1

s2

X

p=0:r:s�1

exp(2⇡◆p(i� j)/s)

=
1

s2

X

p=0:r:s�1

exp(2⇡◆pk/r)

=
1

s2

s
r�1X

p=0

exp(2⇡◆pk)

=
1

sr
.

(D20)

17

For the case when i 6⌘ j (mod s/r), or in other words i = j + ks
r +m for some integers k and m

with � s
r < m <

s
r , we have

Lij =
1

s2

X

p=1:r:s

!
(i�1)(p�1)

!̄
(p�1)(j�1)

=
1

s2

X

p=0:r:s�1

exp(2⇡◆p(i� j)/s)

=
1

s2

s
r�1X

p=0

exp(2⇡◆p(i� j)r/s)

=
1

s2

s
r�1X

p=0

exp(2⇡◆pmr/s) exp(2⇡◆pk).

(D21)

By property (2), since exp(2⇡◆r/s) is a primitive s
r th root of unity, then exp(2⇡◆mr/s) is a primitive

dth root of unity where d = s/r
gcd(m,s/r) . Since d divides s/r, we can split the sum into several sums

of dth roots of unity using property (1), each of which will sum to zero by property (3).

Lij =
1

s2

s
r�1X

p=0

exp(2⇡◆pmr/s)

=
1

s2

s
rd�1X

q=0

d�1X

p=0

exp(2⇡◆(p+ qd)mr/s)

=
1

srd

d�1X

p=0

exp(2⇡◆pmr/s)

= 0

(D22)

where the second equality follows from property (1) since p = p+ qd (mod d) and each sum in the
third line is zero by property (3) since exp(2⇡◆mr/s) is a primitive dth root of unity.

We now have FsU
T
r,sUr,sF ⇤

s = L⌦L and it remains to use properties of Kronecker product to show
that L⌦ L = 1

s2r2S
T
JJ

T
S. In particular we need associativity and the fact that for A 2 Rn⇥n and

B 2 Rm⇥m, we have
B ⌦A = Sn,m(A⌦B)ST

n,m (D23)

where Sn,m is the perfect shuffle matrix. Note that L = 1
sr1r⇥r ⌦ Is/r where 1r⇥r is the r ⇥ r

matrix of all ones. Then

L⌦ L =
1

s2r2
(1r⇥r ⌦ Is/r)⌦ (1r⇥r ⌦ Is/r)

=
1

s2r2
1r⇥r ⌦ (Is/r ⌦ (1r⇥r ⌦ Is/r))

=
1

s2r2
1r⇥r ⌦ (Ss/r,s((1r⇥r ⌦ Is/r)⌦ Is/r)S

T
s/r,s)

=
1

s2r2
1r⇥r ⌦ (Ss/r,s(1r⇥r ⌦ Is2/r2)S

T
s/r,s)

=
1

s2r2
(Ir ⌦ Ss/r,s)(1r2⇥r2 ⌦ Is2/r2)(Ir ⌦ S

T
s/r,s)

=
1

s2r2
SJJ

T
S
T

(D24)

which completes the proof.

18

CIFAR-10

Single conv Multi-tier Single conv lg. Multi-tier lg.

Num. channels 81 (16,32,60) 200 (64,128,128)
Num. params 172,218 170,194 853,612 1,014,546
Epochs 40 40 65 65
Initial lr 0.001 0.01 0.001 0.001
Lr schedule step decay step decay 1-cycle 1-cycle
Lr decay steps 25 10 - -
Lr decay factor 10 10 - -
Max learning rate - - 0.01 0.05
Data augmentation - - X X

SVHN MNIST

Single conv Multi-tier FC Single conv Multi-tier

Num. channels 81 (16,32,60) 87* 54 (16, 32, 32)
Num. params 172,218 170,194 84,313 84,460 81,394
Initial lr 0.001 0.001 0.001 0.001 0.001
Epochs 40 40 40 40 40
Lr decay steps 25 10 10 10 10
Lr decay factor % 10 10 10 10 10

Table E1: Model hyperparameters. *FC is a dense layer with output dimension of 87.

E Experiment details

E.1 Model architecture

Recall that a monDEQ is defined by a choice of linear operators W and U , bias b, and nonlinearity �,
and that we parameterize W via linear operators A and B. For all experiments we use � = ReLU. In
the fully-connected network A,B and U are dense matrices; in the single-convolution network they
are unstrided convolutions with kernel size 3. The structure of the multi-tier network is as described
in (D1) and (D5); we use three tiers with unstrided convolutions for U and Aii, Bii and stride-2
convolutions for the subdiagonal terms Ai,i+1, all with kernels of size 3. The number of channels for
single and multi-tier convolutional models varies by dataset, as shown in Table E1.

For all models, the fixed point z? is mapped to logits ŷ via a dense output layer, and the single
convolution model first applies 4⇥4 average pooling:

ŷ = Woz
? + bo or ŷ = Wo AvgPool4⇥4(z

?) + bo.

E.2 Training details

Because W = (1�m)I �A
T
A+B �B

T contains both linear and quadratic terms, we find that a
variant of weight normalization helps to keep the gradients of the different parameters on the same
scale. For example, when W is a dense matrix, we reparameterize A

T
A as g ATA

kAk2 and B as h B
kBk ,

where g and h are learned scalars. When W consists of a single or multi-tiered convolutions, we
reparameterize each convolution kernel analogously.

All models are trained by running Peaceman-Rachford with error tolerence ✏ =1e-2, which reduces
the number of iterations without impacting performance. The monotonicity parameter m also affects
convergence speed since it controls the contraction factor of the relevant operators; consistent with
this, we find that Peaceman-Rachford takes longer to converge for smaller m, and use m = 1 for all
models since model performance is not sensitive to m 2 [0.01, 1]. We also find that the Lipschitz
parameter L of I �W increases during training, changing the optimal ↵ value. We therefore tune
↵ 2 {1, 1/2, 1/4, . . .} over the course of training so as to minimize forward-pass iterations.

One detail about stopping criteria for the splitting method: computing the residual
kzk+1 � f(zk+1)k/kzk+1k requires an additional call to the function f . Therefore during training
we instead use the criterion kzk+1 � z

kk/kzk+1k  ✏. The error shown in Figure 3 is the former,
while the stopping criterion used in Figures 2 and F2 is the latter. Technically this latter criterion itself
depends on both ↵ and L; for different ↵ and L values, having kzk+1 � z

kk/kzk+1k  ✏ implies
different bounds on the residual. However, we find that this effect is minimal, so that both stopping
criteria work equally well in practice.

19

Train examples Test examples Image dim. Num. channels

MNIST 60,000 10,000 28 ⇥ 28 1
SVHN 73,257 26,032 32 ⇥ 32 3
CIFAR-10 50,000 10,000 32 ⇥ 32 3

Table E2: Dataset statistics

Table E1 gives details of the training hyperparameters used for each model. All models are trained
with ADAM [16], using batch size of 128. For all but the large CIFAR-10 models, the initial learning
rate is chosen from {1e-2, 1e-3} and decayed by a factor of 10 after every 10 or 25 epochs, and the
default ADAM momentum parameters are used. All training data is normalized to mean µ = 0,
standard deviation � = 1.

CIFAR-10 with data augmentation When training large models on CIFAR-10 we use standard
data augmentation, consisting of zero-padding the 32⇥32 images to 40⇥40, then randomly cropping
back to 32x32, and finally performing random horizontal flips. In order to reduce the number of
training epochs, we use a single cycle of increasing and decreasing learning rate to achieve super-
convergence [27]. The learning rate is increased from 1e-3 to the max learning rate (see Table E1)
over 30 epochs, then decreased back to 1e-3 over 30 epochs, then held at 1e-3 for 5 epochs. (The
max learning rate is chosen by training for a single epoch while increasing the learning rate until the
loss diverges.) The momentum is also decreased from 0.95 to 0.85 over 30 epochs, then back to 0.95
over 30 epochs, then held at 0.95 for 5 epochs. However, we note that the model obtains the same
performance when trained with constant learning rate of 1e-3 for around 200 epochs.

E.3 Dataset statistics

MNIST [18] consists of black and white examples of handwritten digits 0-9. SVHN [22] consists of
color images of digits 0-9 extracted from house numbers captured by Google Stree View. CIFAR-10
[17] consists of small images from 10 object classes. Dataset statistics are shown in Table E2.

20

F Additional results and figures

1 10 20 30 40
ESochV

70

80

90

%
 7

HV
t a

cc
ur

ac
y

S9H1

SinglH conv
0ulti-tiHr

1 20 40 60
ESRFhs

40

50

60

70

80

90

CIFA5-10 + dDtD DugmentDtiRn

6ingOe FRnv Og.
0uOti-tier Og.
12DE Og.
A12DE Og.

1 10 20 30 40
ESoFhs

95

96

97

98

99

%
 7

es
t a

FF
ur

aF
y

01I67

6ingle Fonv
0ulti-tier
Fully FonneFted

Figure F1: Test accuracy of monDEQs and Neural ODE models during training.

0 20 40 60
Epochs

10

20

30

40

50

Ite
ra

tio
ns

Backward-pass iterations

α=1

α tuned

Figure F2: Iterations required by Peaceman-Rachford backprop over the course of training.

21

