
We thank the reviewers for their valuable comments! We have added comprehensive empirical studies and hope you are1

satisfied with our point-by-point responses and increase your scores!2

(Experiments): We agree that adding experiments is a good idea and have completed an extensive empirical evaluation.3

Given the space limitation in the response, only a subset is included below. All the experiments will be added in the4

revised version. We compare ESTC (our algorithm) with LinUCB [2] and doubly-robust (DR) lasso bandits [1]. For5

ESTC, we use the theoretically suggested length of exploration stage. For LinUCB, we use the theoretically suggested6

confidence interval. For DR-lasso, we use the code made available by the authors on-line.7

Case 1: linear contextual bandits. We use the setting in Section 5 of [1] with N = 20 arms, dimension d = 100,8

sparsity s = 5. At round t, we generate the action set from N(0N , V ), where Vii = 1 and Vik = ρ2 for every i 6= k.9

Larger ρ corresponds to high correlation setting that is more favorable to DR-lasso. The noise is from N(0, 1) and10

‖θ‖0 = s. Case 2: hard problem instance. Consider the hard problem instance in the proof of minimax lower bound11

(Thm 3.3), including an informative action set and an uninformative action set.12

Conclusion: The experiments confirm our theoretical findings. Although our theory focuses on the fixed action set13

setting, ESTC works well in the contextual setting. DR-lasso bandits heavily rely on context distribution assumption14

and almost fail for the hard instance. LinUCB suffers in the data-poor regime since it ignores the sparsity information.15

We do not evaluate [3] since it is not a polynomial-time algorithm.

Figure 1: The left two figures are for Case 1 and the right two figures are for Case 2.16

Reviewer #1. (Compare with [4]): Thanks the reference, which will be included in a revised version. The algorithm17

in [4] and ESTC share the explore-then-commit template but both the exploration and exploitation stages are very18

different. [4] considers simple regret minimization while we focus on cumulative regret minimization. (Dependence19

on Cmin): Surprisingly, even in the classical statistical settings there are still gaps between upper and lower bounds. We20

speculate that the upper bound may be improvable, though at present we do not know how to do it. A discussion will be21

included in the revised version.22

Reviewer #2. (Interpreting of claims): We agree with this comment and will make this clear up-front. (Relation23

between eigenvalue and sparsity): The optimization problem in Eq. (4.1) only depends on the action set and not the24

sparsity.25

(Weeding out actions): This is an interesting question. As the second part of your question hints, things are already26

delicate when the actions do not span Rd. One cannot expect the Lasso estimate to be close to the true parameter because27

there is no information in some directions. We are not aware of direction-dependent confidence bounds for Lasso that28

are suitable in this case. A standard idea in non-sparse settings is to change the coordinates to the low-dimensional29

subspace, but rotations do not preserve sparsity, so this does not work here. For the first part of your question. A small30

value of Cmin sometimes happens when most actions pointing in some direction are quite short. You might hope to31

learn that these actions cannot be optimal and then work in the low dimensional subspace, so solving one problem may32

help with the other.33

Reviewer #4. (Transition between n2/3 and n1/2): Our bounds are non-asymptotic and our intention is not to treat34

any quantities as constants. The bounds show that there is a rich information-tradeoff in sparse linear bandits that35

appears in the high-dimensional regime. In particular, for certain action sets algorithms can enjoy nearly dimension-free36

regret by exploring carefully while algorithms based on optimism may be very suboptimal.37

(Tightness of lower bound in the data-rich regime): We do not claim our lower bound is tight in the data-rich regime38

(d < n) where a lower bound of Ω(
√
dsn) is already known to be optimal. (Solving the optimization problem):39

When the number of arms is finite it can be solved using standard convex solvers since the minimum eigenvalue is a40

concave function. If the number of arms is infinite, things will likely be delicate in general. Hints may be found in the41

literature on optimal design where computational questions remain open.42
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