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Abstract

Leverage score sampling is a powerful technique that originates from theoretical
computer science, which can be used to speed up a large number of fundamental
questions, e.g. linear regression, linear programming, semi-definite programming,
cutting plane method, graph sparsification, maximum matching and max-flow. Re-
cently, it has been shown that leverage score sampling helps to accelerate kernel
methods [Avron, Kapralov, Musco, Musco, Velingker and Zandieh 17].

In this work, we generalize the results in [Avron, Kapralov, Musco, Musco, Vel-
ingker and Zandieh 17] to a broader class of kernels. We further bring the leverage
score sampling into the field of deep learning theory.

¢ We show the connection between the initialization for neural network train-
ing and approximating the neural tangent kernel with random features.

* We prove the equivalence between regularized neural network and neural tan-
gent kernel ridge regression under the initialization of both classical random
Gaussian and leverage score sampling.

1 Introduction

Kernel method is one of the most common techniques in various machine learning problems. One

classical application is the kernel ridge regression (KRR). Given training data X = [z1,--- ,7,]" €
R™*4, corresponding labels Y = [y1, - - - ,y,] € R™ and regularization parameter A > 0, the output
estimate of KRR for any given input z can be written as:

f(2) =K(z, X) T (K + \,,) 'Y, (1)

where K(-, -) denotes the kernel function and K € R™*™ denotes the kernel matrix.

Despite being powerful and well-understood, the kernel ridge regression suffers from the costly
computation when dealing with large datasets, since generally implementation of Eq. (1) requires
O(n3) running time. Therefore, intensive research have been dedicated to the scalable methods
for KRR [Bacl13, AM15, ZDW15, ACW17, MM17, ZNV+20]. One of the most popular approach
is the random Fourier features sampling originally proposed by [RR08] for shift-invariant kernels.
They construct a finite dimensional random feature vector ¢ : RY — C® through sampling that
approximates the kernel function K(z, 2) ~ ¢(z)*¢(z) for data =,z € RY. The random feature
helps approximately solves KRR in O(ns? + n?) running time, which improves the computational
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cost if s < n. The work [AKM™ 17] advanced this result by introducing the leverage score sampling
to take the regularization term into consideration.

In this work, we follow the the approach in [AKM™17] and naturally generalize the result to a
broader class of kernels, which is of the form

K(z,2) = wIﬁEJp[qi)(x, w)Tgb(z,w)},

where ¢ : R4 x RY — R s a finite dimensional vector and p : R% — Rsq is a probability
distribution. We apply the leverage score sampling technique in this generalized case to obtain a
tighter upper-bound on the dimension of random features.

The most important contribution of this work is to introduce the leverage score theory into the field
of neural network training. Over the last two years, there is a long line of over-parametrization the-
ory works on the convergence results of deep neural network [LL18, DZPS19, AZLS19b, AZLS19a,
DLL™19, ADH"19b, ADH"19a, SY19, BPSW20], all of which either explicitly or implicitly use
the property of neural tangent kernel [JGH18]. However, most of those results focus on neural
network training without regularization, while in practice regularization (which is originated from
classical machine learning) has been widely used in training deep neural network. Therefore, in this
work we rigorously build the equivalence between training a ReLLU deep neural network with ¢
regularization and neural tangent kernel ridge regression. We observe that the initialization of train-
ing neural network corresponds to approximating the neural tangent kernel with random features,
whose dimension is proportional to the width of the network. Thus, it motivates us to bring the lever-
age score sampling theory into the neural network training. We present a new equivalence between
neural net and kernel ridge regression under the initialization using leverage score sampling, which
potentially improves previous equivalence upon the upper-bound of network width needed.

We summarize our main results and contribution as following:

* Generalize the leverage score sampling theory for kernel ridge regression to a broader class
of kernels.

» Connect the leverage score sampling theory with neural network training.

* Theoretically prove the equivalence between training regularized neural network and kernel
ridge regression under both random Gaussian initialization and leverage score sampling
initialization.

2 Related work

Leverage scores Given a m x n matrix A. Let a; be the i-th rows of A and the leverage score
of the i-th row of A is 0;(A) = a; (AT A)Ta;. A row’s leverage score measures how important
it is in composing the row space of A. If a row has a component orthogonal to all other rows, its
leverage score is 1. Removing it would decrease the rank of A, completely changing its row space.
The coherence of A is ||0(A)||-. If A has low coherence, no particular row is especially important.
If A has high coherence, it contains at least one row whose removal would significantly affect the
composition of A’s row space.

Leverage score is a fundamental concept in graph problems and numerical linear algebra. There
are many works on how to approximate leverage scores [SS11, DMIMW 12, CW13, NN13] or more
general version of leverages, e.g. Lewis weights [Lew78, BLM89, CP15]. From graph perspective,
it has been applied to maximum matching [BLN"20, LSZ20], max-flow [DS08, Mad13, Mad16,
LS20b, LS20a], generate random spanning trees [Sch18], and sparsify graphs [SS11]. From ma-
trix perspective, it has been used to give matrix CUR decomposition [BW 14, SWZ17, SWZ19] and
tensor CURT decomposition [SWZ19]. From optimization perspective, it has been used to approx-
imate the John Ellipsoid [CCLY 19], linear programming [LS14, BLSS20, JSWZ20], semi-definite
programming [JKL"20], and cutting plane methods [Vai89, LSW 15, JLSW20].

Kernel methods Kernel methods can be thought of as instance-based learners: rather than learning
some fixed set of parameters corresponding to the features of their inputs, they instead “remember”
the 4-th training example (z;, y;) and learn for it a corresponding weight w;. Prediction for unlabeled
inputs, i.e., those not in the training set, is treated by the application of similarity function K, called
a kernel, between the unlabeled input 2’ and each of the training inputs x;.



There are three lines of works that are closely related to our work. First, our work is highly related to
the recent discoveries of the connection between deep learning and kernels [DFS16, Danl7, JGH18,
CB18]. Second, our work is closely related to development of connection between leverage score
and kernels [RR08, CW17, CMM17, MW 17b, MW 17a, LTOS18, AKM™17, AKM*19, ACSS20].
Third, our work is related to kernel ridge regression [Bacl3, AMI15, ZDW15, ACW17, MM17,
ZNVT20].

Convergence of neural network There is a long line of work studying the convergence of neural
network with random input assumptions [BG17, Tial7, ZSJ*17, Sol17, LY17, ZSD17, DLT™ 18,
GLMI18, BJW19]. For a quite while, it is not known to remove the randomness assumption from
the input data points. Recently, there is a large number of work studying the convergence of neu-
ral network in the over-parametrization regime [LL18, DZPS19, AZLS19b, AZLS19a, DLL™19,
ADHT19b, ADHT 192, SY19, BPSW20]. These results don’t need to assume that input data points
are random, and only require some much weaker assumption which is called “data-separable”.
Mathematically, it says for any two input data points z; and x;, we have ||z; — z;||2 > J. Suf-
ficiently wide neural network requires the width m to be at least poly(n,d, L,1/d), where n is the
number of input data points, d is the dimension of input data point, L is the number of layers.

Continuous Fourier transform The continuous Fourier transform is defined as a prob-
lem [JLS20] where you take samples f(t¢1), -, f(ty,) from the time domain f(t) :=
>0y ve? 0 and try to reconstruct function f : R — C or even recover {(v;, z;)} € C xR%,
The data separation connects to the sparse Fourier transform in the continuous domain. We can
view the n input data points [LL18, AZLS19b, AZLS19a] as n frequencies in the Fourier trans-
form [Moil5, PS15]. The separation of the data set is equivalent to the gap of the frequency set
(min;»; ||z; — x;|l2 > 6). In the continuous Fourier transform, there are two families of algo-
rithms: one requires to know the frequency gap [Moil5, PS15, CM20, JLS20] and the other doesn’t
[CKPS16]. However, in the over-parameterized neural network training, all the existing work re-
quires a gap for the data points.

Notations We use i to denote v/—1. For vector z;, we use ||x||2 to denote the £5 norm of x. For
matrix A, we use || A| to denote the spectral norm of A and || A||r to denote the Frobenius norm of
A. For matrix A and B, we use A < B to denote that B — A is positive semi-definite. For a square
matrix, we use tr[A] to denote the trace of A. We use A~! to denote the true inverse of an invertible
matrix. We use A' to denote the pseudo-inverse of matrix A. We use AT to denote the transpose of
matrix A.

3 Main results

In this section, we state our results. In Section 3.1, we consider the large-scale kernel ridge regres-
sion (KRR) problem. We generalize the Fourier transform result [AKM™17] of accelerating the
running time of solving KRR using the tool of leverage score sampling to a broader class of kernels.
In Section 3.2, we discuss the interesting application of leverage score sampling for training deep
learning models due to the connection between regularized neural nets and kernel ridge regression.

3.1 Kernel approximation with leverage score sampling

In this section, we generalize the leverage score theory in [AKM™ 17], which analyzes the number of
random features needed to approximate kernel matrix under leverage score sampling regime for the
kernel ridge regression task. In the next a few paragraphs, we briefly review the settings of classical
kernel ridge regression.

Given training data given training data matrix X = [zq, - ,2,]" € R"*4, corresponding labels
Y =[y1,- - ,yn]' € R" and feature map ¢ : R? — F, a classical kernel ridge regression problem



can be written as’

1 1
min |V - S(X)TBI5 + SAIBI5

where A > 0 is the regularization parameter. By introducing the corresponding kernel function
K(x,2) = (¢(), p(2)) for any data =, 2 € R?, the output estimate of the kernel ridge regression
for any data x € RY can be denoted as f*(x) = K(x, X) T o, where a € R™ is the solution to

(K + M,)a =Y.
Here K € R™*™ is the kernel matrix with K ; = K(xz;,x;), Vi, j € [n] x [n].

Note a direct computation involves (K + AI,,) !, whose O(n?) running time can be fairly large in
tasks like neural network due to the large number of training data. Therefore, we hope to construct
feature map ¢ : R? — R*, such that the new feature approximates the kernel matrix well in the
sense of

(I—e) (K+A,) 200" + M, < (1+¢€) - (K+A,), )

where € € (0,1) is small and ® = [p(z1), - ,é(z,)]T € R™¥*. Then by Woodbury matrix
equality, we can approximate the solution by u*(z) = ¢(z) " (®T® + AI,)~1® Y, which can be
computed in O(ns? 4+ n?) time. In the case s = o(n), computational cost can be saved.

In this work, we consider a generalized setting of [AKM™ 17] as a kernel ridge regression problem
with positive definite kernel matrix K : R% x R? — R of the form

K(LE,Z) = w@p[qb(wi)Td)(Z?w)}? 3)

where ¢ : R? x R% — R% denotes a finite dimensional vector and p : R® — R>( denotes a
probability density function.

Due to the regularization A > 0 in this setting, instead of constructing the feature map directly from
the distribution g, we consider the following ridge leveraged distribution:

Definition 3.1 (Ridge leverage function). Given data x1,--- ,x, € R< and parameter A > 0, we
define the ridge leverage function as

gr(w) = p(w) - tr[@(w) " (K + Ay) ™ @(w)],

where p(-), ¢ are defined in Eq. (3), and ®(w) = [¢(x1,w) ", -+, ¢(xn,w)"]T € R"™ % Further,
we define statistical dimension s)(K) as

sy(K) = /qA(w)dw = tr[(K 4+ \I,)'K]. 4)

The leverage score sampling distribution gy /sy (K ) takes the regularization term into consideration
and achieves Eq. (2) using the following modified random features vector:

Definition 3.2 (Modified random features). Given any probability density function q(-) whose sup-
port includes thagfp(). Given m vectors wy, - -+ , Wy, € R, we define modified random features
U e RV ™M g3 U = [p(z1), -, @(xn)] ", where

@(1’) = 7= d)(l'vwl ) ’ QS(xawm)T

; l PU) )T, -, Y 2Lm) -
vm | Va(wr) q(wm)

Now we are ready to present our result.

Theorem 3.3 (Kernel approximation with leverage score sampling, generalization of Lemma 8 in
[AKM ™ 17]). Given parameter \ € (0, || K]||). Let g5 : R" — R be the leverage score defined
in Definition 3.1. Let g : R% — R be any measurable function such that g(w) > qx(w) holds

"Strictly speaking, the optimization problem should be considered in a hypothesis space defined by the
reproducing kernel Hilbert space associated with the feature/kernel. Here, we use the notation in finite dimen-
sional space for simplicity.



for all w € R™. Assume sg, = [pa, (w)dw is finite. Let Gy(w) = qx(w)/sg,. Given any

accuracy parameter € € (0,1/2) and failure probability § € (0,1). Let wy,- -+ ,w,, € R? denote
m samples draw independently from the distribution associated with the density G, (+), and construct

the modified random features ¥ € R™ ™% qs in Definition 3.2 with ¢ = q,. Let s\(K) be the
statistical dimension defined in (4). If m > 3¢~ 2sg, In(16s7, - s\(K)/9), then we have

(L—€) (K + ML) 0T + A, < (1+¢) - (K +\,) ©)
holds with probability at least 1 — 6.

Remark 3.4. Above results can be generalized to the complex domain C. Note for the random
Fourier feature case discussed in [AKM*17], we have di = d, ds = 1, ¢(z,w) = e~2miw’z ¢ O
and p(+) denotes the Fourier transform density distribution, which is a special case in our setting.

3.2 Application in training regularized neural network

In this section, we consider the application of leverage score sampling in training /5 regularized
neural networks.

Past literature such as [DZPS19],[ADH " 19a] have already witnessed the equivalence between train-
ing a neural network and solving a kernel regression problem in a broad class of network models.
In this work, we first generalize this result to the regularization case, where we connect regularized
neural network with kernel ridge regression. Then we apply the above discussed the leverage score
sampling theory for KRR to the task of training neural nets.

3.2.1 Equivalence I, training with random Gaussian initialization

To illustrate the idea, we consider a simple model two layer neural network with ReLU activation
function as in [DZPS19, SY19]8.

1 m
fun(W,a,2) = = > ao(wz) €R,
r=1

where * € R? is the input, w, € R? r € [m] is the weight vector of the first layer, W =
[wy, -, wy] € RX™ q, € R, r € [m)] is the output weight, a = [ay,- -+ ,a,,] and o(-) is the
ReLU activation function: o(z) = max{0, z}.

Here we consider only training the first layer W with fixed a, so we also write f,,(W,z) =
fan(W,a,x). Again, given training data matrix X = [z, ,2,]" € R"*? and labels Y =
[yla T >yn]T € R", we denote fnn(VVa X) = [fnn(m xl)? T fnn(VVa xn)]—r € R™. We formally
define training neural network with /5 regularization as follows:

Definition 3.5 (Training neural network with regularization). Let x € (0, 1] be a small multiplier®.
Let \ € (0, 1) be the regularization parameter. We initialize the network as a,. HE nif {-1,1}]

and w,-(0) RN (0,14). Then we consider solving the following optimization problem using
gradient descent:

1 1
min |V~ s fon (W, X3 + S AW 3. ©)

Let w,(t),r € [m] be the network weight at iteration t. We denote the training data predictor at
iteration t as uny (t) = K fan(W(t), X) € R". Further, given any test data Ty.s; € R, we denote
Unn test (t) = Kfan (W (£), Trest) € R as the test data predictor at iteration t.

On the other hand, we consider the following neural tangent kernel ridge regression problem:

1 1

80ur results directly extends to multi-layer deep neural networks with all layers trained together

°To establish the training equivalence result, we assign x = 1 back to the normal case. For the training
equivalence result, we pick > 0 to be a small multiplier only to shrink the initial output of the neural
network. The is the same as what is used in [AKM " 17].



where #, \ are the same parameters as in Eq. (6), fuu(3,2) = ®(z)"3 € R and fuu (3, X) =
[futk(Bs 1), 5 futk (B, )] T € R™ are the test data predictors. Here, ® is the feature map corre-
sponding to the neural tangent kernel (NTK):

(s, — 2 [(2Lnl0er) DfmlBec) ]

. L i d.
where x,z € R? are any input data, and the expectation is taken over w, "~ N(0,I), r =
17 PRI 7m'

(®)

Under the standard assumption K4y being positive definite, the problem Eq. (7) is a strongly convex
optimization problem with the optimal predictor u* = k2 H°"* (k2 H* + \I)~'Y for training data,
and the corresponding predictor u.,, = KZKptk(Trest, X) T (k2H + XI)~1Y for the test data
Tgest, Where H™ € R™ "™ is the kernel matrix with [H®]; ; = Ky (@i, ).

We connect the problem Eq. (6) and Eq. (7) by building the following equivalence between their
training and test predictors with polynomial widths:

Theorem 3.6 (Equivalence between training neural net with regularization and kernel ridge re-
gression for training data prediction). Given any accuracy € € (0,1/10) and failure probability

6 € (0,1/10). Let multiplier k = 1, number of iterations T = 6(/%0) network width m > 6(%)
0

and the regularization parameter A < 5(%) Then with probability at least 1 — § over the Gaus-
sian random initialization, we have
Jtan (T) = w2 < e.

Here O(-) hides poly log(n/(edAy)).

We can further show the equivalence between the test data predictors with the help of the multiplier
K.

Theorem 3.7 (Equivalence between training neural net with regularization and kernel ridge re-
gression for test data prediction). Given any accuracy ¢ € (0,1/10) and failure probability

d € (0,1/10). Let multiplier k = 5(61\70), number of iterations T = O(K%AO), network width
m > 6(%) and regularization parameter \ < (N)(\/%) Then with probability at least 1 — 0 over
0

the Gaussian random initialization, we have
E3
l|tnn test (T7) — Ugesi[l2 < €.

Here O(-) hides poly log(n/(edAo)).

3.2.2 Equivalence II, training with leverage scores

To apply the leverage score theory discussed in Section 3.1, Note the definition of the neural tangent
kernel is exactly of the form:

s, [(2200) DhmlBic) ]

where ¢(x,w) = zo’(w'x) € R? and p(-) denotes the probability density function of standard
Gaussian distribution A (0, I;). Therefore, we try to connect the theory of training regularized
neural network with leverage score sampling. Note the width of the network corresponds to the
size of the feature vector in approximating the kernel. Thus, the smaller feature size given by the
leverage score sampling theory helps us build a smaller upper-bound on the width of the neural nets.

= E [¢($, w)T¢<Z’ w)]

wr~p

Specifically, given regularization parameter A > 0, we can define the ridge leverage function with
respect to neural tangent kernel H* defined in Definition 3.1 as

g (w) = p(w) tr[@(w) T (H® + A) '@ (w)]
and corresponding probability density function

o qr(w)
q(w) = () ©)

where ®(w) = [¢p(x1,w) T, , P(zn,w)T]T € R¥42,

We consider training the following reweighed neural network using leverage score initialization:



Definition 3.8 (Training reweighed neural network with regularization). Let k € (0, 1] be a small
multiplier. Let \ € (0,1) be the regularization parameter. Let q(-) : R? — R defined in (9).
Let p(-) denotes the probability density function of Gaussian distribution N (0, I;). We initialize

the network as a, g unif[{—1, 1}] and w,(0) g q. Then we consider solving the following

optimization problem using gradient descent:
1 — 1
min S {|Y = o (W, X) 2 + SAIWIIE- (10)

where

) andfnn(W X) [?nn(vvv'rl)"“ 77nn(VVaxn)}T

fon(W, ) = Zar o(w,! X) ( (O))

We denote w,.(t),r € [m] as the estimate weight at iteration t. We denote ﬂnn(t) =k fo(W(t), X)
as the training data predictor at iteration t. Given any test data Tes; € R?, we denote Uy, test () =
Kfon (W (1), Tiest) as the test data predictor at iteration t.

We show that training this reweighed neural net with leverage score initialization is still equivalence
to the neural tangent kernel ridge regression problem (7) as in following theorem:

Theorem 3.9 (Equivalence between training reweighed neural net with regularization and kernel
ridge regression for training data prediction). Given any accuracy € € (0, 1) and failure probability
5 € (0,1/10). Let multiplier k = 1, number of iterations T = O(Aiolog(%)), network width
m = poly(s=,n,d, L, log(})) and regularization parameter \ = 6(%) Then with probability

at least 1 — 5 over the random leverage score initialization, we have
[tnn (T) —u*|l2 < e.

Here O(-) hides poly log(n/(edAo)).

4 Overview of techniques
Generalization of leverage score theory To prove Theorem 3.3, we follow the similar proof
framework as Lemma 8 in [AKM T 17].

Let K + M\, = VX2V be an eigenvalue decomposition of K + AI,,. Then conclusion (5) is
equivalent to

IS WTT Ve R lWVEV TR < e an

Let random matrix Y, € R"*" defined as

Y, = p(w,) Y We(w,)®(w,) VIS

g (wy)
where ®(w) = [p(x1,w), + , ¢(xn,w)] T € R"*%. Then we have
ElYj] = E [p(wr) 2—1Vq>(wr)q>(wr)TvT2—1} =S WWEVTS L,
ax ax [ Qy(wr)
and
1 & 1 & _ .
V. == YW (w,)P(w,)TVIET =27 lVET VInTh
- Z - Zﬁ Vo (w,)®(w,) VIT vV

Thus, it suffices to show that

12)

1 m
—> Y. -E[]
m r=1 o

holds with probability at least 1 — §, which can be shown by applying matrix concentration results.
Note

Vil < 53, and E[Y; 7] < g - diag{A /(A +X), - A/ (A + M)}

Applying matrix concentration Lemma 7 in [AKM™ 17], we complete the proof.



Equivalence between regularized neural network and kernel ridge regression To establish the
equivalence between training neural network with regularization and neural tangent kernel ridge
regression, the key observation is that the dynamic kernel during the training is always close to the
neural tangent kernel.

Specifically, given training data z1,--- ,z,, € R, we define the dynamic kernel matrix H(t) €
R™*™ along training process as

[H(t)] L — dan(W(t)7xi) dflln(W(t)7xj)
i dw)y 7 dW(t)

Then we can show the gradient flow of training regularized neural net satisfies
d||u* — upn (8)]2 N "
=t O (i (0) T(H )+ AD (" (0 (13)

4 2(Unn (t) — u*) T (H(t) — H®) (Y —u*) (14)
where term (13) is the primary term characterizing the linear convergence of u,,(t) to t*, and
term (14) is the additive term that can be well controlled if H(¢) is sufficiently close to H*. We
argue the closeness of H(t) ~ H°" as the consequence of the following two observations:

* Initialization phase: At the beginning of the training, H (0) can be viewed as approximating

the neural tangent kernel H°* using finite dimensional random features. Note the size of
these random features corresponds to the width of the neural network (scale by the data
dimension d). Therefore, when the neural network is sufficiently wide, it is equivalent to
approximate the neural tangent kernel using sufficient high dimensional feature vectors,
which ensures H (0) is sufficiently close to H*.
In the case of leverage score initialization, we further take the regularization into consid-
eration. We use the tool of leverage score to modify the initialization distribution and
corresponding network parameter, to give a smaller upper-bound of the width of the nets
needed.

* Training phase: If the net is sufficiently wide, we can observe the over-parametrization
phenomenon such that the weight estimate W (¢) at time ¢ will be sufficiently close to
its initialization W (0), which implies the dynamic kernel H (¢) being sufficiently close to
H(0). Due to the fact H(0) ~ H°* argued in initialization phase, we have H (t) ~ H*
throughout the algorithm.

Combining both observations, we are able to iteratively show the (nearly) linear convergence prop-
erty of training the regularized neural net as in following lemma:

Lemma 4.1 (Bounding kernel perturbation, informal). For any accuracy A € (0,1/10). If the

network width m = poly(1/A,1/T,1/€rain, n,d,1/K,1/Ag,log(1/5)) and X = O(ﬁ) with

probability 1 — 6, there exist ey, €5y, € € (0, A) that are independent of t, such that the following
hold forall0 <t <T:

1. ||wr(0) — wy(t)]|2 < ew, Vr € [m]
2. |[H(0) - H(t)[l2 < €y

2 2 —(K2Ao+\)t/2 2
3. Junn(t) — w13 < max{egqy, e VY2 (0) — w3}
Given arbitrary accuracy € € (0, 1), if we choose €ain = €, T = 6( ﬁ) and m sufficiently
large in Lemma 4.1, then we have ||u,, (t) — u*||2 < ¢, indicating the equivalence between training
neural network with regularization and neural tangent kernel ridge regression for the training data
predictions.

To further argue the equivalence for any given test data .5, Wwe observe the similarity between the
gradient flows of neural tangent kernel ridge regression upgk test (t) and regularized neural networks
Unn, test (t) as following:

dunt est t 2 Y — 1 - test t

M =K K 1 (aj . ,X) ( Untk( )) A ° untk, S ( ) ( )
dunn es t 2 X i/ — 1 - t t

’7() =K K (:L' s ) ( unn( )) )\ : unn, es ( )‘ ( )



By choosing the multiplier £ > 0 small enough, we can bound the initial difference between these
two predictors. Combining with above similarity between gradient flows, we are able to show
[tnn test (T7) — Unti test (T)| > €/2 for appropriate ' > 0. Finally, note the linear convergence
property of the gradient of the kernel ridge regression, we can prove |unn test (1) — u:tk’test| > e

Using the similar idea, we can also show the equivalence for test data predictors and the case of
leverage score initialization. We refer to the Appendix for a detailed proof sketch and rigorous
proof.

Remark 4.2. Our results can be naturally extended to multi-layer ReLU deep neural networks with
all parameters training together. Note the core of the connection between regularized NNs and KRR
is to show the similarity between their gradient flows, as in Eq. (15), (16). The gradient flows consist
of two terms: the first term is from normal NN training without regularizer, whose similarity has been
shown in broader settings, e.g. [DZPS19, SY19, ADH " 19a, AZLS19b, AZLS19a]; the second term
is from the {5 regularizer, whose similarity is true for multi-layer ReLU DNNs if the regularization
parameter is divided by the number of layers of parameters trained, due to the piecewise linearity
of the output with respect to the training parameters.

5 Conclusion

In this paper, we generalize the leverage score sampling theory for kernel approximation. We discuss
the interesting application of connecting leverage score sampling and training regularized neural
networks. We present two theoretical results: 1) the equivalence between the regularized neural
nets and kernel ridge regression problems under the classical random Gaussian initialization for
both training and test predictors; 2) the new equivalence under the leverage score initialization. We
believe this work can be the starting point of future study on the use of leverage score sampling in
neural network training.

Broader Impact

The focus of this paper is purely theoretical, and thus a broader impact discussion is not applicable.
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