
We would like to thank all three reviewers for their thoughtful comments. We are pleased with the generally positive1

reception of our work, and we will make sure to incorporate all of the helpful feedback into the camera-ready version.2

Relation to prior synthesis approaches. R3 saw our approach as “very similar to the standard approach for neural3

program synthesis from input-output examples, which typically assumes that the number of input-output examples is4

small, e.g., no more than 10.” We believe our model actually differs significantly from previous approaches in this regard.5

Previous neural I/O synthesis models, such as RobustFill, as well as [17], [18], [10]—designed for a small, fixed number6

of examples—generally use a separate encoder-decoder model (possibly with attention) for each example. Information7

from the separate examples is only combined through a max-pool or vector concatenation bottleneck—there is no8

attention across examples. This makes these models unsuitable for domains where it is necessary to integrate relevant9

information across a large number of diverse examples. To confirm this, we implemented RobustFill on our MiniSCAN10

domain, which only achieves 3%, 4%, 3%, 3.5% accuracy on 3-6 higher-order rules, respectively. In contrast, our model11

encodes each I/O example with an example encoder (ln 115), and then a single decoder model (ln 119) attends over12

these example vectors while decoding. By attending across examples, our approach can focus on the relevant examples13

at each decoding step. This is particularly important for our domains because there are many examples, and only a14

subset are relevant for each decoding step (i.e., each rule). We agree that we did not highlight this distinction enough in15

our submission; we thank R3 for pointing this out, and will incorporate this discussion and new RobustFill results into16

our paper. R1 notes that our submitted code seems to implement a more complicated network than is described in our17

submission. While our code is able to perform a “double attention” mechanism, this work does not use these features of18

the code, and the architecture is as described in the paper. We thank R1 and apologize for this confusion.19

Suitability of our approach to SCAN. According to R2, our paper “shows quite convincingly that neural program20

synthesis methods can infer grammars like the one used in SCAN from a relatively small amount of examples.” On21

the other hand, R3 questions if our approach is suitable for SCAN because it only considers up to 100 examples at a22

time, whereas the SCAN training sets contain >10,000 examples. We agree with R2; we see this as an advantage of23

our system rather than a weakness. While previous approaches require training on tens of thousands of examples, our24

results demonstrate that using our method, 100 examples are enough to achieve perfect performance on 4 SCAN splits.25

Support set selection. R1 and R3 also note that we use heuristics to select support set examples for SCAN. As discussed26

in the supplement (ln 50-61), our heuristics are guided by general principles: we seek to match the distribution of27

examples in the train and test sets. The SCAN dataset is formed by enumerating all possible examples from the SCAN28

grammar up to a fixed depth; our models were trained by sampling examples from the target grammar. This causes a29

distributional mismatch which we rectify by upsampling shorter examples at test time, while ensuring that all rules are30

demonstrated. We ran an additional experiment, re-generating the SCAN data by sampling instead of enumerating. If we31

condition our model on support examples sampled from the underlying SCAN grammar, we are also able to solve SCAN32

from 100 examples. Our revision will report this experiment and move the discussion on the heuristics to the main text.33

Search. Our approach utilizes test-time search, which R3 also suggests is a disadvantage: “The results of [the no search34

baseline] somehow further suggest that the model does not really learn the grammar rules correctly.” We respectfully35

disagree. We see the entire neuro-symbolic system—rather than just the neural component—as the model; in particular,36

the search procedure is an asset of our method. Indeed, our results demonstrate how, because we use test-time search,37

our neural network does not need to be perfectly trained for our overall model to yield excellent prediction accuracy. We38

contrast this with neural-only approaches (as well as the no-search baseline) which require very careful training in order39

to achieve perfect results. In that sense, our approach offers more robustness than a neural-only model would allow.40

Meta-grammar. The reviewers note that our model uses strong supervision in the form of a meta-grammar. We have41

shown how training on examples from a family of grammars can lead to very high accuracy. Although used in this work,42

this amount of strong supervision may not be needed. We see our work as an important step in a larger line of work,43

which can extend our approach to: incorporate grammars which support noise (R2), incorporate RL to replace much of44

the strong supervision, and learn the execution model. In a sense, we agree with R2: “Now that this paper has shown45

how to solve SCAN, maybe the right answer for the community is to move towards harder and more realistic datasets.”46

R3 suggests extending our MiniSCAN experiment to test on grammars with many more rules than the 2-4 in the training47

meta-grammar. We report % accuracy here, for testing on 7-13 higher-order rules, respectively: synth: 96.0, 93.6, 92.0,48

90.5, 83.5, 78.5, 77.5; no search: 59.0, 62.0, 62.5, 56.0, 59.5, 48.5, 52.5; meta Seq2Seq: 58.5, 59.8, 69.0, 62.5, 56.5, 55.5, 53.5.49

This demonstrates both generalization and graceful degradation on grammars with 3x the number of rules vs training.50

Additional questions. R3 asks if the Chinese and Japanese number systems are the same; they are not. For example,51

they differ when the leading digit is 1, or when 0 is a middle digit. R2 asks how tokens are encoded. See supp. ln 93-9752

for details on how we can tokenize in a symbol-agnostic manner. R1 asks how we ensured that grammars are properly53

formatted. If the model predicts a sequence which does not parse into a valid grammar, it is simply discarded and54

another is sampled. R1 asks about errors in the number word experiments. French, for example, contains irregularities55

such as 80 → quatre-vingts (“four twenty”), which our grammar did not support. We will discuss this in camera-ready.56


