
A The Architecture of Decoder Adapters

We mainly follow [34] to design our attention based adapter on the decoder side. Specifically,
the decoder adapter ADEC(Q,K, V ) consists of the attention module, feed-forward layers, layer
normalization and residual connections, where Q,K, V indicate the query, key and value matrices
respectively. The attention module is computed as follows,

ATTN(Q,K, V ) = softmax(
QKT

√
dk

)V,

where dk is the hidden dimension of the key matrix K. We also follow [34] and implement the
multi-head version of the attention module, and please refer to [34] for the details. In our framework,
the query vector is from the decoder side (denoted as HD

l ) while the key and value vectors are both
from the encoder side (denoted as HE). In our experiments, the hidden dimension of encoder and
decoder representations are the same, therefore we have dq = dk = dv = dAdec.

Following the attention layer are the feed-forward layers:

FFN(H) = ReLU(HW1 + b1) ·W2 + b2,

where W1 ∈ RdAdec×dFFN ,W2 ∈ RdFFN×dAdec , b1 ∈ RdFFN , b2 ∈ RdAdec are the parameters to learn
in the FFN layers, and the internal dimension dFFN is set to be consistent with the Transformer
baseline. Specifically, when considering Transformer-Base or Transformer-Big as baselines, we set
dFFN = 2048 or dFFN = 4096 to be consistent with the transformer-base or transformer-big
condigurations.

Along with layer normalization (LN) and residual connections, the computation flow of the proposed
decoder adapter can be written as:

Z = LN
(
ATTN(YBERT(HD

l ), HE , HE) + YBERT(HD
l )
)
,

HD
l+1 = LN (FFN(Z) + Z) ,

which is denoted as ADEC(Q,K, V ) in the main content.

B Decoding Algorithm

While decoding, we follow [8] and utilize a linear decay function to decide the number of masked
tokens in each iteration:

|ym| =
⌊
|y| · T − t

T

⌋
,

where b·c indicates the floor function, and T is the upper bound of the iteration times while t
indicates the number of the current iteration. We set T = 10 over all tasks, therefore after the initial
iteration when all positions are predicted, we will then mask 90%, 80%, ..., 10% tokens in following
iterations. And for each iteration, we only update the probabilities of masked tokens while keeping
the probabilities of unmasked tokens unchanged. In Table 4 we provide an illustration of the decoding
process of our model.

In the main content, we also report the inference latency of different models in Table 1. Specifically,
we set the batch size to 1 while inference and calculate the average per sentence translation time on
newstest2014 for the WMT14 En-De task. We run all models on a single Nvidia 1080Ti GPU for a
fair comparison.

C Detailed Experimental Settings

We list the statistics of datasets utilized in the neural machine translation tasks in Table 5. For
IWSLT14 tasks, we follow the preprocessing script provided in fairseq7. Specifically, we concat
dev2010, dev2012, tst2010, tst2011 and tst2012 as the text set for each task, and the validation
set is split from the training set. For WMT tasks, we follow the dataset settings described in the main
content.

7https://github.com/pytorch/fairseq/blob/master/examples/translation/
prepare-iwslt14.sh
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Table 4: An illustration of our model with different number of decoding iterations k on the test set of
the IWSLT14 De-En task. The underlined words indicate the masked words in the next iteration. “##”
is the segment symbol of wordpiece tokens.

Source: oder das , was ich mir heute vors ##tell , weil was sie sich gedacht haben könnten .

Target: or anything that i imagine because they might have thought .

AB-Net with different iteration k

k = 1: or what i i imagine imagine today because what you might have thought .

k = 2: or maybe what i i imagine today because what you might have thought .

k = 3: or maybe the what i imagine today because what you might have thought .

k = 4: or it is what i imagine today because what you might have thought .

Table 5: Dataset Statistics

IWSLT14 WMT14 WMT16
De-En En↔It En↔Es En↔Nl En↔De En→Fr Ro→En Ro→En + BP

#Train 157k 167k 169k 154k 4.5M 36M 610k 2.6M
#Valid 7k 8k 8k 7k 3k 3k 2k 2k
#Test 7k 6k 6k 5k 3k 3k 2k 2k

While preprocessing, we use the same vocabulary of BERT models to decode
the dataset. As introduced in the main content, with parallel decoding, we use
bert-base-uncased/bert-base-cased (on IWSLT14/WMT tasks) for English,
bert-base-german-cased for German and bert-base-multilingual-cased for other
languages. With autoregressive decoding, we use bert-large-cased for English. Specifically,
bert-base-uncased/bert-base-cased/bert-base-german-cased are equipped with vocabu-
laries containing 30k/29k/30k tokens, while the dictionary of bert-base-multilingual-cased
contains 119k tokens, which is much larger because it consists of the common tokens among 104
languages. For each low-resource language considered in our experiments, directly loading the whole
embedding matrix of the multilingual BERT model will waste a lot of GPU memory. Therefore
we only consider tokens that appear in the training and validation set, and manually modify the
checkpoint of the multilingual BERT to omit the embeddings of unused tokens. In this way, we obtain
dictionaries that contain 24k/16k/17k/16k tokens for Ro/It/Es/Nl respectively, which ultimately save
around 77M parameters in average.

The links to download the BERT models utilized in our paper are listed below:

• bert-base-uncased: https://s3.amazonaws.com/models.huggingface.co/
bert/bert-base-uncased.tar.gz

• bert-base-cased: https://s3.amazonaws.com/models.huggingface.co/bert/
bert-base-cased.tar.gz

• bert-large-cased: https://s3.amazonaws.com/models.huggingface.co/bert/
bert-large-cased.tar.gz

• bert-base-german-cased: https://int-deepset-models-bert.s3.
eu-central-1.amazonaws.com/pytorch/bert-base-german-cased.tar.gz

• bert-base-multilingual-cased: https://s3.amazonaws.com/models.
huggingface.co/bert/bert-base-multilingual-cased.tar.gz
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