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Appendix 1: Derivation of the filter algorithm

In order to develop filter and smoother algorithms we make the following assumptions

(i) p(Yt|Z1:t, Y1:t−1) = p(Yt|Zt, Y1:t−1) (S1)
(ii) p(Zt:T |Z1:t−1, Y1:t−1) = p(Zt:T |Z1:t−1) (S2)
(iii) p(Z1:t|Zt+1:T , Yt+1:T ) = p(Z1:t|Zt+1:T ) (S3)

Equations S2 and S3 imply that

p(Zt|Z1:t−1, Y1:t−1) = p(Zt|Z1:t−1) (S4)
p(Zt|Zt+1:T , Yt+1:T ) = p(Zt|Zt+1:T ). (S5)

Additionally, if the state transition model is a first-order Markov chain we have:

p(Zt:T |Z1:t−1) = p(Zt:T |Zt−1) (S6)
p(Zt|Z1:t−1) = p(Zt|Zt−1) (S7)

The filter algorithm can be derived as follows:

p(Z1:t|Y1:t) ∝ p(Yt|Z1:t, Y1:t−1)p(Z1:t|Y1:t−1) Bayes rule
∝ p(Yt|Zt, Y1:t−1)p(Z1:t|Y1:t−1) From Eq. S1
∝ p(Yt|Zt, Y1:t−1)p(Zt|Z1:t−1, Y1:t−1)p(Z1:t−1|Y1:t−1) Product rule
∝ p(Yt|Zt, Y1:t−1)p(Zt|Z1:t−1)p(Z1:t−1|Y1:t−1) From Eq. S4

Next, the probability function p(Zt|Y1:t) can be computed by marginalizing over Z1:t−1:

p(Zt|Y1:t) ∝ p(Yt|Zt, Y1:t−1)
∑

Z1:t−1

p(Zt|Z1:t−1)p(Z1:t−1|Y1:t−1)

Special case: first-order Markov chain
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If the state transition model follows a first-order Markov chain, then the filter algorithm can be
simplified as follows:

p(Zt|Y1:t) ∝ p(Yt|Zt, Y1:t−1)
∑

Z1:t−1

p(Zt|Z1:t−1)p(Z1:t−1|Y1:t−1)

∝ p(Yt|Zt, Y1:t−1)
∑

Z1:t−1

p(Zt|Zt−1)p(Z1:t−1|Y1:t−1) From Eq. S7

∝ p(Yt|Zt, Y1:t−1)
∑
Zt−1

p(Zt|Zt−1)
∑

Z1:t−2

p(Z1:t−1|Y1:t−1)

∝ p(Yt|Zt, Y1:t−1)
∑
Zt−1

p(Zt|Zt−1)p(Zt−1|Y1:t−1) Law of total probability

Appendix 2: Derivation of the smoother algorithm

The smoother algorithm can be derived as follows:

p(Zt:T |Y1:T ) = p(Zt+1:T |Y1:T )p(Zt|Zt+1:T , Y1:T ) Product rule
= p(Zt+1:T |Y1:T )p(Zt|Zt+1:T , Y1:t) From Eq. S5

= p(Zt+1:T |Y1:T )
∑

Z1:t−1

p(Z1:t|Zt+1:T , Y1:t) Law of total probability

= p(Zt+1:T |Y1:T )
∑

Z1:t−1

p(Zt+1:T |Z1:t, Y1:t)p(Z1:t|Y1:t)
p(Zt+1:T |Y1:t)

Bayes rule

=
p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

∑
Z1:t−1

p(Zt+1:T |Z1:t)p(Z1:t|Y1:t) From Eq. S2

The denominator can be computed by conditioning on Z1:t:

p(Zt+1:T |Y1:t) =
∑
Z1:t

p(Zt+1:T , Z1:t|Y1:t) Law of total probability

=
∑
Z1:t

p(Zt+1:T |Z1:t, Y1:t)p(Z1:t|Y1:t) Product rule

=
∑
Z1:t

p(Zt+1:T |Z1:t)p(Z1:t|Y1:t) From Eq. S2

The probability function p(Zt|Y1:T ) can be computed by marginalizing over Zt+1:T .

Special case: first-order Markov chain

If the state transition model follows a first-order Markov chain, then the smoother algorithm can be
simplified as follows:

p(Zt:T |Y1:T ) =
p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

∑
Z1:t−1

p(Zt+1:T |Z1:t)p(Z1:t|Y1:t)

=
p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

∑
Z1:t−1

p(Zt+1:T |Zt)p(Z1:t|Y1:t) From Eq. S6

=
p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

p(Zt+1:T |Zt)p(Zt|Y1:t) Law of total probability
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Therefore, the marginal distribution p(Zt|Y1:T ) can be computed as

p(Zt|Y1:T ) =
∑

Zt+1:T

p(Zt:T |Y1:T ) Law of total probability

=
∑

Zt+1:T

p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

p(Zt+1:T |Zt)p(Zt|Y1:t)

= p(Zt|Y1:t)
∑

Zt+1:T

p(Zt+1:T |Y1:T )
p(Zt+1:T |Y1:t)

p(Zt+2:T |Zt+1)p(Zt+1|Zt) Product rule and Eq. S7

= p(Zt|Y1:t)
∑
Zt+1

p(Zt+1|Zt)
∑

Zt+2:T

p(Zt+1:T |Y1:T )p(Zt+2:T |Zt+1)

p(Zt+1:T |Y1:t)

= p(Zt|Y1:t)
∑
Zt+1

p(Zt+1|Zt)
∑

Zt+2:T

p(Zt+1:T |Y1:T )p(Zt+2:T |Zt+1)

p(Zt+2:T |Zt+1, Y1:t)p(Zt+1|Y1:t)
Product rule

= p(Zt|Y1:t)
∑
Zt+1

p(Zt+1|Zt)

p(Zt+1|Y1:t)
∑

Zt+2:T

p(Zt+1:T |Y1:T )p(Zt+2:T |Zt+1)

p(Zt+2:T |Zt+1)
From Eq. S2 & S6

= p(Zt|Y1:t)
∑
Zt+1

p(Zt+1|Zt)

p(Zt+1|Y1:t)
p(Zt+1|Y1:T ) Law of total probability

Appendix 3: Hypothesis Tests

Hypothesis test for multiple representations of the original environments

The observation model described in equation 1 is:

p(Yt|Zt = j, Y1:t−1) =

Kj∑
k=1

pk(Yt|Zt = j, Y1:t−1)Ij,k(t). (S8)

To test if multiple representations of the original environments exist, for each j we define the null and
alternative hypotheses as follows

H0 : Kj = 1 H1 : Kj = 2

and use the GLM maximum likelihood ratio test procedure [1]. The likelihood ratio test statistic for
the null hypothesis is given by

λLR = −2 ln
[ supKj=1 p(Y1:T |X1:T )

supKj=2 p(Y1:T |X1:T )

]
. (S9)

where the terms on the numerator and denominator are maximum likelihoods computed under
hypotheses H0 and H1 respectively. The p-value for this test is computed by comparing the observed
statistic, λLR, to a χ2 distribution with degrees-of-freedom equal to the difference between the
number of parameters in the models used in the numerator and denominator of equation S9. With the
significance level α = 0.01 (with no multiplicity correction) the null hypothesis was rejected for 94%
of cells when j = 0, and for 92% of cells when j = 1.

To test if more than two representations of the original environments exist, for each j we define the
null and alternative hypotheses as

H0 : Kj = 2 H1 : Kj > 2 (S10)

and use the GLM maximum likelihood ratio test procedure [1] as explained above. With the
significance level α = 0.01 (with no multiplicity correction) the null hypothesis was rejected for less
than 10% of the cells.

Hypothesis test for state transition model

In the framework specified in section 2.2, we use a first-order Markov chain with two states as our
state transition model. Let q be the probability of going from state 0 (corresponding to environment
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0) to state 1 (corresponding to environment 1). In order to investigate if the fluctuations in the
represented environment in the presence of ambiguous spatial cues are statistically significant, we
consider the following hypotheses:

H0 : q = 0 H1 : q > 0

We perform a Wald test using a normal approximation to the posterior distribution of q given the data.
By assuming a uniform prior distribution for q the posterior distribution can be computed by

p(q|Data) ∝ p(Data|q) =
T∏

t=1

p(Yt|q) =
T∏

t=1

[∑
Zt

p(Yt|Zt, q)p(Zt|q)
]

where p(Yt|Zt, q) is given by equations 1 and 6, and p(Zt|q) can be computed by the output of the
smoother algorithm given in equation 8. The normal approximation is justified based on the posterior
distribution of q depicted in Fig. S1. With the significance level α = 0.01 (with no multiplicity
correction) the null hypothesis was rejected for all cells.

Figure S1: For four different cells, the posterior distribution function is computed and depicted.
Based on the shape of these distribution functions, we used a Normal approximation to perform Wald
tests.

Appendix 4: Comparative analysis for two naive approaches

To explore the advantages of the model structure proposed in this paper, we compared our approach
with 2 naive approaches. The analyses explained below suggest that our approach improves the
decoding accuracy substantially, and these naive approaches cannot yield similar results to those
shown in Fig. 4 of the paper.

Approach 1: using only a single spatial map

In this approach, we set Kj = 1 for all cells and the effect of this assumption on the decoding
results. Here, we concentrate only on trials within original environments, where we know the
correct environment and hence can assess how well is the decoding. For each trial, the average
probability (over time) that the correct environment has been decoded is computed using the state-
space modeling framework and approach 1. Figure S2A shows the results for cells 13 and 56 (two
cells that clearly have multiple representations based on Fig. 2 of the paper), which clearly indicate
that incorporating multiple representations improves decoding substantially. Further, for every cell
in the population, the average probability of decoding the correct environment during the original,
unambiguous environments for this approach is computed and the difference between these values
and the same values when our full state-space modeling approach is used is shown in Fig. S2B. Based
on this analysis, we observed that the state-space model improves decoding accuracy for 87% of the
cells.

Approach 2: decoding directly based on the likelihood of each map, without the state-space
model

In this approach, instead of using a state-space structure, we use the likelihoods given by Eq. (1) of
the paper directly to decode the represented environment. Using this approach, we observed that the
decoded probabilities for each cell were noisier, with means hovering around .5, and large standard
deviations of about 0.35. This issue, which is partly due to the low signal-to-noise ratio of the data,
results in increased uncertainty about the represented environment, and would not be alleviated
with simple fixes such as kernel methods. At the population level, this noisiness drops significantly,
but is still substantial, with an average standard deviation around 0.22. For each cell, the average

4



probability of decoding the correct environment during the original, unambiguous environments for
this approach is computed and the difference between these values and the same values when our full
state-space modeling approach is used is shown in Fig. S2B. Based on this analysis, we observed that
the state-space model improves decoding accuracy for 87% of the cells.

Figure S2: A. Each plot shows a histogram of the average probability (over time) of correctly
decoding the trials within unambiguous environments. The orange histogram shows this for the
full state-space model and the blue one shows the same histogram for Approach 1. B. The average
probability of decoding the correct environment during the original, unambiguous environments for
approaches 1 and 2 were computed, and the difference between these values and the same values
when our full state-space modeling approach is used is shown. For each plot, cells are ordered in a
way that the plot is increasing (the order of the cells is not the same for blue and orange plots).

Appendix 5: Examples of within-trial fluctuations for individual trials at the
population level

Fig. S3 shows the decoded environment for a few sample trials based on the neural activity of the
whole population. In some trials (e. g. trials 65 & 25) we observe few fluctuations, while in other
trials (e. g. trial 2) several rapid fluctuations are observed.

Figure S3: Examples of within-trial fluctuations for three individual trials at the population level.

Appendix 6: Goodness-of-fit for Gamma models

In Eq. 6, we use a history dependent, gamma-distributed generalized linear model with identity link.
Figure S4 illustrates the quality of this fit for a couple of neurons. In addition, an analysis of deviance
for all of the cells in the population did not show statistically significant excessive deviance for the fit
model for any of the neurons.
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Figure S4: For two sample cells, the data points (red), the Gamma fit (blue), and the 95% confidence
band (orange) are depicted. These plots suggest that the Gamma model captures the visible structure
in the data.
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