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Abstract

Sample- and computationally-efficient distribution estimation is a fundamental
tenet in statistics and machine learning. We present SURF, an algorithm for approx-
imating distributions by piecewise polynomials. SURF is: simple, replacing prior
complex optimization techniques by straight-forward empirical probability approx-
imation of each potential polynomial piece through simple empirical-probability
interpolation, and using plain divide-and-conquer to merge the pieces; universal,
as well-known polynomial-approximation results imply that it accurately approxi-
mates a large class of common distributions; robust to distribution mis-specification
as for any degree d < 8, it estimates any distribution to an ¢; distance < 3 times
that of the nearest degree-d piecewise polynomial, improving known factor upper
bounds of 3 for single polynomials and 15 for polynomials with arbitrarily many
pieces; fast, using optimal sample complexity, running in near sample-linear time,
and if given sorted samples it may be parallelized to run in sub-linear time. In
experiments, SURF outperforms state-of-the art algorithms.

1 Introduction
1.1 Background

Estimating an unknown distribution from its samples is a fundamental statistical problem arising in
many applications such as modeling language, stocks, weather, traffic patterns, and many more. It
has therefore been studied for over a century, e.g. [[15]].

. . . [ . . def
Consider an unknown univariate distribution f over R, generating n samples X" = Xi,...,X,,.

An estimator for f is a mapping f : R™ — R. As in many of the prior works, we evaluate f using

the ¢y distance, || f — f||1. The ¢, distance professes several desirable properties, including scale and
location invariance, and provides provable guarantees on the values of Lipschitz functionals of f [6].

Ideally, we would prefer an estimator that learns any distribution. However, arbitrary distributions
cannot be learned with any number of samples. Let u be the continuous uniform distribution over
[0, 1]. For any number n of samples, uniformly select n3 points from [0, 1] and let p be the discrete
uniform distribution over these n3 points. Since with high probability collisions do not occur within
samples under either distribution, v and p cannot be distinguished from the uniformly occurring

samples. As |[u — p|; = 2, it follows that for any estimator f, max;c gy ) E|lf — fl1 > 1.

A common modification, motivated by PAC agnostic learning, assumes that f is close to a natural
distribution class C, and tries to find the distribution in C closest to f. The following notion of
OPT¢(f) considers this lowest distance, and the usual minimax learning rate of C, R,,(C), is the
lowest worst-case expected distance achieved by any estimator,

def . def . A
OPT = inf ||f — R.(C) = E - .
() it 17 = gl Ra(©) E minmax B[ = 1l

As has been considered in [2]], f is said to be a factor-c approximation for C if
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E|f = fll1 < c- OPTe(f) + €n

where as n ~ oo, the statistical rate, €, \, 0 at a rate independent of f, namely, the estimator’s
error is essentially at most ¢ times the optimal. Since for f € C has OPT¢(f) = 0, we see that
€n > R, (C) for any estimator.

The key challenge is to obtain such an estimate for dense approximation classes C. One such class is
the set of degree-d polynomials, P4 and its ¢-piecewise extension, P; 4. It is known that by tuning the
parameters ¢, d, the bias and variance under P 4 can be suitably tailored to achieve several in-class
minimax rates. For example, if f is a log-concave distribution, choosing ¢t = n'/® and d = 1,
OPTp, ,(f) + Rn(Pra) = O(1/n?/%) 3], matching the minimax rate of learning log-concave
distributions. Similarly, minimax rates may be attained for many other structured classes including
uni-modal, Gaussian, and mixtures of all three.

The VC dimension, VC(C), measures the complexity of a class C. For many dense classes, including

Pra» Rn(C) = ©(4/VC(C)/n). For such classes, a cross-validation based estimator f, such as
the minimum distance based selection [6]], across a sufficiently fine cover of C, achieves a factor-3

approximation to C, X
Ellf = flx < 30PT¢(f) + O(V/VC(C)/n).

However, in general, such methods might have time complexity exponential in n. This is especially
significant in modern applications that process a large number of samples. [[1l] provided a near-linear

O(n log® n) time algorithm, ADLS, that still achieves the same factor-3 approximation for P; 4 and
the statistical rate €,, = O(y/t(d + 1)/n). However it leaves some important questions unanswered.

e Q1: ADLS shares the same factor-3 approximation as the generic minimum distance
selection. However, for the constant-polynomial class Py, it is easy to see that the empirical
histogram f achieves a factor-2 approximation, matching a known lower bound [6]. This
raises the question if the factor-3 upper bound can be reduced for higher-degree polynomials
as well, and if it can be achieved with statistical rate near the optimal \/d(t + 1)/n.

e Q2: ADLS requires prior knowledge of the number ¢ of polynomial pieces, which may be
impractical in real applications. Even for structured distribution families, the ¢ achieving
their minimax rate can vary significantly. For example, for log-concave distributions,
t = O(n'/%), and for unimodal distributions, t = ©(n'/?). This raises the question of
whether there are estimators that are optimal for P; 4 simultaneously over all V¢ > 0.

A partial answer for Q1 was provided in [2]] who recently showed that any finite class C can be approx-
imated with the optimal approximation factor of 2, and with statistical rate ¢, = O (|C|'/®/n?/?).
While this result can be adapted to infinite classes like P; 4 by constructing finite covers, as Lemma

in Appendix [E] shows, even for the basic single piece quadratic polynomial class Ps, this yields
en = O(n~1%) > O(n~Y2) = R,,(P,). And as with the minimum distance selection discussed
above, the result is only information-theoretic without a matching algorithm.

Q2 can be partially addressed by using cross-validation techniques, for example based on the
minimum distance selection that compare results for different ¢’s and finds the best. However, as
shown in [6]], this would add an extra approximation factor of at least 3, and perhaps even 5 as
ADLS’s estimates are un-normalized, resulting in ¢ = 5 - 3 = 15. Furthermore this step raises the
statistical rate by an additive O(logn//n).

SURF answers both questions in the affirmative. Theorem | achieves factors < 3 for all degrees
< 8 with optimal €,, = O(R,,(Pg)). Corollary 3| achieves the same factors and a near-optimal

€n = (N’)(Rn(Pt,d)) for any ¢ > 0, even unknown, and runs in time O(n log? n).

The rest of the paper is organized as follows. In Section 2] we describe the construction of intervals
and partitions based on statistically equivalent blocks. In Section [3|we present INT, a polynomial
approximation method for any queried interval based on a novel empirical mass interpolation. In
Section ] we explain the MERGE and COMP routines, that respectively combine and compare
between piecewise polynomial approximations. We conclude in Section [ with a detailed comparison
of SURF and ADLS, and show experimental results that confirm the theory and show that SURF
performs well for a variety of distributions. Proofs of all theorems and lemmas may be found in the
supplementary material.



1.2 Relation to Prior Work

In terms of objectives, SURF is most closely related to ADLS. Briefly, SURF is simpler, because
of which it has a O(n log® n) time complexity compared to O(n log® n), it is parallizable to run in
sub-linear time given sorted samples unlike ADLS that uses VC dimension based approaches. As
mentioned above, it is also more adaptive. On the other hand, when ¢ is known in advance, ADLS
achieves a factor-3 approximation with optimal €,,. For a more detailed comparison, see Section 3]

Among the many other methods that have been employed in distribution estimation, see [16} 3],
SURF is inspired by the concept of statistically equivalent blocks introduced in [[19}[20]. Distribution
estimation methods using this concept partition the domain into regions identified by a fixed number
of samples, and perform local estimation on these regions. These methods have the advantage that
they are simple to describe, almost always of polynomial time complexity in n, and easy to interpret.

The first estimator that used this technique is found in [13]. Expanding on several subsequent
works, the notable work [[12] shows consistency of a family of equivalent block based estimators for
multivariate distributions. See [3]] for a more extensive treatment of this subject. Ours is the first work
that provides agnostic error guarantees for an equivalent block based estimator.

Other popular estimation methods are the Kernel, nearest neighbor, MLE, and wavelets, see [17].
Another related method uses splines, for example [21,9]. While MLE and splines may be used for
polynomial estimation, MLE is intractable in general, and neither provide agnostic error guarantees.

1.3 Main Results

SUREF first uses an interpolation routine INT that outputs an estimate, f; inT € Pq for any queried
interval I. Notice that a degree-d polynomial is determined by the measure it assigns to any d + 1
distinct sub-intervals of 1. While ADLS considers fitting the polynomial that minimizes difference
in measure to the empirical mass on the worst set of d + 1 sub-intervals, we show that for low-
degree polynomials, it suffices to consider certain special sub-intervals. Provided in Lemma(g] they
are functions of d and are sample independent. For d < 8, the resulting estimate is a factor < 3
approximation to Py, with €, = O(R,,(Pq)), the optimal statistical rate for P,.

Theorem 1. Given samples X"~ ~ f for some n > 128, degree d, and an interval I with ny
samples within I, INT takes O(d™ + ny) time, and outputs fr Nt € Py such that

2(d + 1)(][
T b

Ellfrint — fll; < (7”d+1)‘hien7£d”h*f||1+7”d' "

def . . .. .
where g1 = (ng+1)/n, ||.||; is the £, norm evaluated on I, T < 2.4 is the matrix inversion exponent,

rq 18 a fundamental constant whose values are ro = 1,71 = 1.25,r9 &~ 1.42,r3 ~ 1.55, ry < 1.675,
ry < 1.774, rg < 1.857, r7 < 1.930, rg < 1.999 for4 < d < 8.

A few remarks are in order. The additive O(+/qy/n) here is related to the standard deviation in the
measure associated with an interval that has ¢; fraction of samples. For d > 8, r4 > 3 and they may
be evaluated using Lemmalg]

The main routine of SURF, MERGE, then calls INT to obtain a piecewise estimate for any partition
of the domain. MERGE uses COMP to compare between the different piecewise estimates. By
imposing a special binary structure on the space of partitions, we allow for COMP to efficiently
make this comparison via a divide-and-conquer approach. This allows MERGE, and in turn SURF,
to output fSURF in O((d™ + logn)nlog n) time, where 7 is the matrix inversion exponent. fSURF is
a factor-(r4 + 1) approximation for P; 4 Vt > 0. The simplicity of SURF, both the polynomial
interpolation and divide-and-conquer, allow us to derive all constants explicitly unlike in the previous
works. This result is summarized below in Theorem 2]and Corollary [3]

Theorem 2. Given X"~ ! ~ f for some n. > 128 such that n is a power of 2, and parameters d < 8,
o > 2, SURF takes O((d™ + logn)nlogn) time, and outputs fsygp such that w.p. > 1 — 6,

I fsurr — flli < min Z((?"(H—DOz

TeAgp(Xn—1 / a—2
( ) et

ra(av2++v2—1) [5(d+1)grlog%
(V2—-1)? n ’

inf ||h—
it b= /1]




where q; is the fraction of samples in interval I, Ag(X™) is the collection of all partitions of R
whose intervals start and end at a sample point, || - || ; is the £y distance evaluated in interval I,
T < 2.4 is the matrix inversion exponent, and rq > 0 is the constant in Theorem|l]

Corollary 3. Running SURF withd <8, a > 4,

E| fsurr — fll1 < rtn>161 ((rdJr 1) <1 + 2) -OPTp, ,(f)+ O (a t(d+1)>> .

n

2 Intervals and Partitions

Forn > 1, let X(»—1) & X(1), - -, X(n_1) be the increasingly-sorted values of X" ~'. For integers
0 < a < b < n, these samples define intervals on the real line R,
Ia,b = (—OO,X(b)) ifa =0, Ia,b = [X(a)7X(b)) if0<a<b< n, Ia,b = [X(a),OO) if b =n.

def

. . e def
The interval- and empirical-probabilities are P, ; = =

flm dF, and qqp = ”‘T“ Forany 0 < a <
b < n, I, forms a statistically equivalent block [19]], wherein P, ;, ~ Beta(b — a,n — (b — a))
regardless of f, and P, ; concentrates to gg,p.
Lemmad. Forany0 <a<b<mn,e>0,

PTHPa,b _ Qa,b| > e\/@] < 6*(71*1)62/2 + e*(n*1)62qa,b/(2qa,b+2e\/m).
We extend this concentration from one interval to many. For a fixed € > 0, let Q. be the event that

VO<a<b<n, |Pup— qap| < €/qap-
Lemma 5. Foranyn > 128 and € > 0,

P[Qe] >1— TL(TL + 1)/2 . (ef(n71)52/2 + ef(nfl)eQ/(2+26\/ﬁ)) )

Notice that Q. refers to a stronger concentration event that involves /g, V0 < a < b < n and
standard VC dimension based bounds cannot be readily applied to obtain Lemma 5]

A collection of countably many disjoint intervals whose union is R is said to be a partition of R. A
distribution ¢, consisting of interval empirical probabilities is called an empirical distribution, or
that each probability in g is a multiple of 1/n. The set of all empirical distributions is denoted by
Aemp,n- Sinceeach ¢ € § € Agmpn > 1 /n, ¢ may be split into its finitely many probabilities as
d = (q1,...,qk)- These probabilities define a partition if we consider the first increasingly sorted

q1m samples, the next gon samples and so on. For 1 <1 < k, let r; def 23;11 g; (note that ry = 0).
The empirical distribution defines the following interval partition:

7 def
Iq = (Ir171,,(r1+q1)n7 Ir27L,(r2+q2)n, cee Jmn,(rk+qk)n)‘

3 The Interpolation Routine

This section describes IN'T, which outputs an estimate f; vt € P4 for any queried interval 1. WLOG
let I = [0, 1]. A collection, ig = (ng, . ..,nq+1) suchthat 0 =ng <ny <--- <ng <ngy; =1is
said to be a node partition of [0, 1]. Let \; be the set of node partitions and for the set of non-zero
polynomials, Py \ {0}, define r : Ny, Py — [1, 00) and its suprema

1
_det Jo I _ _
r(na,h) = —377—7—> Ta(ha) = sup 7(ng,h). (1
S h hePa\ {0}

Notice that (724, h) > 1 since the absolute integral > the sum of absolute areas. For any node
partition g € Ny, let Ji, ; def [ni—1,nil, i € {1,--+ ,d+ 1} sothat Jn, = (Jay 1, Jng.d+1)
partitions [0, 1]. Let fﬁd € P, be the unique polynomial whose measure on all d + 1 intervals in J,
matches its empirical mass. It is defined as:

fo, ChepyVie{l, -, d+ 1},/ h(z)dz = qs,, ., )
f

where for n; samples that lie within an interval J, ¢ o (ny + 1)/n. Computation of fa , involves
a calculation of d + 1 empirical masses that takes O(n ;) time, and solving a system of d + 1 linear
equations that takes O(d") time, where 7 < 2.4 is the matrix inversion exponent, fora O(n s + d")
run time. The estimate fﬁ , corresponding to any choice of 7y € N satisfies the following:



Lemma 6. For interval I = [0, 1] with empirical probability q;, any ng € Ny, and ¢ > 0, the
estimate fr, @) is such that under event Q,

s = fll < (14 ra(na)) Jof (7= flls +ra(Ra)ev/(d+ Dar.

In Lemma we show that for any iy € Ny, there exists an r4(74) achieving h € Py, and that it
belongs to a special set, Pr, C Py,

Pro @ {nePii3ie{l,....d+1}:vie {1,...,d+1}\{i1},/ h=0}.
MNi—1
In words, Py, is the set of polynomials that has a non-zero area in at most one I € I, ,.
Lemma 7. For any degree-d and g € Ny,

ra(Na) = Sup r(fia, h) = max r(ag, h).
) d nd

_ £, _ .
Let the smallest 74(724) be denoted by 77 def infr,en, 7a(Raq). Lemma shows that there exists an
Tig that attains the infimum. It is denoted by 7} = arg ming e, 74(72q). For d < 3, we calculate
and 7). For 4 < d < 8 we find a gy € N such that the corresponding 74(74) < 2.

Lemma 8. For d < 3, there exists a node collection ) that achieves r7;. These, and their respective
) are given by

~ (0,0.2509,0.7401,1) | ~ 1.42
~ (0,0.1548,0.5,0.8452,1) | ~ 1.56

d ny I

0 ©,1) 1

1 (0,0.5,1) 1.25
2

3

Denoting 15 = (0, ap,1 — v, 1), and n5 = (0, By, 0.5,1 — By, 1), the exact values of o, Bo, are
obtained as roots to a degree-14 and degree-69 polynomial that we explicitly provide. For degrees
4 < d < 8§, the following g € Ny and r4(7iq) provide upper bounds on r};.

d Ng T‘d(’FLd)
4 (0,0.1015,0.348,0.652,0.8985, 1) < 1.675
5 (0,0.071,0.254,0.5,0.746,0.929, 1) < 1.774
6 (0,0.053,0.192, 0.390, 0.610, 0.808, 0.947, 1) <1857
7 (0,0.0405, 0.149, 0.310,0.5,0.690, 0.851,0.9595, 1) < 1.930
8 7(0,0.032,0.119, 0.252, 0.414, 0.586, 0.749, 0.881,0.968, 1) | < 1.999

For a given interval I and d < 8, INT first scales and shifts I to obtain [0, 1]. It then constructs fa 4
using the iy in Lemma The output f; iy is the re-scaled-shifted f7,.

4 The Compare and Merge Routines

This section presents MERGE and COMP, the main routines of SURF. For any contiguous
collection of intervals 7, let f 7Nt be the piecewise polynomial estimate consisting of f 1INT € Py
given by INT in each I € I. The key idea in SURF is to separate interval partitions into a binary
hierarchy, effectively allowing a comparison of all the superpolynomially many (in n) estimates
corresponding to the different interval partitions, but by using only @(n) comparisons.

Recall that n here a power of 2 and define the integer D def log, n. An empirical distribution,
g € Acmp n, is called a binary distribution if each of its probability values take the form 1/ 2¢_ for
some integer 0 < d < D. The corresponding interval partition, Iz, is said to be a binary partition.

Apinn {7 € Dempn : Vg € 3,9 =1/2"9,0 < v(q) < D, v(q) € Z}.

For example ¢ = (1), ¢ = (1/2,1/4,1/4), ¢ = (1/4,1/8,1/8,1/2) are binary distributions.
Similarly, (1/n,...,1/n) = (1/2'°8" ... 1/21°8") is also a binary distribution since n here is a
power of 2 (assume n > 8 so that they are all in A¢ppn). Lemma E] shows that Ay, ,, retains
most of the approximating power of Acp,p . In particular, that for any ¢ € Agmp n, there exists a
binary distribution ¢ € Ay , such that I_q/ has a smaller bias than I_,j, while its deviation under the
concentration event, Q,, is larger by less than a factor of 1/(v/2 — 1).



Lemma 9. For any empirical distribution § € Nemyp n, there exists § € Ay y such that

15, = Fl <07 = flls Y eva< Y ﬂl_ e

q€q’ q9€q

where for any d > 0, f7 is the piecewise degree-d polynomial closest to f on the partition I

For afixed p € Apin n, let Apin n,<p be the set of binary distributions such that for any ¢ € Avpin n <p,
each Iy € I is contained in some Iy € Ip.

Abinn,<p o {G € Dvinn : VI1 € Iy, 35 € I, I C I} 3)

For example if p = (1/2,1/4,1/4) is the binary distribution, (1/4,1/4,1/8,1/8,1/4),
(1/2,1/4,1/8,1/8) € Apinn,<p, Whereas (1/2,1/2) ¢ Apin n,<p-

4.1 The MERGE Routine

The MERGE routine operates in i € {1,...,D} steps (recall D = log, n) where at the end of each
step 2, MERGE holds onto a binary distribution g;. At at the last step ¢ = D, SURF outputs the
piecewise estimate on the partition given by gp, i.e. fsure = f7, 1nr- Let

D)% D — i andlet @; & (1/2]3@, . ,1/2D<i>) .

Initialize o < (1/n,...,1/n). Start with ¢ = 1 and assign § < §;_1. Throughout its run MERGE
maintains § = §;—1 € Apinn,<a;. For instance this holds for i = 1 since @; = (2/n,...,2/n).
MERGE considers merging the probability values in 5 to match it with «;. For example if at step
i=D-1,5=(1/8,1/8,1/4,1/4,1/4), it considers merging (1/8,1/8,1/4) and (1/4,1/4) to
obtain up_1 = (1/2,1/2).

This decision is made by invoking the COMP routine on intervals corresponding to the merged
probability value. In this case COMP is called on intervals I € I corresponding to (1/8,1/8,1/4)
and (1/4,1/4) respectively, along with the tuning parameter -,

'ydéfowrdf\/d—i—l.

While COMP decides to merge depending on the increment in bias on the merged interval versus the
decrease in variance, v tunes this trade-off. A large v results in a decision to merge while a small
has the opposite effect. If COMP (I, ) < 0 the probabilities in 5 corresponding to I are merged and
copied into g;. Otherwise they are copied as is into g;. See Appendix [F.]for a detailed description.

Ateachstepi € {1,...,D}, MERGE calls COMP on 2°() intervals, each consisting of 2’ samples.
Thus each step of MERGE takes O(2°() - (d” 4 log(2?)) - 2) = O((d"™ + logn)2") time. The
total time complexity is therefore O((d™ + logn)2P D) = O((d™ + logn)nlogn).

4.2 The COMP Routine
COMP receives an interval partition I consisting of m samples and the parameter v as input, and
returns a real value that indicates its decision to merge the probabilities under . Let 5 be the set of

empirical probabilities corresponding to I. Let the merged interval be I and let f = fINT’ 1 be the
polynomial estimate on I.

For simplicity suppose I = (I, I5) with empirical mass s, , sy, respectively, and let OPT; p, ,(f) =
minpep, , [|h — fll;. If I is merged, observe that the bias OPT; p, ,(f) > OPTy, p, ,(f) +

OPTy, p, ,(f) increases but since s; = sy, + s1,, \/51 < /51, + /51,, resulting in a smaller
e-deviation under event Q. in Lemma[5] Consider their difference parameterized by the constant -,

1 (f) € (OPTy, p, . (f) + OPTr, 2, o (f) — OPT1p, ,(f)) — 7(V/3T + /31, — v/51)-

If i/ (f) <0, it indicates that the overall £; error is smaller under the merged 7. While pi/ (f) cannot
be evaluated without access to the underlying f, we use a proxy, u; ., (f) that is defined next.

Normalize 5 so that it is a distribution, and consider p € Apiy,m such that 5§ € Apiy m <p and the
. . . = . » \ def | 2 » def
piecewise estimate on Ip, i.e. f7 np. Define Ap (f) = [[f7, ivr — foﬁ’ Aoy = Dpep YWD

A\ def P
nr,(f) = ___max  Ap(f) = Apy-

P:8€Avin,m,<p



COMP returns pr, . ( f) via a divide-and-conquer based implementation, and results in O((d"™ +
logm)m) time. A detailed description is provided in Appendix Lemma shows that under
event Q., fSURF is within a constant factor of the best piecewise polynomial approximation over any
binary partition, plus its deviation in probability under Q. times O(v/d + 1).

Lemma 10. Given samples X"~ ~ f, for some n that is a power of 2, degree d < 8 and the
threshold « > 2, SURF outputs fsyrr in time O((d™ + log n)nlogn) such that under event Q,

A . (Td+1
— < — h —
| e fll_peAbi?:?Xn_l)IZI( T
D

V2 -1

where qr is the empirical mass under interval I, rq is the constant in Theorem|]

rleV24V2-1) M+DW>

S Comparison and Experiments

We compare the factor improvement of SURF with ADLS, expand on larger degrees-d polynomial
approximation, and in particular, address learning Gaussians optimally. We also describe how SURF
benefits from its local nature, enabling a distributed computation. Our experiments show that SURF
is more adaptive than ADLS, and perform additional experiments on both synthetic and real datasets.

The following table compares SURF with ADLS in terms of the expected error. Ford < 8,74 € [2,3)
is the factor in Theorem|I] and 7,w € [2,2.4] are constants. We achieve a lesser factor approximation
at nearly the optimal statistical rate, with an improved time complexity in both n and d.

SURF ADLS
Pu raOPTp, ,(f) + /22 wm@Aﬂ+O@@>
Praandknownt | r4OPTp, ,(f) + (9( td+1)logn 1°g”> 30PTp, ,(f) + O< ‘”1))
Pt.q and unknown ¢ rqmingso (OPTp, ,(f) 15ming>o (OPTp, , (f)
Co(ERE)) | oy Lof)
Time complexity O(nlog®nd") O(nlog® nd*t+)

While for d > 8, SURF does not improve the approximation factor below < 3, we note that
polynomial approximations of larger degrees exhibit oscillatory behavior, for example around the
edges when approximating a pulse. Called the Runge phenomenon [18]], this may result in an
unbounded /,, distance for p > 1. In this scenario it may be preferred to use a lower degree polynomial,
but with an appropriately large ¢. Consider the important case when f is a Gaussian distribution.

As shown in Lemma OPTp, ,(f) = O(1/t*~1). Using the fact that ¢, = O(y/t(d + 1)/n) and
minimizing OPTp, ,(f) + €, over ¢ for a fixed d, we obtain | fsurr — fll = O((d+ 1)/n)%_4d%2.
Even for an astronomical n = 2100 samples, choosing d = 8 ensures that nﬁ < 11. Thus in almost
all scenarios of practical interest we nearly match (upto a v/log n factor) the minimax rate O(1/ n)%
of learning Gaussians. While ADLS avoids this factor of nﬁ, they do so by using d = O(logn)

which may present the above drawbacks. For degrees that are even larger, the Q(d°n log® n) time
taken by ADLS may make it impractical.

In terms of time complexity, SURF benefits from its local nature, enabling a distributed computation.
As detailed in Appendix [F} if provided with pre-sorted samples, a known ¢ and memory m > t, it
can be adapted to run in time O((d™ 4 logn)n max{1/t,logn/m}) < O(n), if t = n. We now
follow up with an experimental comparison. SURF is run with o« = 0.25 and the errors are averaged
over 10 runs. In running ADLS we use the provided code as is. Figure[I] compares the ¢; error in
piecewise-linear estimation using SURF vs ADLS on the distributions considered in [1]], namely, a
beta, Gamma, and Gaussian mixture. The plots correspond to the errors incurred on running SURF,
and ADLS with pieces ¢ = 5, 10, 20,40, 60. While some hyperparameter optimizations may aid
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Figure 1: ¢; error versus number of samples of piece-wise linear SURF and ADLS.
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Figure 2: Evaluation of the estimate output by SURF with degrees d = 1,2,3, a = 0.25, on
f1 = 0.4Beta(3,4) + 0.6Beta(5, 2), fo = 0.4Beta(10, 3) + 0.6Beta(2, 8), and f3 = Beta(6,6).

either algorithms, observe that the errors can be much larger with the wrong ¢. Significantly, the
t = 5 for which the results are comparable, is also roughly the number of pieces that SURF outputs.

Experiments show that SURF learns a wide range of parametric families such as the beta, Gaussian
and Gamma distributions. In Figure [2| we show results on beta mixture distributions over [0, 1],
as they accommodate a wide range of shapes. Other results may be found in Appendix (Gl Let
Beta(a, ) be the beta density with parameters «, 5. We run SURF to estimate three distributions,
as shown in Figure 2(a)] SURF estimates them using piecewise polynomials of degree d = 1,2, 3.
Figures[2(b)H2(d)| show the resulting ¢; errors. Observe that the errors are decaying, and are similar
between distributions. This is not surprising since low degree polynomial approximations largely
rely on local smoothness, which all of the considered densities possess. By the same reasoning, on
increasing d from 1 to 3, the variation in error between distributions increases. The smoother f; starts
incurring a smaller ¢; error than f5 and f5.

Next, we run SURF with d = 2 to estimate f = 0.3fgew,3,10 + 0.7fBeta,17,4 With n =
1024,4096, 16384, 65536. Figure 3] plots the resulting estimates against f. Notice that the esti-
mate not only successively better estimates f in ¢ distance, but also pointwise converges to f.

Finally, we ran SURF on real data sets consisting of salaries from the 1994 US census and electric
signals from the sensorless drive diagnosis dataset [§]], that have been used to evaluate classification

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) n = 1024. (b) n = 4096. (c) n = 16384. (d) n = 65536.

Figure 3: SURF with degree d = 2, o = 0.25 estimating f = 0.3 fgeta,3,10 + 0.7 fBeta, 17,4 With
n = 1024, 4096, 16384, 65536 samples.
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Figure 4: Real data estimates and perplexity of SURF vs MLE based Kernel estimators

algorithms [[10} 4} [14]]. We trim 0.5% of samples on either side and re-scale to obtain 57923
samples that lie in [0, 1]. Figures[4(a)|and [4(c)| show the estimate output by SURF and the similarly
non-parametric, popularly used Kernel estimator with Epanechnikov and Gaussian kernels via the
fitdist () function in MATLAB®. As it can be observed, SURF, without any hidden parameter,
recovers characteristic features of the distribution such as the clusters, mode values, and tails. This is
in contrast with ADLS, that, strictly speaking, cannot be used in this context as it requires additional
cross-validation to tune ¢ based on the number of clusters, etc. The perplexity, or the exponent of
the average negative log-likelihood on unseen samples, is a commonly used measure in practice to
evaluate an estimate. Figures [d(d)] f(b)] compares the perplexity on a test set with one-fourth the
number of samples. As it can be seen, even as fitdist () outputs the perplexity minimizer on the
training set, SURF performs better.

Broader Impact

SUREF is a simple, universal, robust, and fast algorithm for the important problem of estimating
distributions by piecewise polynomials. Real-life applications are likely to be approximated by
relatively low-degree polynomials and require fast algorithms. SURF is particularly well-suited for
these regimes.
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