
Supplementary Materials
A NTK dynamics of NGD: General formulation

The proofs for the convergence of NGD dynamics share a common part among various types of
approximations. Therefore, we first introduce specific conditions that are necessary to prove the
convergence (Conditions 1 and 2), and reveal the convergence under these conditions (Theorem A.3).
Later, we prove that each approximate FIM satisfies Conditions 1 and 2 (layer-wise FIMs in Section
B and unit-wise FIM in Section C).

As preparation for analysis, we summarize our assumptions mentioned in the main text;

Assumption 1. The activation function φ(·) is locally Lipschitz and grows non-polynomially. Its
first-order derivative φ′(·) is also locally Lipschitz.

Assumption 2. Suppose training samples normalized by ‖xn‖2 = 1, and xn 6= xn′ (n 6= n′).

These assumptions are the same as in the NTK theory for GD [8, 9]. Assumption 2 is used to
guarantee the positive definiteness of NTK or its variants. Assumption 1 plays an essential role in the
conventional theory of GD through the following Lemma.
Lemma A.1 ([9]; Local Lipschitzness of the Jacobian). Assume Assumption 1. There is a constant
K > 0 such that for a sufficiently large M and every D > 0, with high probability (w.h.p.) over
random initialization we have

M−
1
2 ‖hl(θ)‖2, ‖δl(θ)‖2 ≤ K, (S.1)

M−
1
2 ‖hl(θ)− hl(θ̃)‖2, ‖δl(θ)− δl(θ̃)‖2 ≤ K‖θ̃ − θ‖2/

√
M, (S.2)

and {
‖J(θ)‖F ≤ K,
‖J(θ)− J(θ̃)‖F ≤ K‖θ − θ̃‖2/

√
M

∀θ, θ̃ ∈ B (θ0, D) , (S.3)

where a ball around the initialization is defined by B (θ0, D) := {θ : ‖θ − θ0‖2 < D}.

The constants K and D may depend on σ2
w, σ2

b , N and L, but independent of M . The matrix
norm || · ||F denotes the Frobenius norm. The meaning of w.h.p. is that the proposition holds with
probability 1 in the limit of large M .

Note that we adopt the NTK parameterization as is usual in the studies of NTK [8–10]. That is, we
initialize W by a normal distribution with a variance 1, and normalize W by the coefficient 1/

√
M

in Eq. (1). In contrast, parameterization defined by θ′ = {W ′, b′} with W ′ ∼ N (0, σ2
w/M) and b′ ∼

N (0, σ2
b ) is so-called the standard parameterization. NTK dynamics in the NTK parameterization

with a constant learning rate η is equivalent to that in the standard parameterization with a learning
rate η/M [9].

We denote the coefficient of the dynamics at time step t by
Θ̄t(x

′, x) := Jt(x
′)Gt(x)−1Jt(x)>/N, (S.4)

where Gt(x) is the FIM on the training samples. We represent Θ̄0(x′, x) by Θ̄(x′, x), and Θ̄(x, x) by
Θ̄ on training samples x, if such abbreviation causes no confusion. Now, we introduce two conditions
to be satisfied by approximate FIMs.

Condition 1 (Isotropic Condition). on random initialization, the following holds
Θ̄ = αI. (S.5)

Condition 2. There is a constant A > 0 such that for a sufficiently large M and every D > 0, with
high probability, the following holds{

η̄‖G−1s J>s ‖2 ≤ A,
η̄‖G−10 J>0 −G−1s J>s ‖2 ≤ A‖θs − θ0‖2/

√
M

∀θs ∈ B (θ0, D) . (S.6)

We define a scaled learning rate η̄ = η/N . The matrix norm || · ||2 denotes the spectral norm.
Condition 2 is a counterpart of the Lipschitzness of the Jacobian (S.3) in GD. We denote θ̃ by θs, and
J(θs) by Js. This notation is intuitive because we prove Theorem A.2 by induction on the parameter
θt at time step t and use Condition 2 at each induction step. We show later that these conditions hold
for our approximate FIMs.
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A.1 Global convergence around the initialization

The proof is composed of two parts. First, we show that the training loss monotonically decreases to
zero (Theorem A.2). Second, we use Theorem A.2 and prove that NGD dynamics of wide neural
networks are asymptotically equivalent to those of linearized models (Theorem A.3). This approach
is similar to the previous work on GD [9].

Let us denote the training error by g(θt) := ft − y. We have the following.

Theorem A.2. Assume Assumptions 1 and 2, and that Conditions 1 and 2 hold. For 0 < ηα < 2
and a sufficiently large M , the following holds with high probability,

‖g(θt)‖2 ≤
(
|1− ηα|+ A′√

M

)t
R0, (S.7)

t∑
j=1

‖θj − θj−1‖2 ≤ AR0

t∑
j=1

(
|1− ηα|+ A′√

M

)j−1
≤ 2AR0

1− |1− ηα|
, (S.8)

with A′ = 4KA2R0/(1− |1− ηα|).

Proof. We prove the inequalities (S.7, S.8) by induction. It is obvious that we have

‖g(θ0)‖2 < R0. (S.9)

for a constant R0 > 0 [9]. It is easy to see that the inequality (S.7) holds for t = 0 and (S.8) hold for
t = 1. Suppose that the inequalities (S.7,S.8) holds at a time step t. Then, we prove the case of t+ 1
as follows. First, note that we have |1− ηα| < 1 and

‖θt+1 − θt‖2 ≤ η̄‖G−1t Jt‖2‖g(θt)‖2 ≤ AR0

(
|1− ηα|+ A′√

M

)t
. (S.10)

For a sufficiently large M , |1 − ηα| + A′√
M
< 1 holds and we obtain the desired inequality (S.8).

Next, The error at t+ 1 is given by

‖g (θt+1) ‖2 = ‖g (θt+1)− g (θt) + g (θt) ‖2 (S.11)

= ‖J̃t (θt+1 − θt) + g (θt) ‖2 (S.12)

= ‖ − η̄J̃tG−1t J (θt)
>
g (θt) + g (θt) ‖2 (S.13)

≤ ‖I − η̄J̃tG−1t J(θt)
>‖2 ‖g (θt)‖2 (S.14)

≤ ‖I − η̄J̃tG−1t J(θt)
>‖2

(
|1− ηα|+ A′√

M

)t
R0, (S.15)

where we define J̃t =
∫ 1

0
J(θt + s(θt+1 − θt))ds. Here,

‖I − η̄J̃tG−1t J(θt)
>‖2 ≤ ‖I − ηΘ̄‖2 + η‖Θ̄− J̃tG−1t J(θt)

>/N‖2. (S.16)

Using Condition 1, we have
‖I − ηΘ̄‖2 = |1− ηα|. (S.17)

In addition, we have

η‖Θ̄− J̃tG−1t J(θt)
>/N‖2

≤ η̄‖J0G−10 J>0 − J0G−1t J>t ‖2 + η̄‖J0G−1t J>t − J̃tG−1t J>t ‖2 (S.18)

≤ η̄‖G−10 J>0 −G−1t J>t ‖2‖J0‖2 + η̄‖G−1t J>t ‖2‖J0 − J̃t‖2, (S.19)

and

‖J0 − J̃t‖2 ≤
∫ 1

0

‖J0 − J(θt + s(θt+1 − θt))‖2ds (S.20)

≤ K(‖θt − θ0‖2 + ‖θt+1 − θt‖2)/
√
M. (S.21)
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Then, using Condition 2 in (S.19) and (S.8) in (S.21), we obtain

η‖Θ̄− J̃tG−1t J(θt)
>/N‖2 ≤ A′/

√
M, (S.22)

Substituting (S.16)-(S.22) into (S.15), we have

‖g (θt+1) ‖2 ≤
(
|1− ηα|+ A′√

M

)t+1

R0. (S.23)

A.2 Bounding the discrepancy between the original and the linearized model

Let us consider a linearized model given by

f lint (x) := f0(x) + J0(x)(θt − θ0), (S.24)

where the parameter θt is trained by

θt+1 = θt − ηG−10 ∇θL(θt). (S.25)

The training dynamics of this linearized model is solvable and obtained by

f lint (x′) = Θ̄0(x′, x)Θ̄0(x, x)−1(I − (I − ηΘ̄0(x, x))t)(y − f0(x)) + f0(x′). (S.26)

We evaluate the discrepancy between the original dynamics of wide neural networks ft and the above
dynamics of linearized model f lint . As is similar to the studies on GD [8, 9], we use Grönwall’s
inequality. Precisely speaking, the previous works mainly focused on the continuous time limit and
gave no explicit proof on the discrete time step. In the following, we show it by using a discrete
analog of Grönwall’s inequality.
Theorem A.3. Assume the same setting as in Theorem A.2. For 0 < ηα < 2 and a sufficiently large
M , with high probability, the discrepancy is given by

sup
t
‖f lint (x′)− ft(x′)‖2 . A3/

√
M, (S.27)

on both training and test input samples x′.

The notation . hides the dependence on uninteresting constants.

proof.

(i) On training samples.

Let us denote the training error of the original model by gt(x) := ft(x)−y. and that of the linearized
model by glint (x) := f lint (x)− y. Note that f lint − ft = glint − gt. First, consider the trivial case of
ηα = 1. By definition, we have glin0 = g0 and glint = 0 for t > 0. we also have ||gt||2 = (A′/

√
M)t

(t > 0) from Theorem A.2. Thus, we obtain the result.

Next, consider the case of ηα 6= 1. Denote a difference between time steps by ∆ft := ft+1 − ft. We
have

∆(1− ηα)−t(glint − gt)
= η(1 + ηα)−t−1[(αI − J̃tG−1t J>t /N)(glint − gt)− (αI − J̃tG−1t J>t /N)glint ], (S.28)

where J̃t is the same as defined in (S.15) and

gt+1 = gt + J̃t(θt+1 − θt) = (I − ηJ̃tG−1t J>t /N)gt. (S.29)

We have also used glint+1 = (1− ηα)glint .

Taking the summation over time steps, we have

glint+1 − gt+1 = η

t∑
s=0

(1− ηα)t−s[(αI − Θ̃s)(g
lin
s − gs)− (αI − Θ̃s)g

lin
s ], (S.30)
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where we denote Θ̃t := J̃tG
−1
t J>t /N . Put ut := ‖glint − gt‖2 and Zs := αI − Θ̃s. By taking the

norm of the above equation, we have

|1− ηα|−tut+1 ≤ η
t∑

s=0

|1− ηα|−s(‖Zs‖2us + ‖Zs‖2‖glins ‖2). (S.31)

We use the following discrete analogue of Grönwall’s inequality (Theorem 4 in [30]). Suppose βt,
γt, and Ut+1 (t = 0, 1, 2, ...) are non-negative sequences of numbers with β0 = γ0 = 0, and c > 0.
Then, the inequality

Ut+1 ≤ c+

t∑
s=0

βsUs + γt (S.32)

implies that

Ut+1 ≤ (c+ γt)

t∏
s=0

(1 + βs). (S.33)

The inequality (S.31) corresponds to (S.32) by setting

Ut = |1− ηα|−tut, (S.34)
βs = η‖Zs‖2 (s > 0), (S.35)

γt = η

t∑
s=0

|1− ηα|−s‖Zs‖2‖glins ‖2 (t > 0), (S.36)

c = η‖Z0‖2‖glin0 ‖2. (S.37)

Note that we can set β0 = 0 since we have u0 = 0. The discrete analogue of Grönwall’s inequality
(S.33) measures the discrepancy between the original and the linearized model. In the same way as in
(S.22), we have

βs ≤ A′/
√
M. (S.38)

Let us remind that we defined A′ = 4KA2R0/(1− |1− ηα|). Similary, we have

c ≤ η‖Θ̃0 − αI‖2R0 < R0A
′/
√
M (S.39)

and

γt ≤
t∑

s=0

|1− ηα|−sA′ · |1− ηα|sR0/
√
M = (t+ 1)R0A

′/
√
M. (S.40)

Finally, the inequality (S.33) gives

ut+1 ≤ |1− ηα|t+1(t+ 2)R0A
′/
√
M(1 +A′/

√
M)t (S.41)

= (t+ 2)R0|1− ηα||1− ηα+ (1− ηα)A′/
√
M |tA′/

√
M. (S.42)

By taking a sufficiently large M , |1− ηα+ (1− ηα)A′/
√
M |t converges to zero exponentially fast

with respect to t. Therefore, we have

sup
t

(t+ 2)|1− ηα+ (1− ηα)A′/
√
M |t = O(1), (S.43)

where O(·) is the big O notation. After all, we obtain ut+1 . A2/
√
M .

(ii) On test samples.

The discrepancy on the test samples x′ is upper bounded by the discrepancy on the training samples
as follows. Note that we have

gt+1(x′) = gt(x
′)− η̄J̃t(x′)G−1t J>t gt (S.44)

by using J̃t, and
glint+1(x′) = glint (x′)− η̄J0(x′)G−10 J>0 g

lin
t (S.45)
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from Eq. (S.26). Then, we have

‖glint+1(x′)− gt+1(x′)‖2

≤ η̄
t∑

s=0

‖J̃s(x′)G−1s J>s − J0(x′)G−10 J>0 ‖2‖glins ‖2 + η̄

t∑
s=0

‖J̃s(x′)G−1s J>s ‖2‖gs − glins ‖2

(S.46)

≤ η̄R0

t∑
s=0

‖J̃s(x′)G−1s J>s − J0(x′)G−10 J>0 ‖2|1− ηα|s (S.47)

+ η̄

t∑
s=0

(‖J0(x′)G−10 J>0 ‖2 + ‖J̃s(x′)G−1s J>s − J0(x′)G−10 J>0 ‖2)‖gs − glins ‖2. (S.48)

The Lipschitzness of Lemma A.1 and Condition 2 give

‖J̃s(x′)G−1s J>s − J0(x′)G−10 J>0 ‖2 . A2/
√
M. (S.49)

In addition, the inequality (S.42) implies

‖J0(x′)G−10 J>0 ‖2
t∑

s=0

‖gs − glins ‖2 . A3/
√
M. (S.50)

Substituting (S.49) and (S.50) into (S.48), we obtain supt ‖f lint (x′)− ft(x′)‖2 . A3/
√
M .

A.3 Exact NGD

As an example, we show that the exact (pseudo-inverse) FIM (8) satisfies Conditions 1 and 2. We
have

Θ̄(x′, x) = J(x′)(J>J/N + ρI)−1J>/N (S.51)

= J(x′)J>/N(JJ>/N + ρI)−1 (S.52)

= Θ(x′, x)(Θ + ρI)−1. (S.53)

The NTK (Θ) is positive definite [8]. By setting ρ = 0 and substituting the training samples to x′, we
have Condition 1 with α = 1.

Next, we show the exact FIM satisfies Condition 2. We neglect an uninteresting constant 1/N as long
as it causes no confusion. We have

‖G−10 J>0 −G−1s J>s ‖2
≤ ‖J>0 (Θ0 + ρI)−1 − J>s (Θs + ρI)−1‖2 (S.54)

≤ ‖J0 − Js‖2‖(Θ0 + ρI)−1‖2 + ‖Js‖2‖(Θ0 + ρI)−1 − (Θs + ρI)−1‖2. (S.55)

Here, we have

‖(Θ0 + ρI)−1 − (Θs + ρI)−1‖2 ≤ ‖(Θ0 + ρI)−1‖2‖Θ0 −Θs‖2‖(Θs + ρI)−1‖2. (S.56)

The NTK is positive definite [8] and we have

‖Θ−10 ‖2 = 1/λmin(Θ0), (S.57)

which may depend on the sample size, depth and hyper-parameters, but independent of widths. Using
the inequality σmin(A+B) ≥ σmin(A)− σmax(B) where σ denotes singular value, we obtain

σmin(Θs) ≥ σmin(Θ0)− ‖Θs −Θ0‖2. (S.58)

We have σmin(A) = λmin(A) for a semi-positive definite matrix A. Note that

‖Θs −Θ0‖2 ≤ (‖Js‖2 + ‖J0‖2)‖Js − J0‖2 ≤ 2K‖θs − θ0‖2/
√
M. (S.59)

When θs remain around the initialization with a finite radius, i.e., ‖θs − θ0‖ ≤ D, we can take
sufficiently small ‖Θs −Θ0‖2 for a large M . Then, we obtain

λmin(Θs) ≥ λmin(Θ0)/2 (S.60)
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from (S.58). This means that Θs is positive definite and we can take ρ = 0. The inequality (S.56)
becomes

‖Θ−10 −Θ−1s ‖2 ≤
4K

λmin(Θ0)2
‖θs − θ0‖2/

√
M. (S.61)

Substituting this into (S.55), we have

‖J0Θ−10 − JsΘ−1s ‖2 . ‖θ0 − θs‖2/
√
M. (S.62)

Thus, the second inequality of Condition 2 holds. From (S.60), we also obtain the first inequality of
Condition 2:

‖G−1s Js‖2 ≤
2

λmin(Θ0)
K. (S.63)

Since Conditions 1 and 2 hold, the NTK dynamics of exact NGD is given by Theorem A.3.

B Layer-wise NGD

As preparation to prove Theorem 4.1, we define some notations and show lemmas.

We can represent the matrix Θl(x
′, x)(:= ∇θlf0(x′)∇θlf0(x)>/N) by a product between feedfor-

ward and backpropagated signals. Note that the derivative ∇θf is computed by the chain rule in a
manner similar to the backpropagation algorithm: Given a single input x,

∂fk(x)

∂Wl,ij
=

σw√
Ml

· δ(k)l,i (x)hl−1,j(x),
∂fk(x)

∂bl,i
= σb · δ(k)l,i (x), (S.64)

δ
(k)
l,i (x) = φ′(ul,i(x))

∑
j

δ
(k)
l+1,j(x)Wl+1,ji, (S.65)

where δ(k)l,i := ∂fk/∂ul,i, and fk = uL,k denotes the k-th unit of uL (k = 1, ..., C). We have

δ
(k)
L = 1. We omit index k of the output unit, i.e., δl,i = δ

(k)
l,i , as long as the abbreviation causes no

confusion.

Now, we define two N ′ ×N matrices as building blocks of Θl (l = 1, ..., L− 1):

Al(x
′, x) :=

1

Ml
hl(x

′)hl(x)>, (S.66)

where hl(x) represents an N ×Ml matrix whose i-th row corresponds i-th input sample, and

Bl(x
′, x) := δ

(k)
l (x′)δ

(k)
l (x)>, (S.67)

where δl(x) represents an N ×Ml matrix whose i-th row corresponds to i-th input sample. These
two matrices have been investigated in the mean field theory of DNNs [25, 29]. In the infinite-width
limit, we can analytically compute them as is overviewed in Section E. Note that the analytical kernel
of Bl is the same for any k. We also define BL := 1N ′1

>
N and A0 := X ′X>/M0 where X is a data

matrix whose i-th row is the i-th sample vector x. One can easily confirm

Θl(x
′, x) = IC ⊗ (σ2

wBl(x
′, x)�Al−1(x′, x) + σ2

bBl(x
′, x)). (S.68)

This kernel corresponds to the special case of NTK (S.168) where only the l-th layer is used for
training.

In our study, we need to investigate the positive definiteness of Θl to guarantee the convergence of
layer-wise NGD. The following lemmas are helpful.
Lemma B.1 ([8]). Under Assumptions 1 and 2, Al (l = 1, ..., L − 1) is positive definite in the
infinite-width limit.

They proved this lemma in the following way. In the infinite-width limit, we have

Al(x
′, x) = Eu∼N (0,σ2

wAl−1+σ2
b11
>)[φ(u(x′))φ(u(x))]. (S.69)

The Gaussian integral over the inner product implies that when φ is non-constant and Al−1 is
positive definite, Al is positive definite. Therefore, the positive definiteness of A1 leads to that of Al
(l = 2, ..., L− 1). When φ is the non-polynomial Lipschitz function and ‖x‖2 = 1, we can prove the
positive definiteness of A1. Similarly, we obtain the following.
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Lemma B.2. Under Assumptions 1 and 2,Bl (l = 1, ..., L−1) is positive definite in the infinite-width
limit.

Since Al is positive definite under Assumptions 1 and 2, the following matrix is also positive definite:

Ξl(x
′, x) := Eu∼N (0,σ2

wAl−1+σ2
b11
>)[φ

′(u(x′))φ′(u(x))]. (S.70)

The matrix Bl(x′, x) is given by Bl = σ2
wΞl � Bl+1 in the infinite-width limit [25, 29]. Since the

Hadamard product of two positive definite matrices is also positive definite, Bl is positive definite.

Finally, we show the positive definiteness of Θl and an explicit formulation of Θ̄.
Lemma B.3. In the infinite-width limit on random initialization, (i) Θl is positive definite for
l = 2, ..., L, (ii) Θ1 is positive definite if σb > 0 or if A0 is full-rank, and (iii) when all of Θl are
positive definite, the coefficient matrix of dynamics with ρ = 0 is asymptotically equivalent to

Θ̄(x′, x) =

L∑
l=1

(Σ−11L)lΘl(x
′, x)Θ−1l . (S.71)

Proof. Note that Θl is given by (S.68), and that the Hadamard product between positive definite
matrices is positive definite. For l = 2, ..., L, Θl is positive definite because of Lemmas B.1. and
B.2. For l = 1, we need to pay attention to A0 = XX>/M0 which may be singular. if σb > 0, Θ1 is
positive definite because B1 is positive definite. Thus, we obtain the results (i) and (ii).

Now, we have

Θ̄(x′, x) =
1

N
J(x′)(

1

N
S>(Σ⊗ ICN )S + ρI)−1J> (S.72)

=
1

N
(1>L ⊗ ICN )S(x′)S>(

1

N
(Σ⊗ ICN )SS> + ρI)−1(1L ⊗ ICN ) (S.73)

=

L∑
l=1

(Σ−11L)lΘl(x
′, x)Θ−1l (ρ = 0). (S.74)

Note that J> = S>(1L ⊗ ICN ).

The condition of (ii) is not our interest but just a technical remark. We often use σb > 0 in practice
and the condition holds. Even if σb = 0 and A1 is singular, the Hadamard product Θ1 can become
positive definite depending on the training samples.

B.1 Proof of Theorem 4.1

By substituting the training samples to x′ in (S.71), one can easily confirm that Condition 1 holds.

Next, we check Condition 2. We have

‖G−10 J>0 −G−1s J>s ‖2
≤ ‖S>0 ((Σ⊗ ICN )S0S

>
0 /N + ρI)−1 − S>s ((Σ⊗ ICN )SsS

>
s /N + ρI)−1‖2‖1L ⊗ ICN‖2

(S.75)

≤
√
L(‖S0 − Ss‖2‖(Ω0 + ρI)−1‖2 + ‖Ss‖2‖(Ω0 + ρI)−1 − (Ωs + ρI)−1‖2), (S.76)

where we denote Ωs := (Σ⊗ ICN )SsS
>
s /N . Here, we have

‖(Ω0 + ρI)−1 − (Ωs + ρI)−1‖2
≤ ‖(Ω0 + ρI)−1‖2‖Ω0 − Ωs‖2‖(Ωs + ρI)−1‖2 (S.77)

≤ ‖(Ω0 + ρI)−1‖2 max
l
‖Θl(s)−Θl(0)‖2‖Σ‖2‖(Ωs + ρI)−1‖2, (S.78)

where we denote Θl at time step t by Θl(t). Note that Θl(0) is positive definite from Lemma B.3,
and that we supposed the positive definiteness of Σ. When ρ = 0,

‖Ω−10 ‖2 = (min
l
λmin(Θl(0)))−1λmin(Σ)−1. (S.79)
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Using the inequality σmin(A+B) ≥ σmin(A)− σmax(B) and σmin(Ωs) = λmin(Ωs), we have

λmin(Ωs) ≥ λmin(Ω0)− ‖Ωs − Ω0‖2 (S.80)
≥ λmin(Ω0)−max

l
‖Θl(s)−Θl(0)‖2‖Σ‖2. (S.81)

In the same way as in (S.59), we have

‖Θl(s)−Θl(0)‖2 ≤ (‖Jl(s)‖2 + ‖Jl(0)‖2)‖Jl(s)− Jl(0)‖2 (S.82)

≤ 2K‖θs − θ0‖2/
√
M. (S.83)

Note that Jl is the l-th block of J and we can use Lemma A.1 because of ‖Jl‖2 ≤ ‖J‖F . In the same
way as in (S.60), we obtain

λmin(Θl(s)) ≥ λmin(Θl(0))/2 (S.84)
from (S.81) and (S.83). Then, we can set ρ = 0 and the inequality (S.78) becomes

‖Ω−10 − Ω−1s ‖2 . ‖θs − θ0‖2/
√
M. (S.85)

Substituting this into (S.76), we obtain the second inequality of Condition 2:

‖J0Θ−10 − JsΘ−1s ‖2 . ‖θ0 − θs‖2/
√
M. (S.86)

In addition, Ineq. (S.84) implies the first inequality of Condition 2:

‖G−1s Js‖2 ≤ 2(min
l
λmin(Θl(0)))−1λmin(Σ)−1

√
LK. (S.87)

We now finish the proof.

Remark on the pseudo-inverse. It may be helpful to remark that the deformation (S.72-S.74)
corresponds to taking the pseudo-inverse of the layer-wise FIM. The similar deformation in the
parameter space is given by

∆θ = G−1t J>t (f − y) (S.88)

= S>t (StS
>
t )−1((Σ−11L)⊗ ICN )(f − y), (S.89)

where we have omitted an uninteresting constant 1/N . Note that the Moore-Penrose pseudo-inverse
of the layer-wise FIM (ρ = 0) is

G+
t = S>t (StS

>
t )−1(Σ⊗ ICN )−1(StS

>
t )−1St. (S.90)

One can easily confirm that G+
t ∇θL is equivalent to the gradient (S.89).

Remark on singular Σ of exact NGD. Theorem 4.1 assumed the positive definiteness of Σ. When
Σ is singular, Σ inside the matrix inverse (S.73) may cause instability as the damping term gets close
to zero. This instability was empirically confirmed in the singular tri-diagonal case. In contrast to
Theorem 4,1, exact NGD (9) corresponds to Σ = 11> that is singular. It is noteworthy that this Σ
works as a special singular matrix in (S.73). Since S>t (Σ⊗ ICN )St = J>t Jt, Eq. (S.72) becomes
the pseudo-inverse of the exact NGD (9) as follows:

(S>t (Σ⊗ ICN )St + ρI)−1J>t = J>t (JtJ
>
t + ρI)−1. (S.91)

Thus, we can make Σ inside of the inverse disappear and take the zero damping limit without any
instability. Note that the transformation (S.91) holds for any J . For general singular Σ, this instability
seems essentially unavoidable. Potentially, there may exist a combination of a certain singular Σ
and a certain J (e.g. certain network architecture) which can avoid the instability. Finding such an
exceptional case may be an interesting topic, although it is out of the scope of the current work.

B.2 Proof of Lemma 4.3

Let us denote the L× L tri-diagonal matrix (19) by ΣL. The Laplace expansion for determinants
results in |ΣL| = |ΣL−1| − |ΣL−2| with |Σ3| = |Σ4| = −1. It is easy to confirm |Σ3s+2| = 0 while
|Σ3s| = |Σ3s+1| 6= 0. As a side note, it is known that eigenvalues of ΣL are given by

λκ = 1 + 2 cos
κπ

L+ 1
, (S.92)
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for κ = 1, ..., L [31]. Therefore, there is a zero eigenvalue when κπ/(L + 1) = 2π/3. When
L = 3s, 3s+ 1, all eigenvalues are non-zero. When L = 3s+ 2, we have λ2(s+1) = 0.

Next, we compute α for L = 3s, 3s + 1. In general, for a tri-diagonal Teoplitz matrix Σ with the
diagonal term of a and the non-diagonal terms of b, we have [Corollary 4.4 [32]]

1>Σ−11 =
L+ 2bs

a+ 2b
, s :=

1 + b(σ1 − σ2)

a+ 2b
, (S.93)

where

σ1 :=
1

b

rL+ − rL−
rL+1
+ − rL+1

−
, σ2 :=

(−1)L+1

b

r+ − r−
rL+1
+ − rL+1

−
, r± :=

a±
√
a2 − 4b2

2b
. (S.94)

da Fonseca and Petronilho [32] obtained this formula by using the explicit representation of Σ−1 with
the Chebyshev polynomials of the second kind. By substituting a = b = 1, we have r± = exp(iπ/3)
and we can easily confirm α = s for 3s, and α = s+ 1 for 3s+ 1.

B.3 K-FAC

We suppose C = 1 and σb = 0 to focus on an essential argument of the NTK dynamics. It is easy to
generalize our results to σb > 0 as is remarked in Section B.3.3.

B.3.1 Condition 1

The block diagonal K-FAC (20) is defined with

A∗l :=
σ2
w

NMl
h>l hl, B

∗
l :=

1

N
δ>l δl (l < L), (S.95)

where hl and δl denote N ×Ml matrices whose i-th row corresponds to the i-th input sample. We
set B∗L = 1/N . Then, the st-th entry of Θ̄(x′, x) is given by

Θ̄(x′, x)st =
∑
l

σ2
w

NMl−1
δl(x

′
s)
>(B∗l + ρI)−1δl(xt)hl−1(x′s)

>(A∗l−1 + ρI)−1hl−1(xt). (S.96)

Let us represent the derivative by

∇θlf(xn) =
σw√
Ml−1

(δ>l en)⊗ (h>l en), (S.97)

where en is a unit vector whose n-th entry is 1 and otherwise 0. We have

δl(x
′
s)
>(B∗l + ρI)−1δl(xt) = (δl(x

′)>es)
>(δ>l δl/N + ρI)−1δ>l et (S.98)

= e>s Bl(x
′, x)(Bl/N + ρI)−1et (S.99)

= N(Bl(x
′, x)B−1l )st (ρ = 0), (S.100)

for l ≥ 1. In the last line, we use the positive definiteness shown in Lemma B.2. Similarly, for l ≥ 2,

σ2
w

Ml
hl(x

′
s)
>(A∗l + ρI)−1hl(xt) =

σ2
w

Ml
(hl(x

′)>es)
>(σ2

wh
>
l hl/(MlN) + ρI)−1(h>l et) (S.101)

= σ2
we
>
s Al(x

′, x)(σ2
wAl/N + ρI)−1et (S.102)

= N(Al(x
′, x)A−1l )st (ρ = 0), (S.103)

where we use the positive definiteness shown in Lemma B.1. A0 depends on settings of input data as
follows.

(i) Case of M0 ≥ N
Assume that the input samples are linearly independent (that is, full-rank A0). Then, we can take
ρ = 0 and we obtain (S.103) for l = 1 as

N ·X ′X>(XX>)−1. (S.104)
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After all, we have

Θ̄(x′, x) = N

L∑
l=1

Bl �Al−1, (S.105)

where
Bl := Bl(x

′, x)B−1l , Al := Al(x
′, x)A−1l , (S.106)

for 0 < l < L and BL := 1N ′1
>
N . By setting the training samples to x′, we have

Θ̄ = αI, α = NL. (S.107)

(ii) Case of M0 < N

While we can take the pseudo-inverse of X in (S.104) for M0 ≥ N , XX> becomes singular for
M0 < N and we need to use A∗0 in the K-FAC gradient. Assume that A∗0 is full-rank. By setting
ρ = 0, Θ̄(x′, x) becomes (S.105) with

A0(x′, x) = X ′(X>X)−1X>. (S.108)

Therefore, for the training samples, we obtain
1

N
Θ̄ = (L− 1)I + (I �X(X>X)−1X>). (S.109)

This means that the isotropic condition does not hold in naive settings. Zhang et al. [16] pointed out a
similar phenomenon in K-FAC training of the first layer of a shallow ReLU network. Fortunately,
they found that by using pre-processing of X known as the Forster transformation, we can transform
X into X̄ such that X̄>X̄ = N

M0
I while keeping the normalization of each sample (‖x̄‖2 = 1;

Assumption 2). After the Forster transformation, we have

A0(x′, x) =
M0

N
X ′X̄> (S.110)

and the isotropic condition as

Θ̄ = αI, α = N(L− 1) +M0. (S.111)

B.3.2 Condition 2

Next, we check Condition 2. By using the representation (S.97), the l-th layer part of G−1J> is
given by

(B∗l + ρI)−1 ⊗ (A∗l−1 + ρI)−1(∇θlfen)

=

((
δ>l (Bl/N + ρI)−1

)
⊗

(
σw√
Ml−1

h>l−1(σ2
wAl−1/N + ρI)−1

))
︸ ︷︷ ︸

=:Zl

(en ⊗ en). (S.112)

Therefore,

‖G−10 J>0 −G−1s J>s ‖2 ≤ max
l
‖Zl(0)Λ− Zl(s)Λ‖2‖1L ⊗ ICN‖2

≤ max
l
‖Zl(0)− Zl(s)‖2

√
NL, (S.113)

where Λ is an N2 ×N matrix whose i-th column is ei ⊗ ei. Define

ZB(s) = δl(s)
>(Bl(s)/N + ρI)−1, (S.114)

ZA(s) =
σw√
Ml−1

hl−1(s)>(σ2
wAl−1(s)/N + ρI)−1. (S.115)

As we discussed in the above subsection, ZA(s) at l = 1 is given by (XX>)−1X for M0 ≥ N and
X(X>X)−1 for M0 < N . We have

‖Zl(0)− Zl(s)‖2
≤ ‖ZB(s)⊗ ZA(s)− ZB(0)⊗ ZA(0)‖2 (S.116)

≤ ‖ZB(s)− ZB(0)‖2‖ZA(s)‖2 + ‖ZB(0)‖2‖ZA(s)− ZA(0)‖2. (S.117)
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Here, we can use the Lipschitzness in the same way as in (S.55). For example, we have

‖ZB(s)− ZB(0)‖2 ≤ ‖δl(0)− δl(s)‖2‖(Bl(0)/N + ρI)−1‖2
+ ‖δl(s)‖2‖(Bl(0)/N + ρI)−1 − (Bl(s)/N + ρI)−1‖2). (S.118)

Lemma A.1 gives Lipschitz bounds of terms including δl. From Lemma B.2, we have

‖Bl(0)−1‖2 = 1/λmin(Bl(0)). (S.119)

By the same calculation as in (S.56), we have

‖Bl(0)−1 −Bl(s)−1‖2 . ‖θs − θ0‖2/
√
M. (S.120)

In this way, we can obtain the Lipschitz bound of ‖ZB(s) − ZB(0)‖2. Similarly, we obtain the
bounds of ‖ZA(s)−ZA(0)‖2, ‖ZA(s)‖2‖ and ‖ZB(s)‖2. They give a bound of (S.113) via (S.117),
and we obtain the second inequality of Condition 2:

‖G−10 J>0 −G−1s J>s ‖2 . ‖θs − θ0‖2/
√
M. (S.121)

In the same argument, we also obtain the first inequality of Condition 2 via

‖G−1s Js‖2 ≤ max
l
‖Zl(s)‖2

√
NL. (S.122)

After all, we confirm both Conditions 1 and 2 are satisfied, and the NTK dynamics is given by
f lint (x′) in Theorem A.3

B.3.3 K-FAC with bias terms

We can obtain the K-FAC with bias terms by replacing the vector σw√
Ml
hl(x) ∈ RMl with

[ σw√
Ml
hl(x);σb] ∈ RMl+1. For M0 ≥ N , we just need to replace σ2

wAl(x
′, x) by σ2

wAl(x
′, x) +

σ2
b11> for all l ≥ 0. This approach is applicable to M0 < N as well. We can regard [ σw√

M0
xn;σb]

as new input samples and apply the Forster transformation to them. However, it may be unusual to
normalize xn with such an additional one dimension (σb). One alternative approach is to use the
following block FIM;

G =

[
GK-FAC 0

0 ∇bf∇bf>/N2 + ρI

]
, (S.123)

where the weight part is given by K-FAC and the bias part is given by a usual FIM. In this case, since
the weight part does not include the additional dimension, we can use the Forster transformation as
usual. We have

1

N
Θ̄(x′, x) =

L∑
l=1

Bl � (Al−1 + 11>). (S.124)

B.4 Min-norm solution

Let us denote Eλ(θ) := 1
2N ‖y − J0θ‖

2
2 + λ

2 θ
>G0θ. For λ > 0, it has a unique solution θ∗λ :=

argminθEλ>0(θ). After a straight-forward linear algebra,∇θEλ>0(θ) = 0 results in

θ∗λ = (λG0 + J>0 J0/N)−1J>0 y/N (S.125)

= G−10 J>0 (λI + J0G
−1
0 J>0 /N)−1y/N (S.126)

=
1

λ+ α
G−10 J>0 y/N, (S.127)

where we used a matrix formula (A+BB>)−1B = A−1B(I+B>A−1B)−1 (Eq.(162) in [22]) and
the isotropic condition J0G−10 J>0 /N = αI . After all, limλ→0 θ

∗
λ is equivalent to the NGD solution

θ∞.
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C Unit-wise NGD

First, we show that the unit-wise FIM satisfies Condition 1 under a specific assumption. Second, we
reveal that Condition 2 holds with keeping a finite damping term ρ > 0. Finally, by taking the zero
damping limit and using Theorem A.3, we prove the fast convergence of unit-wise NGD (Theorem
5.1).

We suppose C = 1. We also assume M0 ≥ N , and linear independence of input samples (that is,
full-rank A0). The case of M0 < N is discussed in Section C.2.2.

C.1 Condition 1

We show that under the following assumption, Condition 1 holds:
Assumption C.1 (the gradient independence assumption [20, 25–28]). When one evaluates a sum-
mation over δl,i(xn) (i = 1, ...,Ml), one can replace weight matrices Wl+1,ji in the chain rule (S.65)

with a fresh i.i.d. copy, i.e., W̃l,ji
i.i.d.∼ N (0, 1).

Assumption C.1 has been used as an essential technique of the mean field theory for DNNs. This
assumption makes random variables δl,i (i = 1, ...,Ml) independent with each other, and enables us
to use the law of large numbers or the central limit theorem in the infinite-width limit. Schoenholz
et al. [25] found that some order parameters (e.g.,

∑
i δl,i(xn)2) obtained under this assumption show

a very good agreement with experimental results. Excellent agreements between the theory and
experiments have been also confirmed in various architectures [26, 27] and algorithms [28]. Thus,
Assumption C.1 will be useful as the first step of the analysis.
Lemma C.2. Suppose Assumption C.1. on random initialization, for a sufficiently large M and
constants γl > 0, the unit-wise FIM satisfies

Θ̄ = αI, α =

L−1∑
l=1

γlMl, (S.128)

in the zero damping limit (ρ→ 0).

Proof. We can represent the unit-wise FIM (23) by using

Sunit,t :=


D1 O

D2

. . .
O DL

 , Dl :=


∇
θ
(l)
1
ft O

∇
θ
(l)
2
ft

. . .
O ∇

θ
(l)
Ml

ft

 . (S.129)

In this proof, we consider the random initialization and omit the index of t = 0. Dl is an MlN ×
Ml(Ml−1 + 1) block matrix whose diagonal blocks are given by∇

θ
(l)
i
f , an N × (Ml−1 + 1) matrix.

Note that J> = S>unit(1M ′ ⊗ IN ) with M ′ :=
∑L
l=1Ml. We have

Θ̄ =

L∑
l=1

Ml∑
i=1

Θl,i(Θl,i + ρI)−1, (S.130)

where we define Θl,i := ∇
θ
(l)
i
f∇

θ
(l)
i
f>/N (N × N matrix). Here, we need to be careful on the

positive definiteness of Θl,i. We have

Θl,i = diag(δl,i)Al−1diag(δl,i), (S.131)

where diag(y) denotes a diagonal matrix with diagonal entries given by entries of the vector y. If
any entry of δl,i takes zero, Θl,i is singular. For instance, in ReLU networks, we will be likely to get
δl,i(xn) = 0 because φ′(u) = 0 for u ≤ 0.

When δl,i(xn) 6= 0 for n = n1, n2, ..., nr, we rearrange δl,i (N dimensional vector) into another N
dimensional vector δ̄l,i whose first r entries take non-zero and the others take zero. Because this is just
a rearrangement of the entry, we can represent it by δl,i = Qδ̄l,i where Q is a certain regular matrix
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given by a product of elementary permutation matrices for entry switching transformations. Then,
we have diag(δl,i) = Qdiag(δ̄l,i)Q. Note that, because the inverse of the elementary permutation
matrix is itself, we have Q = Q−1 = Q>.

Using this rearrangement notation of the entries, we have

Θl,i = Qdiag(δ̄l,i)Āl−1diag(δ̄l,i)Q, (S.132)

with Āl−1 := QAl−1Q. We can represent it by

diag(δ̄l,i)Āl−1diag(δ̄l,i) =

[
diag(δ̄′l,i)Ā

′
l−1diag(δ̄′l,i) O
O O

]
, (S.133)

where δ̄′l,i ∈ Rr and Ā′l−1 ∈ Rr×r denote the non-zero part. Then, we have

Θl,i(Θl,i + ρI)−1 = Q

[
diag(δ̄′l,i)Ā

′
l−1diag(δ̄′l,i)(diag(δ̄′l,i)Ā

′
l−1diag(δ̄′l,i) + ρI)−1 O

O O

]
Q,

(S.134)

where we use O · (I/ρ) = O for ρ > 0 for the zero part of (S.133). This means that the one-sided
limit is given by

lim
ρ→0+

Θl,i(Θl,i + ρI)−1 = Q

[
Ir O
O O

]
Q. (S.135)

We have used that Ā′l, i.e., a submatrix of Āl, is positive definite because the original matrix Al is
positive definite by Lemma B.1. Since we can rearrange the matrix into the original alignment with
the operation Q(·)Q, we have

Q

[
Ir O
O O

]
Q = diag(1δl,i 6=0(δl,i)), (S.136)

where we define an indicator function by 1A(x) := 1 (when A holds), 0 (otherwise).

After all, we have

lim
ρ→0+

Θ̄ =

L∑
l=1

Ml∑
i=1

diag(1δl,i 6=0(δl,i)). (S.137)

Note that we have ML = 1 and the contribution of the L-th layer in (S.137) is negligible at a
large M . We have δl,i = φ′(ul,i)

∑
j δl+1,jW̃l+1,ji. Since Wl is a Gaussian random matrix, ul,i is

Gaussian random variable (for i = 1, ...,Ml) [9, 25]. As is used in these previous works, its variance
(ql :=

∑Ml

i=1 u
2
l,i/Ml) is given by

ql+1 =
σ2
w√

2πql

∫
duφ(u)2 exp

(
− u

2

2ql

)
+ σ2

b , (S.138)

with q0 = ‖xn‖2/M0 = 1/M0. When we evaluate the summation over δl,i in (S.137), the indicator
function requires a careful evaluation on the case of δl,i = 0. Let us denote τl,i :=

∑
j δl,jW̃l,ji. We

have δl,i = φ′(ul,i)τl+1,i. Here, we use Assumption C.1 to decouple the contribution of φ′(ul,i) and
that of τl+1,i. We have

τl+1,i ∼ N (0,
∑
j

δl+1,j(xn)2), (S.139)

for i = 1, ...,Ml. In the large M limit,
∑
j δl+1,j(xn)2 converges to a constant known as the order

parameter [25, 29]. Because Assumption C.1 enables us to take the Gaussian integral over ul,i and
τl+1,i independently, we obtain

1

Ml

Ml∑
i=1

1δl,i(xn)6=0(δl,i(xn)) =
1√
2πql

∫
du1φ′(u)6=0(u) exp

(
− u

2

2ql

)
(S.140)

=: γl. (S.141)

Since this holds independently of the sample index n, we obtain (S.128).
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From this Lemma, one can see that Condition 1 holds. The constants γl depend on the shape of the
activation function. For instance, when one uses activation functions with φ′(x)2 6= 0 for almost
everywhere (e.g. Tanh), we have γl = 1. In Section C.3.3, we explicitly show γl in the case of
(shifted-) ReLU. Figure S.2 shows an excellent agreement with the numerical values of α and our
analytical solutions obtained by (S.141).

Remark on the justification of Assumption C.1: After the submission of our paper, Yang [29]
rigorously justified that various calculations based on the gradient independence assumption results
in correct answers. In particular, Theorem 7.2 [29] justifies our evaluation of (S.141) when the
activation function is polynomially bounded. The replacement with the fresh i.i.d. copy naturally
appears through a Gaussian conditioning technique even in the exact calculation without the gradient
independence assumption. It leads to the same Gaussian integrals and decoupling between ul,i and
τl+1,i as in (S.137)-(S.141).

C.2 Condition 2 and Proof of Theorem 5.1

C.2.1 Condition 2

Lemma C.3. There is a constant A > 0 such that for a sufficiently large M , a damping term ρ > 0
and every D > 0, the following holds with high probability,{

η̄‖G−1unit,sJ
>
s ‖op ≤ Aρ−1

η̄‖G−1unit,0J
>
0 −G−1unit,sJ

>
s ‖op ≤ Aρ−2‖θs − θ0‖2/

√
M

∀θs ∈ B (θ0, D) , (S.142)

where the learning rate is η = c/M for c > 0.

Proof. For η = c/M , we have
η̄‖G−10 J0 −G−1s Js‖2
≤ η̄‖S(0)>(S(0)S(0)>/N + ρI)−1 − S(s)>(S(s)S(s)>/N + ρI)−1‖2‖1M ′ ⊗ ICN‖2

(S.143)

≤ c′max
l,i

(‖Jl,i(0)− Jl,i(s)‖2‖(Θl,i(0) + ρI)−1‖2

+ ‖Jl,i(s)‖2‖(Θl,i(0) + ρI)−1 − (Θl,i(s) + ρI)−1‖2), (S.144)
where we denote Sunit,s by S(s), the Jacobian∇

θ
(l)
i
fs by Jl,i(s), and an uninteresting constant by c′.

Here, we have
‖(Θl,i(0) + ρI)−1 − (Θl,i(s) + ρI)−1‖2
≤ ‖(Θl,i(0) + ρI)−1‖2‖Θl,i(0)−Θl,i(s)‖2‖(Θl,i(s) + ρI)−1‖2. (S.145)

Using the inequality ‖(A+B)−1‖2 ≤ 1/(λmin(A) + λmin(B)) ≤ 1/λmin(B), we obtain
‖(Θl,i(0) + ρI)−1‖2 ≤ 1/ρ. (S.146)

Using the inequality σmin(A+B) ≥ σmin(A)− σmax(B), we obtain
λmin(Θl,i(s) + ρI) ≥ λmin(Θl,i(0) + ρI)− ‖Θl,i(s)−Θl,i(0)‖2. (S.147)

In the same way as in (S.59), we have
‖Θl,i(s)−Θl,i(0)‖2 ≤ (‖Jl,i(s)‖2 + ‖Jl,i(0)‖2)‖Jl,i(s)− Jl,i(0)‖2 (S.148)

≤ 2K‖θs − θ0‖2/
√
M. (S.149)

Note that Jl,i is a block of J . We have ‖Jl,i‖2 ≤ ‖J‖F and can use Lemma A.1. In the same way as
in (S.60), we obtain

λmin(Θl,i(s) + ρI) ≥ λmin(Θl,i(0) + ρI)/2 ≥ ρ/2 (S.150)
from (S.147) and (S.149). Substituting (S.146), (S.149) and (S.150) into the inequality (S.145), we
have

‖(Θl,i(0) + ρI)−1 − (Θl,i(s) + ρI)−1‖2 ≤ 2K‖θs − θ0‖2ρ−2/
√
M. (S.151)

Substituting this into (S.144), we obtain the second inequality of Condition 2:

η̄‖G−10 J0 −G−1s Js‖2 ≤ Aρ−2‖θ0 − θs‖2/
√
M. (S.152)

In addition, Ineq. (S.150) implies the first inequality of Condition 2:
η‖G−1s Js‖2 ≤ Aρ−1, (S.153)

where an uninteresting constant A is independent of M and ρ. We obtain the desired result.
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(s = 1)  

Figure S.1: Fast convergence of unit-wise NGD. We trained deep networks with different activation
functions (L = 3, C = 1, Ml = M = 4096, σ2

w = 2, and σ2
b = 0.5) on two-class classification on

MNIST (’0’ and ’7’; N = 100). (Left) Tanh activation (α = M × 2). (Center) ReLU activation
(α = M × 1). (Right) Shifted ReLU activation with s = 1 (α = M × 1.723...).

C.2.2 Convergence of training dynamics (Proof of Theorem 5.1)

Let us consider a zero damping limit of ρ = 1/Mε (ε > 0). Under the zero damping limit, Lemma
C.2 holds and the isotropic condition is satisfied. Regarding Condition 2, note that we keeps ρ > 0 in
Lemma C.3 while we exactly set ρ = 0 in Condition 2 of other FIMs. The effect of ρ > 0 on the
bound appears as Aρ−1 and Aρ−2 in Lemma C.3. When ρ is small, we have ρ−1 < ρ−2 and the
first inequality of (S.142) is also bounded by Aρ−2. Therefore, A in Theorem A.3 is replaced by
Aρ−2 in unit-wise NGD. Note that in Theorem A.3 and its proof, A appears in the form of A2/

√
M ,

or A3/
√
M at the worst case. By taking the zero damping limit with 0 < ε < 1/12, we obtain the

bound of Theorem A.3 as follows:

sup
t
‖f lint − ft‖2 . A3ρ−6/

√
M = A3/M1/2(1−12ε). (S.154)

After all, the training dynamics is given by f lint in the infinite-width limit.

We have also confirmed that the training dynamics obtained in Theorem 5.1 show an excellent
agreement with numerical experiments of training. See Figure S.1 in Section C.3.2.

Remark. First, note that the coefficient matrix on test samples x′ becomes

Θ̄(x′, x) =

L∑
l=1

Ml∑
i=1

diag(δl,i(x
′))Al−1(x′, x)diag(δl,i(x))(Θl,i + ρI)−1, (S.155)

but it is not obvious whether we could obtain an analytical representation of this matrix. It includes
the summation over different δl,i(x′) and δl,i(x). This makes the analysis much complicated. At
least, when x′ is given by the training samples, we can obtain the analytical formula as is shown in
Lemma C.2. Second, note that we have assumed M0 ≥ N . When M0 < N , we have a singular A0

and it makes the analysis more complicated. If we fix W1 and train only the other weights {W2, ...,
WL}, we can avoid the problem caused by the singular A0 and achieve the fast convergence.

C.3 Experiments

C.3.1 Setting of Figure 3

We computed condition numbers of various Θ̄ which were numerically obtained in a ReLU network
with L = 3 on synthetic data. We generated input samples x by i.i.d. Gaussian, i.e., xi ∼ N (0, 1).
We set, C = 1, M0 = 100, N = 80, σ2

w = 2, σ2
b = 0.5 and ρ = 10−12.

C.3.2 Fast convergence of unit-wise NGD

Figure S.1 shows an excellent agreement between our theory (given by Eq. (24); solid lines) and the
experimental results of training (circles). In experiments, we used the unit-wise NGD, i.e.,G−1unit,t∇θL.
Depending on the activation function, we have different ηopt = 1/α. In the case of shifted ReLU, we
used α obtained by using the analytical formula (S.141).
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α 
/ M

Figure S.2: α of networks with shifted ReLU φs.

C.3.3 Check of α

Shifted ReLU activation is defined by φs(x) = x (x ≥ −s), −s (otherwise). In this case, Eq.
(S.141) becomes

α =
L−1∑
l=1

(
1

2
+

1

2
erf(

s√
2ql

)

)
Ml. (S.156)

In usual ReLU (s = 0), we have α =
∑L−1
l=1 Ml/2.

Figure S.2 shows that the above analytical values coincided well with numerical values (circles).
We obtained the numerical values by directly computing the diagonal entries of Θ̄. We set L = 3,
Ml = 4096, M0 = N = 10, σ2

w = 2, σ2
b = 0.5, and ρ = 10−12 to avoid numerical instability. We

generated input samples x by i.i.d. Gaussian, i.e., xi ∼ N (0, 1).

D Fisher information for cross-entropy loss

The FIM of the cross-entropy loss is known as

Gt =
1

N
J>t Λ(σt)Jt + ρI, (S.157)

where Jt = ∇θuL is Jacobian at time step t. Λ(σ) is a block diagonal matrix which is composed
C × C block matrices; diag(σ(xn)) − σ(xn)σ(xn)> (n = 1, ..., N ) [11, 12]. We denote softmax
functions by σ(k) := exp(fk)/

∑C
k′ exp(fk′). Note that we always have Λn1C = 0 and Λ(σ) is

singular. The zero eigenvalue appears because
∑C
k=1 σ

(k)(xn) = 1. This implies that a naive
inversion of Gt causes a gradient explosion. To avoid the explosion, we add a damping term to Λ,
such as Λ + ρ̃I . We have

Gt =
1

N
J>t (Λ(σt) + ρ̃I)Jt + ρI. (S.158)

In the continuous time limit, exact NGD in the function space is given by

1

η

dσ

dt
=

1

η

∂σ

∂θ

dθ

dt
(S.159)

= ΛtJtG
−1
t ∇θL(θt) (S.160)

= ΛtΘt((Λt + ρ̃I)Θt + ρI)−1(y − σt) (S.161)

= Λt(Λt + ρ̃I)−1(y − σt) (ρ = 0), (S.162)

where we suppose that the NTK Θt is positive definite. Because Λt includes σt, Eq. (S.162) is a
non-linear function of the softmax function. It is not easy to explicitly solve the training dynamics
even in the NTK regime (that is, Θt ∼ Θ0).

Next, we show that the above gradient keeps unchanged even after taking the layer-wise approxima-
tion. We can consider the layer-wise approximation as

Gt =
1

N
S>t (Σ⊗ (Λt + ρ̃I))St + ρI, (S.163)
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where Σ is defined in the same way as in the FIM for the MSE loss. Then, we have the layer-wise
NGD as

1

η

dσ

dt
=

1

N
ΛtJt(

1

N
S>t (Σ⊗ (Λt + ρ̃I))St + ρI)−1J>t (y − σt) (S.164)

=
1

N
Λt(1

>
L ⊗ ICN )(StS

>
t )(

1

N
Σ⊗ (Λt + ρ̃I))SS> + ρI)−1(1L ⊗ ICN )(y − σ) (S.165)

= Λt((1
>
L ⊗ ICN )(Σ−1 ⊗ (Λt + ρ̃I)−1)(1L ⊗ ICN )(y − σt) (ρ = 0) (S.166)

= αΛt(Λt + ρ̃I)−1(y − σt), (S.167)

where α = 1>LΣ−11L. Thus, the equation clarifies that we indeed obtain the same training dynamics
as in the exact NGD by using layer-wise NGD with η = c/α. The update in function space does not
explicitly include NTK, as is the same as that for the MSE loss.

E Analytical kernels

In this section, we summarize the analytical kernels that we used in numerical experiments.

The NTK is composed of an N ′ ×N block matrix (Θana) [8] such as

Θ(x′, x) = IC ⊗Θana(x′, x)/N, (S.168)

with

Θana(x′, x) = σ2
w

L∑
l=1

Bl(x
′, x)�Al−1(x′, x) + σ2

b

L∑
l=1

Bl(x
′, x). (S.169)

Each entries of feedforward signal block Al and feedback one Bl are recursively computed as follows
[20]:

Al(x
′, x) =

∫
Du1Du2φ(

√
qlu1)φ(

√
ql(Q̄l(x

′, x)u1 +
√

1− Q̄l(x′, x)2u2)), (S.170)

Bl(x
′, x) = σ2

wΞl(x
′, x)Bl+1(x′, x), (S.171)

Ξl(x
′, x) =

∫
Du1Du2φ

′(
√
qlu1)φ′(

√
ql(Q̄l(x

′, x)u1 +
√

1− Q̄l(x′, x)2u2)). (S.172)

We denote an integral on Gaussian measure as
∫
Du =

∫
du exp(−u2/2)/

√
2π. This analytical

evaluation of the NTK is rigorously proved when the activation function is polynomially bounded
[29]. We have defined

Q̄l(x
′, x) := Ql(x

′, x)/ql, (S.173)

Ql(x
′, x) = σ2

wAl−1(x′, x) + σ2
b , (S.174)

ql := σ2
w

∫
Duφ(

√
ql−1u)2 + σ2

b . (S.175)

The scalar variable ql represents the amplitude of propagated signals. It is independent of x because
we normalize all of training and test samples by ‖x‖2 = 1 (that is, q0 = 1/M0). We can use the
above Al and Bl for layer-wise NGD.

For example, in ReLU networks, we have a matrix form of the kernels as follows:

Al(x
′, x) =

ql
2π

(√
11> − Q̄l(x′, x)◦2 +

π

2
Q̄l(x

′, x) + Q̄l(x
′, x)� arcsin(Q̄l(x

′, x))

)
,

(S.176)

Ξl(x
′, x) =

1

2π

(
arcsin(Q̄l(x

′, x)) +
π

2
11>

)
, (S.177)

ql =
σ2
w

2
ql−1 + σ2

b (l ≥ 2), q1 = σ2/M0 + σ2
b , (S.178)

where (·)◦2 means entry-wise square.
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