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Abstract

Traditional backpropagation of error, though a highly successful algorithm for
learning in artificial neural network models, includes features which are biologi-
cally implausible for learning in real neural circuits. An alternative called target
propagation proposes to solve this implausibility by using a top-down model of
neural activity to convert an error at the output of a neural network into layer-wise
and plausible ‘targets’ for every unit. These targets can then be used to produce
weight updates for network training. However, thus far, target propagation has been
heuristically proposed without demonstrable equivalence to backpropagation. Here,
we derive an exact correspondence between backpropagation and a modified form
of target propagation (GAIT-prop) where the target is a small perturbation of the
forward pass. Specifically, backpropagation and GAIT-prop give identical updates
when synaptic weight matrices are orthogonal. In a series of simple computer
vision experiments, we show near-identical performance between backpropagation
and GAIT-prop with a soft orthogonality-inducing regularizer.

1 Introduction

One of the fundamental tenets of modern systems neuroscience is that the brain learns by selectively
strengthening and weakening synaptic connections. Much research in theoretical neuroscience was
guided by the Hebbian principle of strengthening connections between co-active neurons [1–3]. How-
ever, it appears that purely Hebbian learning rules may not be effective at learning complex behavioral
tasks. In the last fifteen years, the fields of machine learning and AI have been revolutionized by
the large-scale adoption of deep networks trained by backpropagation (BP) [4–6]. Deep networks
have been shown to mimic the hierarchy of cortical representations [7–9], suggesting a connection
between deep learning and the brain. However, BP has since long been considered as biologically
implausible [10], based in part on its use of non-local information at individual synapses which carry
out weight updates. How such information could be stored, transmitted and leveraged has been a
cause for concern [10, 11].

To overcome these implausible aspects of the BP algorithm, approaches have been proposed to
approximate or replace implausible computations with more realistic and plausible elements [12–
16]. Alternatively methods which approximate backpropagation through energy-based models have
also been proposed [17–20]. Among those methods, contrastive Hebbian learning, and generalized
recirculation have been shown to produce BP-equivalent updates under specific regimes [18, 21],
though these methods require a, rather artificial, alternation between positive and negative phases in
order to compute updates.

Target Propagation (TP) is a simpler and more scalable approach which proposes that the loss function
at the output layer be replaced with layer-wise, local target activities for individual neurons [22, 23],
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an approach which was also partially investigated some years prior [24]. The principle of TP is to
propagate an output target ‘backwards’ through a network using (learned) inverses of the forward
pass. Under a perfect inverse, these layer-wise targets are equivalent to the outputs of hidden layers
which would have precisely produced the desired output. In a recent review paper, Lillicrap and
co-authors suggested an approach named ‘neural gradient representation by activity differences’
(NGRAD) [25]. They conjecture that the most plausible implementation of an effective learning
rule in the brain would consist of projecting error-based information into layer-wise neural activity.
Given this conjecture, they highlight TP as a feasible and promising approach. However, it remains
unclear how updates computed by TP relate to BP and the associated gradients which would optimise
network performance.

In this paper, we develop a theoretical framework to analyse the link between the TP and the BP
weight update rules. In particular, we show that TP and BP have the same local optima in a deep
linear network. Furthermore, we show that in deep linear networks the two update rules are identical
when the weight matrices are orthogonal. However, standard TP cannot be easily linked to BP in the
non-linear case, even under conditions of orthogonality. A connection to BP can be fully restored by
introducing incremental targets – targets which are an infinitesimal shift of the forward pass toward a
target output. Using this approach we derive the gradient-adjusted incremental target propagation
algorithm (GAIT-prop), a biologically plausible approach to learning in non-linear networks that is
identical to BP under orthogonal weight matrices. Unlike TP, this approach can also be approximated
in the equilibrium state of network with constant input and weak feedback coupling, connecting our
method to activity recirculation and equilibrium propagation [18, 19]. Furthermore, our approach
to local, error-based learning encodes the exact gradient descent information desired for optimal
learning within target neural activities in a plausible circuit mechanism [25].

To derive the theoretical relations between BP, TP, and GAIT-prop we make use of invertible networks.
While a perfect inverse model is not biologically plausible, it affords rigorous theoretical comparisons
between these learning algorithms. We also relax this invertible network assumption by training
networks with hidden layers of different widths – a case in which there is information loss through
the network but which nonetheless can be trained accurately.

2 Background on backpropagation and target propagation

We start by reviewing the basics of BP. Let us consider a feedforward neural network with an input
layer and L subsequent layers. We describe the output of any given layer, as

yl = gl(yl−1) = f(Wl yl−1) , (1)
where yl is the output of the l-th layer, Wl is a weight matrix and f(·) is the activation function. We
denote the ‘pre-activations’ Wl yl−1 as hl and use y0 to denote the input.

We consider a quadratic loss between the network output yL and a target output tL. Given an
input-target pair (y0, tL) we can define a quadratic loss function, ` as

` =
1

2
(yL − tL)2. (2)

The corresponding BP weight update is proportional to the gradient of this loss and has the following
form:

∆WBP
l = −η Al

 L∏
j=l+1

W>j Aj

 (yL − tL) y>l−1 , (3)

where Al is a diagonal matrix with f ′(hl) in its main diagonal and η is a learning rate.

Target propagation (TP) is an arguably more biologically plausible learning approach in which
the desired target is propagated through the network by (approximate) inverses of the forward
computations [22]. In its simplest form, given an input-target pair (y0, tL), standard TP prescribes a
layer-wise loss of the following form:

∆W TP
l = −η Al (yl − tl) y>l−1 (4)

where tl is a layer-wise target obtained by applying a (potentially approximate) inverse network to
the output target tL. An exact inverse can be defined by the following recursive relation:

tl−1 = g−1l (tl) = f−1(W−1l tl) . (5)
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The existence of an exact inverse places constraints on the architecture of the network. In particular,
weight matrices must be square, and the activation function must be invertible for any real-valued
input. However, this does not require that all layers of a network have the same number of units as
we explore in the second half of this paper using auxiliary variables.

The simplicity of TP and its reported performance makes it a leading candidate for biologically
plausible deep learning. However, TP is a heuristic method that has not been shown to replicate or
approximate BP. In the following, we will derive a series of formal connections between BP and
TP. Moreover, we will introduce a new TP-like algorithm that can be shown to reduce to BP under
specific conditions.

3 Relationship between BP and TP in linear networks

In this section we will reformulate the BP updates of a deep linear network in terms of local activity
differences. We begin by rewriting the output difference (yL − tL) in terms of l-th layer activity
differences (yl − tl), where tl is a deep target obtained by applying a sequence of layer-wise
inversions, as in Eq. 5. We will assume the existence of inverse weight matrices W−1l such that
WlW

−1
l = W−1l Wl = I . This assumption constrains both the weight matrix shapes (they must be

square) and implies that these matrices must be invertible (full rank). Using inverse weight matrices,
we can rewrite our difference term as

yL − tL = gL(yL−1)− gL(tL−1)

= f(WL yL−1)− f(WL tL−1)
(6)

where the target of the L− 1-th layer, tL−1, is defined as in Eq. 5. Since the network is linear, we can
ignore the activation function and collect these two terms into the matrix product WL(yL−1 − tL−1).
This formula can then be applied recursively to an arbitrary depth, leading to the expression

yL − tL = Fl (yl − tl), (7)

where l is the index of an arbitrary hidden layer and Fl is defined as Fl =
∏L
k=l+1Wk. Substituting

this formula into the BP update rule of a linear network, we obtain a reformulation of BP in terms of
local targets such that

∆WBP
l = −η (F>l Fl)(yl − tl) y>l−1

= (F>l Fl)∆W
TP
l .

(8)

Since F>l Fl is full-rank under our assumption of invertibility, this equation implies that ∆WBP
l = 0

if and only if ∆W TP
l = 0, meaning that BP and TP have the same fixed points in invertible linear

networks. Furthermore, these fixed points have the same stability since F>l Fl is positive definite.
Finally, in linear networks TP updates are identical to BP updates when all the weight vectors are
orthogonal, where F>l Fl = I .

4 Incremental target propagation

If we assume that the Euclidean distance between the activations yl and the targets tl is sufficiently
small, we can derive a linear approximation of Eq. 6 for an arbitrary transfer function and extend the
above analysis to non-linear networks. However, during the early stages of training, when network
outputs are far from targets, such an assumption would be unreasonable. To overcome this issue, we
reformulate target difference in terms of an ’infinitesimal increment’:

yL − tL = γ−1L (yL − ((1− γL) yL + γL tL))

= γ−1L (yL − t∗L)
(9)

where γL is a scalar and we have defined a new ‘incremental’ target t∗L = (1 − γL) yL + γL tL.
Assuming that 0 < γL � 1, this new target is an incremental shift from the current network output
yL, towards the target network output tL. If gL(·) (our network’s forward pass) is continuous, for any
real-valued κ there is a γL such that ‖yL − t∗L‖2 < κ. Therefore, assuming gL(·) to be a continuous
function, we can approximate the resulting difference with a linear function:

yL − tL = γ−1L (gL(yL−1)− gL(t∗L−1))

= lim
γL→0

γ−1L ( ALWL (yL−1 − t∗L−1))
(10)
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where the approximation error is of the order of ‖yL − t∗L‖
2
2. This procedure can be recursively

carried out to describe the difference term at our output layer as a function of activity at a layer of any
depth such that

yL − tL = lim
γl+1:L→0

L−(l+1)∏
j=0

γ−1L−jAL−jWL−j

 (yl − t∗l ) (11)

with the layer-wise incremental target defined recursively as
t∗l−1 = g−1l ((1− γl) yl + γl t

∗
l ) . (12)

We can now define an incremental TP-based update, ∆W ITP
l where

∆W ITP
l = −η Al(yl − t∗l ) y>l−1 . (13)

Substituting Eq. 13 into the BP update rule (Eq. 3), we obtain an asymptotic linear relation between
BP and ITP updates:

∆WBP
l = lim

γl+1:L→0
M(hl, . . . , hL)∆W ITP

l (14)

with

M(hl, . . . , hL) =

 L∏
j=l+1

γ−1j

 Al

 L∏
j=l+1

W>j Aj

L−(l+1)∏
j=0

AL−jWL−j

A−1l . (15)

Unfortunately, since M(hl, . . . , hL) depends on the layer-wise activity (via the diagonal matrices of
derivatives, Al), Eq. 14 does not imply an equivalence between the fixed points of BP and ITP for
a dataset bigger than one sample. Furthermore, orthogonality of weight matrices is also unhelpful
due to these same multiplications by layer-wise activation function derivatives. In general, since
these derivatives depend upon the input data, it is not possible to find a constraint on the weights that
restores the equivalence of the linear case. Fortunately, we can restore this equivalence by further
modification of the incremental target, as we demonstrate in the next section.

5 Gradient-adjusted incremental target propagation

By incorporating the data-dependent derivatives into the γl variables, we can recover an equivalence
between BP and an approach which makes use of layer-wise targets. Specifically, by introducing

εl = γlA
2
l , (16)

we can define gradient-adjusted incremental targets

t†l−1 = g−1l ((1− εl) yl + εl t
†
l ) . (17)

Given this new target formulation, we can now define the ‘gradient-adjusted incremental target
propagation’ (GAIT-prop) update

∆WGAIT
l = −η Al(yl − t†l ) y

>
l−1 . (18)

If we express the GAIT-prop-based update in terms of the BP updates we find
∆WBP

l = lim
γl+1:L→0

N(hl, . . . , hL)∆WGAIT
l , (19)

with

N(hl, . . . , hL) =

 L∏
j=l+1

γ−1j

 Al

 L∏
j=l+1

W>j Aj

L−(l+1)∏
j=0

A−1L−jWL−j

A−1l . (20)

On inspection, this matrix formulation (aside from the preceding gamma terms) reduces to the identity
matrix when all weight matrices Wl are orthogonal matrices. This allows us to express the following
equivalence formula

∆WBP
l = lim

γl+1:L→0

 L∏
j=l+1

γ−1j

 ∆WGAIT
l (21)

as being true under the assumption of orthogonality of weight vectors. In practice, a fixed small value
is used in place of the γ terms instead of a layer-wise infinitesimal.

Note that the GAIT-prop update rule (Eq. 18) only uses locally-available information and it is in this
sense as biologically plausible as the classic TP target. Pseudocode for GAIT-prop is given in Alg. 1.
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Algorithm 1 GAIT-prop (per training sample update)

for l = 1 to L do
yl ← f (Wl yl−1)

end for
With output target, t†L ← tL
for l = L− 1 to 1 do
t†l ← g−1

(
(1− εl+1) yl+1 + εl+1 (t†l+1)

)
end for
for l = 1 to L do
`l(Wl) = γ−1L−l

(
yl − t†l

)2
Update Wl by SGD on the quadratic loss function `l(Wl), treating t†l as a constant.

end for

GAIT-prop with an arbitrary loss function

Though we assumed a quadratic loss above (and make use of a quadratic loss function for our results
section), we can also make use of GAIT-prop in order to compute local layer-wise updates for
an arbitrary loss function computed on the output unit activations. In particular, GAIT-prop’s key
requirement is a formulation of the gradient using a difference between the forward pass activity
and some target activity at the output layer (consider Equation 3 for output layer L). From such a
formulation, layer-wise targets can be computed.

Take an arbitrary loss function L(yl), such that our final layer weight updates computed by back
propagation can be written:

∆WBP
L = −dL(yL)

dWL
= −dL(yL)

dyL

dyL
dWL

.

We can now introduce the forward-pass activity to this formulation without introducing any errors or
approximations, such that

∆WBP
L = −

(
yL − yL +

dL(yL)

dyL

)
dyL
dWL

= −(yL − tL)
dyL
dWL

.

where the target, tL, is defined

tL = yL −
dL(yL)

dyL
.

Thus, any arbitrary loss function computed on the output units can be written as a difference between
forward-pass activations and a constructed target activation of the form provided above. From here,
the GAIT-prop derivation provided above holds and we can make use of GAIT-prop for any such loss
function.

6 GAIT-prop in a neural circuit

One significant weakness in the biological plausibility of TP is that the target signal needs to be
propagated backward without being ‘contaminated’ by the forward pass. This requires either a
parallel network for targets alone, a complete resetting of the network (with blocking of inputs), or
some sophisticated form of compartmentalized neurons capable of propagating two signals in both
directions.

In comparison, the incremental nature of the layer-wise targets produced by GAIT-prop makes it
particularly suitable for an implementation in a biologically realistic network model. Figure 1, Left,
depicts the differences between both algorithms. The backward-propagated signals for GAIT-prop
are (weakly) coupled to the forward pass, meaning that during target presentation both input (forward-
pass) and targets are simultaneously presented. In fact, the ITP algorithm (equivalent to GAIT-prop
in a linear network) can be shown to emerge in the equilibrium state of a simple dynamical system
model of a neural network with feedback connection (see Supplementary Material).
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Figure 1: Left: Graphical depiction of TP versus GAIT-Prop. Right: Scatter plots showing the
alignment of TP and GAIT-prop weight updates against BP. These are shown for updates to an
untrained (square) network with random or orthogonal weight initializations.

Figure 1, right, shows the efficacy of the coupling proposed in GAIT-prop when combined with
orthogonal weight matrices. The weight updates produced by GAIT-prop in this condition almost
perfectly equals those computed by BP. Furthermore, this coupling reduces the requirement for two
non-interfering information flows by suggesting that the same inputs can be present during the target
propagation phase.

7 Simulated invertible networks and tasks

Invertible components All of the analyses and simulations presented in this paper require an
invertible network model. This requires both an invertible activation function and invertible weight
matrices.

Aside from linear networks, we use the leaky-ReLu activation function. The inverses of both the
linear and of the leaky-ReLu activation functions are trivial.

To ensure invertibility of weight matrices, we only make use of square matrices and empirically
find that by random initialisation these remain full-rank during training (and therefore invertible).
The use of square matrices places constraints upon the network architectures from which we can
choose. The simplest network architecture of choice is a network with a fixed-width, i.e. every layer
of the network has an equivalent number of units as the inputs. The consequence of such invertible,
fixed-width networks (of width equivalent to the input) is that there is sufficient information at every
layer to reproduce the input pattern. However, the tasks we make use of require only ten output
neurons (far fewer than the number of inputs) and to accommodate this, we make use of auxilliary
units.

Auxiliary units and information loss So far, we assumed that the layer-wise transformations,
gl(·), are fully invertible functions. This requirement places strong constraints upon the network
architecture. Specifically, fully invertible architectures require as many output nodes as there are
input nodes at every layer and cannot discard task irrelevant information.

In the TP literature, this problem is addressed using learned pseudo-inverses (autoencoders) which
can transform between layers of arbitrary size [23]. However, in practice, a target obtained using
pseudo-inverses must represent some prototypical target since not all low-level information can be
recovered. This can result in the presence of non-zero error terms despite correct network behaviour.

Bartunov et al. [26] first suggested the use of ‘auxiliary output’ units – additional units at the output
of a network which are provided no error signal and are used to store task-irrelevant features so that
diverse targets can be produced for the hidden layers of a network. Without these, the targets provided
to hidden layers of all examples of a given class are identical. By the addition of these auxiliary
variables, diverse targets (which vary across inputs of the same class) can be produced for each layer,
improving network performance.
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Here, we make use of such auxiliary outputs for our full-width network models. We also extend this
approach and relax the assumption of full invertibility by allowing auxiliary units at every layer of a
network. By placing auxiliary units (which have no forward synaptic connections) at arbitrary layers
of our network models, we can build variable-width networks.

Despite these auxiliary units, weight matrices between layers must remain square for inversion of the
non-auxiliary neuron activations. This means that the number of non-auxiliary neurons in some layer
indexed l − 1 is equal to the number of units in the subsequent layer indexed l. We can therefore
describe the l − 1-th layer to have Nl−1 −Nl auxiliary units, with activations zl−1, and Nl forward
projecting neurons with activations yl−1. In a forward model the auxiliary units of a lower layer
are ignored such that yl = gl(yl−1). But in the inverse pass, we make use of an augmented inverse
transfer function g̃−1l (yl) which maps the activations of the l-th layer to the tuple (yl−1, zl−1). Using
these variables, we can define the GAIT-prop target as before. That is,

t†l−1 = g̃−1l ((1− εl) yl + εl t
†
l ) . (22)

Note that the values of the auxiliary neuron activations, zl, are simply copied from the forward pass.
Furthermore, unless there are additions to the cost-function, the weights mapping yl to zl+1 do not
change during training since the target of the auxiliary variables is always identical to their forward
pass values. We can consider this as a case in which auxiliary neurons simply do not receive feedback
connections from the task-relevant neurons.

Encouraging orthogonality One desired feature of networks which we wish to train by GAIT-prop
is for weight matrices to be (close to) orthogonal. To encourage orthogonality of the rows of our
weight matrices, we make use of a regularizer which can be applied layer-wise. This regularizer can
be expressed for the l-th weight matrix as

λ ||WlW
>
l (J − I)||22 , (23)

where J is an all-ones matrix (i.e. all elements equal to 1), I is the identity matrix, and λ modulates
the strength of the regularizer relative to the task-related error. When this regularizer is applied,
weight updates are combined with the task-relevant updates and these are collectively scaled by
the learning rate, η. We find that the use of weak regularization is sufficient to ensure that GAIT-
propagation remains performant. This regularizer uses non-local (non-plausible) information to
enforce orthogonality, however in the Discussion section we explore plausible neural mechanisms
that could achieve a similar result.

Tasks We make use of three image classification datasets: MNIST, Fashion-MNIST, and KMNIST.
These datasets all consist of 28 × 28 (total 784) pixel input images and a label between 1 and 10
indicating the class. We convert the labels into a one-hot vector and during training the quadratic loss
between the network output and this one-hot vector is minimised. In the case of TP and GAIT-prop,
the one-hot vector is the output layer target.

Parameters and learning The Adam optimiser was used during training of our neural network
models. In order to identify acceptable parameters for each of our learning methods, we ran a grid
search for the learning rate η and the orthogonal regularizer strength λ. The highest-performing
networks were tested for stability and stable high performing parameters were used. Details of specific
parameters used and the grid search outcomes are provided in the Supplementary Material. Code used
to produce the results shown in this paper is available at https://github.com/nasiryahm/GAIT-prop.

8 Results

Figure 2 presents the accuracy the algorithms we have thus far considered. In particular, we find that
GAIT-prop is extremely consistent, with performance indistiguishable from backpropagation. This is
true for non-linear networks of various depths (Fig. 2A), when applied to different tasks (Fig. 2B)
and for linear networks (Fig. 2C). We find that GAIT-prop is highly robust in general – even capable
of training non-linear networks of more than four layers without modification (see Supplementary
Material). By comparison, TP suffers from lower accuracy in non-linear networks (Fig. 2A and C)
even across a large choice of training parameters (see Supplementary Material). Though TP does
show high performance and stability in linear networks (Fig. 2C), as expected from our theoretical
analyses.
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Figure 2: The performance of multi-layer perceptrons trained by BP, TP, and GAIT-prop. All
results in this figure are in networks with a fixed width network: 784 neurons in every layer. A: Test
accuracies (MNIST) of the algorithms are compared in non-linear networks of various depth. The
networks are trained by parameters as determined by a grid search (see Supplementary Material). B:
Accuracy of algorithms across tasks (MNIST, KMNIST, and Fashion-MNIST). Non-linear networks
with four hidden layers were trained with five repeats (error bars indicate standard deviation). Peak
training and test accuracies are presented. C: Accuracy of a linear network (with four hidden layers)
and no orthogonal regularizers.
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Figure 3: Performance in non-linear networks with variable hidden-layer sizes. A: Network
performance of a full fixed with network (three hidden layers). B: Network performance of a network
with reduced hidden layer widths. C: Peak accuracy of BP, TP and GAIT-prop in a reducing-width
network across datasets and across multiple repeats (error bars indicate standard deviation).

Figure 3 exhibits the performance of networks with variable hidden-layer widths. It can be seen that
learning in these networks is as effective for GAIT-prop as it is for backpropagation and the inclusion
of layer-wise auxilliary neurons is empirically found to be succesful. Hence, these results show high
performance in networks with a relaxed definition of a full inverse.
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9 Discussion

Our theoretical work and results show that GAIT-prop produces performance indistinguishable
from backpropagation. In comparison TP suffers in non-linear neural networks and, as previously
described by Bartunov et al. [26], peak performance is highly dependent upon the training parameters
(see Supplementary Material). It is possible that with alternative activation functions such as the
hyperbolic tangent, TP will show improved performance (as suggested by [26]). However, the tanh
activation function is not invertible for all real values and our analysis of GAIT-prop shows that,
unlike TP, its performance is theoretically independent of the employed activation function.

Our proposal of layer-wise incremental variables, γl, may be of interest to readers interested potential
biological substrates of such a learning system. These incremental paramters scale down the impact of
target (top-down) neural activities to hidden layers. This re-scaling allows a linearisation of the error
computation and is therefore a key component of our rigorous mathematical derivation. However, in
practice we find that it is also possible to make use of a single incremental variable on the output
layer, γL, and carry out inversion without incremental variables for all other layers. The stability
of such strong top-down inputs however, is questionable and therefore we consistently make use of
weak layer-wise perturbations.

In the results section of this work, we find that a weak orthogonal regularizer is sufficient to enable
high and stable performance for GAIT-prop. However, a reader might question how this could arise
biologically – this is indeed an open question. We propose that lateral inhibitory learning might aid in
sufficient orthogonalization of synaptic weight matrices. As explored previously by King et al. [27],
inhibitory plasticity can be used to decorrelate neural outputs. Since weight updates are computed
with an outer-product of between-layer neural activities, decorrelated layer-wise activities could
encourage some orthogonalization. Since GAIT prop requires a limited strength of orthogonalization,
such decorrelating mechanisms may be sufficient – though again this is an open question and avenue
for future research. In addition, such simple inhibitory Hebbian plasticity rules have been found
to stabilize and balance neural network models, reproducing statistics and observations of cortical
activity [28, 29].

One further biologically implausible component of the simulations we have presented are the use of
perfect inverse models. In real neural circuits, such an inverse model could be learned by (denoising)
auto-encoders, as has been previously attempted with TP [22, 23, 26]. However, the incremental term
we have introduced may well become highly sensitive to noise in a network with an imperfect inverse
– motivating the use of a relatively large value for this incremental term. Despite this drawback
of our current simulation work, our theoretical explorations of the relationship between BP, TP
and GAIT-prop required assumption of perfect inverse models and we leave explorations of the
non-perfect case to future studies.

In conclusion, we have theoretically and empirically demonstrated that plausible layer-wise targets can
be created in a neural network model with (close to) orthogonal weight matrices. The resulting updates
lead to learning with almost indistinguishable performance compared to BP. This is accomplished
in networks of both fixed and variable layer-widths in a novel application of auxilliary units. Our
work elucidates the relationship between BP and local target-based learning and is a significant step
forward in the debate surrounding the plausibility of BP for learning in real neural network models.

Broader impact

This research positively impacts discourse and research into relevant scientific sub-disciplines (in-
cluding machine learning, computational neuroscience, and neuromorphic computing). Its continued
development could lead to algorithms for learning in neuromorphic computing devices, and insights
into the nature of credit assignment in biological neural systems. Beyond research and development,
this work alone has no broader societal or ethical impact.
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