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S1 Proof for Lemma 2

Lemma 2 Suppose ṽl is the second-order knockoff counterpart of input feature vl, the corresponding
output feature ṽl+1 = t(ṽl) + b̃l is still the second-order knockoff of vl+1 = t(vl) + bl, where bias
bl and b̃l are random variables with zero means, and the covariance matrix of the joint distribution
[bl, b̃l] satisfies:

cov[bl, b̃l] =

[
Σbl Σbl + WT diag{sl}W − diag{sl+1}

Σbl + WT diag{sl}W − diag{sl+1} Σbl

]
. (S.1)

where bl, b̃l have the same covariance Σbl and diag{sl}, diag{sl+1} are diagonal matrices.

Proof Recall that ṽl is the second-order knockoff of vl meaning the expectation & covariance of
[vl, ṽl] and [vl, ṽl]swap(S̃) are the same for arbitrary subset S̃, and ṽl |= Y |vl. The input ṽl contains

no targets and thus the output ṽl+1 = t(ṽl) + b̃l also contains no information about labels, which
satisfies the independence condition (Eq. (4)). Their means are equal due to batch normalization [3],
and hence we focus on checking whether the covariance matrices of [vl, ṽl] and [vl, ṽl]swap(S̃) match
in the following. Actually, [vl, ṽl] and [vl, ṽl]swap(S̃) having the same covariance is equivalent to
that the covariance of [vl, ṽl] satisfies the following form, i.e.,

cov[vl, ṽl] =

[
Σvl Σvl − diag{sl}

Σvl − diag{sl} Σvl

]
, (S.2)

where Σvl is the covariance of vl and diag{sl} is any diagonal matrix making the covariance matrix
positive semi-definite [1]. As ṽl is the second-order knockoff counterpart of vl, Eq.(S.2) satisfies for
[vl, ṽl]. Via simple calculation, the covariance matrix of output [vl+1, ṽl+1] is:

cov[vl+1, ṽl+1] =

[
WT ΣvlW + Σbl WT ΣvlW + Σbl − diag{sl+1}

WT ΣvlW + Σbl − diag{sl+1} WT ΣvlW + Σbl

]
, (S.3)

Denoting WT ΣvlW + Σbl as Σvl+1 , Eq. (S.3) is reformulated as:

cov[vl+1, ṽl+1] =

[
Σvl+1 Σvl+1 − diag{sl+1}

Σvl+1 − diag{sl+1} Σvl+1

]
, (S.4)

which satisfies the form of Eq. (S.2), indicating that [vl+1, ṽl+1] and [vl+1, ṽl+1]swap(S̃) also have
the same covariance. Thus, ṽl+1 is still the second-order knockoff of vl+1.
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(a) Input data. (b) Features in shallow layers. (c) Features in deep layers.

Figure S1: Visualization of the distribution of features w.r.t. samples on ImageNet.

Figure S2: Knockoff data and features on ImageNet. From top to bottom are input images, features
in shallow layers and features in the deep layers.

To ensure that biases [bl, b̃l] exist, the covariance matrix in Eq. (S.1) needs to be positive semi-definite.
Through standard Schur complement calculation, the semi-definite condition can be derived, i.e.,
cov[bl, b̃l] � 0 if and only if Eq. (S.5) holds,

diag{sl+1} �WT diag{sl}W,
2Σbl � diag{sl+1} −WT diag{sl}W.

(S.5)

With sl given by the previous layer, it is easy to satisfy Eq. (S.5) by appointing diag{sl+1} and
Σbl . For example, the diagonal elements in diag{sl+1} can be set as the maximum eigenvalue of
matrix WT diag{sl}W added by a small positive constant γ and then Σbl is set as (diag{sl+1} −
WT diag{sl}W )/2 + γI , where I is the identify matrix. The diagonal matrix diag{s0} in the input
layer is calculated with the real and knockoff data. With the given mean and covariance, biases [bl, b̃l]
can be directly generate to modify the outputs of convolutional layers in the procedure of excavating
redundant filters.

S2 Details of generating knockoff data

We train a generative adversarial network [2] to construct knockoff data. The knockoff data are
generated by the generator and then sent to the discriminator to verify whether the knockoff con-
dition (Definition 1) holds. The generator and discriminator are optimized alternately and the loss
function provided by [4] is adopted. Considering that images are high dimension data, we take
multiple pixels as a whole when exchanging elements between real data and knockoff data. To reduce
the training cost on ImageNet, knockoff data with size 64× 64 are generated first and then upsampled
to 224 × 224. For the network architectures, multiple convolutional (deconvolutional) layers are
stacked to construct the generator and discriminator on CIFAR-10, and ReNet-like architectures are
adopted on ImageNet. All the models are optimized with Adam [5] optimizer. On CIFAR-10, the
learning rate, batchsize and number of iterations are set to 0.001,128 and 20K, which are set to 0.001,
512 and 30K on ImageNet.
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S3 More Visualization Results

The distribution of features w.r.t. samples are shown in Figure S1, and 10K samples are sampled from
ImagNet dataset. The blue points denote the concatenation of real features and knockoff features, i.e.,
[Al, Ãl]. The orange points are the features after swapping, i.e., [Al, Ãl]swap(S̃), which are obtained
by swapping half of the elements in Al and Ãl. Both the two features are mapped to the 2D space for
intuitive visualization and each point denotes a sample. It shows that swapping elements between Al

and Ãl does not have much affect of the distribution, which is accordant with the exchangeability
property (Eq. (3)) of knockoffs. More knockoff data and features are shown in Figure S2, which
intuitively show that no targets are included in the knockoff data and features.
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