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Abstract
Signed networks are graphs where edges are annotated with a positive or negative
sign, indicating whether an edge interaction is friendly or antagonistic. Signed net-
works can be used to study a variety of social phenomena, such as mining polarized
discussions in social media, or modeling relations of trust and distrust in online
review platforms. In this paper we study the problem of detecting k conflicting
groups in a signed network. Our premise is that each group is positively connected
internally and negatively connected with the other k − 1 groups. A distinguishing
aspect of our formulation is that we are not searching for a complete partition of the
signed network; instead, we allow a subset of nodes to be neutral with respect to the
conflict structure we are searching. As a result, the problem we tackle differs from
previously-studied problems, such as correlation clustering and k-way partitioning.
To solve the conflicting-group discovery problem, we derive a novel formulation
in which each conflicting group is naturally characterized by the solution to the
maximum discrete Rayleigh’s quotient (MAX-DRQ) problem. We present two spec-
tral methods for finding approximate solutions to the MAX-DRQ problem, which
we analyze theoretically. Our experimental evaluation shows that, compared to
state-of-the-art baselines, our methods find solutions of higher quality, are faster,
and recover ground-truth conflicting groups with higher accuracy.

1 Introduction

Signed networks are graphs where each edge is labeled either positive or negative. The introduction
of edge signs, which goes back to the 50’s, was motivated by the study of friendly and antagonistic
social relationships [22]. The representation power of signed networks comes at the cost of significant
differences in fundamental graph properties, and thus, algorithmic techniques employed to analyze
unsigned networks are usually not directly applicable to their signed counterparts. These differences
have spurred significant interest in a variety of analysis tasks in signed networks [20, 36] such
as signed network embeddings [7, 24, 25, 39], signed clustering [8, 14, 27, 32], and signed link
prediction [9, 28, 38, 41] in recent years.

In this paper we study the problem of detecting k conflicting groups in signed networks. In more
detail, we are interested in finding a collection of k vertex subsets, each of which is positively con-
nected internally, and negatively connected to the other k − 1 subsets. In social networks where edge
signs indicate positive or negative interactions, identifying conflicting groups may help in the study of
polarization [1, 31, 40, 43], echo chambers [17, 19] and the spread of fake news [12, 35, 42].

Detecting k conflicting groups is challenging due to various reasons. First, conflicting groups are not
simply dense subgraphs, so community-detection techniques for unsigned graphs are not effective.
Second, in real applications we can expect a majority of the network nodes to be neutral with respect
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to the conflicting structure. As an example, consider a social network where a heated discussion is
taking place between different political factions. Most users might not get involved in the quarrel,
and thus their interactions are not necessarily consistent with this division. For this reason, methods
for signed networks like correlation clustering and k-way partitioning may not be effective.

Our approach for detecting k-conflicting groups in signed networks extends the formulation of Bonchi
et al. [4], to arbitrary values of k, addressing an open problem left in that work, which studied only
the case k = 2. We argue that simply rounding the principal eigenvectors of the adjacency matrix
might yield unsatisfactory results. Instead, we show that the proposed objective can be interpreted in
terms of the Laplacian of a complete graph, and rely on the spectral properties of this matrix to derive
a novel optimization framework, spectral conflicting group detection (SCG). By carefully examining
the invariant subspaces of the aforementioned Laplacian, we reformulate the problem as a maximum
discrete Rayleigh quotient (MAX-DRQ) objective, which is an APX-hard problem. We propose two
algorithms, one deterministic, and one randomized with approximation guarantees. We show that the
obtained approximation is essentially the best possible, when using the largest eigenvalue as an upper
bound.

We perform an extensive set of experiments to compare the performance of our approach to that of
multiple alternatives from the literature, on a variety of synthetic and real datasets. Our algorithms
generally run faster, yield solutions of higher quality, and exhibit a better ability to find ground-truth
groups than competing methods. In addition, we discuss how to select the number of groups k in
practical scenarios.

2 Related work

Signed graph partition. Typical formulations partition the nodes of the signed graph into k sets so
that intra-edges are mostly positive and inter-edges are mostly negative. This is a special case of k
conflicting group detection with no neutral nodes. Spectral methods are competitive and we review
several representatives here. The signed Laplacian has been used for clustering [27], but resulting
clusters tend to behave like in unsigned spectral clustering [37]. k-way balanced normalized cut
(BNC) was proposed to address the issue [8]. Signed Laplacians [8, 27] were recently generalized
through matrix power means [32]. The state of the art method SPONGE [14] is based on a generalized
eigenvalue problem for constrained clustering [13] and works well on sparse graphs and large k. All
these methods partition the network and are ineffective in the presence of many neutral nodes.

Correlation clustering methods partition the entire network, but allow k to be unspecified. The
standard objective [2, 5, 16, 6] counts the number of edges that agree (disagree) with the partition,
i.e., positive (negative) intra-group edges and negative (positive) inter-group edges, and aims to
maximize (minimize) agreement (disagreement). The problem is APX-hard for general graphs
and has many variants. Giotis et al. [21] consider the case of fixed k and Puleo et al. [33] measure
per-node error. Our work is inspired by a recent variant [4], which formulates the discrete eigenvector
problem by maximizing the gap between agreement and disagreement with respect to the total size
of two conflicting groups. They propose a randomized O(

√
n)-approximation algorithm. However,

their approach does not extend to k > 2, as the two groups are identified by the sign of the optimal
vector. In fact, the discrete eigenvector problem is APX-hard and the best known result achieves an
approximation guarantee of Õ(n1/3) using an SDP-based approach [3]. The latter SDP formulation
cannot be extended to k > 2 as well. In this paper, we generalize the problem as MAX-DRQ and
present two algorithms for k ≥ 2.

Antagonistic group mining focuses on the setting with two groups. These works can be divided into
direct or indirect. Direct methods [18, 29, 30] search for structures such as bi-cliques or balanced
triads. Indirect methods [45, 46] find frequent conflicting patterns in database transactions. These
approaches cannot be easily extended to finding k > 2 conflicting groups.

To our knowledge, our only direct competitor is the KOCG method [11]. They formulate the
problem as trace-maximization, where each group is represented as a simplex with nonzero entries
indicating the participation of the nodes in the groups. However, their method finds conflicting groups
only within local regions and is sensitive to initialization, often converging to local maxima. Our
approach is fundamentally different and experimentally is shown to consistently outperform this
baseline.
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3 Preliminaries

We focus on simple undirected signed graphs. We denote G = (V,E) to be a signed graph, with
E = E+ ∪ E− consisting of the sets of positive edges E+ and negative edges E−. The signed
adjacency matrix of G is denoted by A ∈ {−1, 0, 1}n×n with Ai,j being +1 if (i, j) ∈ E+, −1 if
(i, j) ∈ E− and 0 otherwise. We use n = |V | and m = |E| to indicate the number of nodes and
edges of the signed graph G. We use E(V1, V2) to denote the set of edges between two subsets
V1, V2 ⊆ V , where V1, V2 are not required to be disjoint. We define E(V1) to be E(V1, V1), for any
V1 ⊆ V .

We consider the eigenvalues λ1(M) ≥ . . . ≥ λn(M) of a symmetric matrix M ∈ Rn×n, arranged
in non-increasing order and listed with multiplicities. We denote the corresponding eigenvectors
v1(M), . . . ,vn(M), with vi(M) associated with eigenvalue λi(M). By convention, v1(M) is the
leading eigenvector and {v1(M), . . . ,vi(M)} are the i principal eigenvectors.

We denote by In the identity matrix of size n × n, and by Jn the n × n matrix with all elements
being 1. For a matrix M ∈ Rn×n, we use Mi,: to indicate its i-th row, and M:,j to refer to
its j-th column. We also use Mi:,j: to indicate the submatrix of M that consists of rows i to n,
and columns j to n. We use tr(·) to denote the trace of a matrix, 〈·, ·〉F to denote the Frobenius
product between two matrices, and 〈·, ·〉 to denote the dot product between two vectors. We use
θ(u,v) = arccos(〈u,v〉/(‖u‖2‖v‖2)) ∈ [0, π] to indicate the angle between two nonzero vectors
u,v ∈ Rn. Finally, we write [n] to denote the set {1, . . . , n}.

Note. All omitted proofs can be found in the supplementary material.

4 Problem formulation

Given a signed graph G = (V,E) and an integer k, our goal is to find k mutually-disjoint node sets
S1, . . . , Sk ⊆ V that have the following informally-stated properties:

Property 1 For all i, j ∈ [k], with i 6= j, the edges in E(Si) are mostly positive, whereas the edges
in E(Si, Sj) are mostly negative.

Property 2 There should be a large number of interactions among the nodes of S1, . . . , Sk relative
to the total number of nodes in these groups. In other words, the subgraph induced by S1, . . . , Sk

should be as dense as possible.

Inspired by the formulation of Bonchi et al. [4], our objective function is also a variant of the
correlation-clustering problem [2], but with certain differences that we discuss below. For a set of
groups S1, . . . , Sk as a candidate solution, we quantify Property 1 by using the objective

f(S1, . . . , Sk) =
∑
h∈[k]

∑
(i,j)∈E(Sh)

Ai,j +
1

k − 1

∑
h,`∈[k]
h6=`

∑
(i,j)∈E(Sh,S`)

(−Ai,j). (1)

Compared to the standard objective of correlation clustering [2], which treats all edges equally, our
objective in Equation (1) weighs an intra-group edge k − 1 times more heavily than an inter-group
edge. The rationale is as follows: suppose the group sizes and edge densities stay fixed as k increases.
Since the number of inter-group edges grows quadratically with k and the number of intra-group
edges grows linearly with k, the weighting in Equation (1) prevents the inter-group edges from
dominating the objective. The value of (k − 1) in the denominator is chosen so that our objective
reduces to the standard case, i.e., the formulation of Bonchi et al. [4], when k = 2.

By introducing an indicator matrix X ∈ {0, 1}n×k with Xi,j = 1 if node i ∈ Sj and 0 otherwise,
our objective in Equation (1) can be rewritten as

f(S1, . . . , Sk) = 〈A,XXT 〉F −
〈A,XJkXT 〉F − 〈A,XXT 〉F

k − 1
=
〈A,XLkX

T 〉F
k − 1

, (2)

where Lk = kIk−Jk. The termXLkX
T in Equation (2) captures explicitly the relationship between

the k groups as (XLkX
T )i,j is positive (negative) whenever nodes i and j are in the same (different)

groups. Also, (XLkX
T )i,j = 0 if either node i or node j does not belong to any of the groups.
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Hence, the value of the Frobenius product 〈A,XLkX
T 〉F quantifies Property (1) for the groups

S1, . . . , Sk (which are encoded in matrix X).

Next, we analyze the matrix Lk, which is a fixed matrix not depending on the input signed graph.
Let Lk = UDUT be the eigendecomposition of Lk, where D = diag([0, k, . . . , k]) ∈ Rk×k, and
U ∈ Rk×k is a real-valued orthogonal matrix. As the geometric multiplicity of eigenvalue k is
k − 1, the matrix U is not unique. For the rest of the paper, we restrict our choice of U to be the
following

(U:,1)T = 1/
√
k [1, . . . , 1], (U:,2)T = c1 [k − 1,−1, . . . ,−1],

(U:,3)T = c2 [0, k − 2,−1, . . . ,−1], . . . (U:,k)T = ck−1 [0, . . . , 0, 1,−1],
(3)

where ci = 1/
√

(k − i+ 1)(k − i), for i = 1, . . . , k − 1.

By the change of variables Y = XU , we can rewrite our objective in Equation (2) as
〈A,XLkX

T 〉F = 〈A, Y diag([0, k, . . . , k])Y T 〉F = k tr((Y:,2:)TA(Y:,2:)). (4)
To account for Property (2) we normalize our objective with the total number of nodes in the groups
S1, . . . , Sk, which can be written as∑

i∈[k]

|Si| = tr(Y TY ) = k (Y:,1)T (Y:,1) =
k

k − 1
tr((Y:,2:)T (Y:,2:)). (5)

Finally we replace the constraints on the indicator matrix X with the constraint that the rows of Y
should take values in the set {0, U1,:, . . . , Uk,:}. The equivalence holds since Xi,: picks the j-th row
of U if i ∈ Sj . Putting all this together, we can now give the final formulation of our problem:

max
Y ∈Rn×k\{0}

tr((Y:,2:)TA(Y:,2:))

tr((Y:,2:)T (Y:,2:))
, (6)

subject to Yi,: ∈ {0, U1,:, . . . , Uk,:}, for all i = 1, . . . , n.

Intuitively, our objective aims to find small-size conflicting groups with many edges satisfying Prop-
erty (1). Note that if we ignore the weighting between the inter-group and intra-group edges, Equa-
tion (6) can be expressed as (#{edges satisfying Property (1)} −#{edges violating Property (1)})
divided by | ∪h∈[k] Sh|.
Also, note that our optimization problem, as formulated above, is different from the trace-
maximization problem [26], which given two n × n matrices M and A, seeks to find an n × d
matrix Z to maximize the form tr(ZTAZ), subject to the constraint ZTMZ = Id. The reason
is that since we have no constraint on the group sizes, there is no predefined matrix M to require
XTMX = Ik.

5 Proposed spectral approach

The problem we study has been shown to be APX-hard for the special case of k = 2 [3]. Here we
consider a generalization for any k ≥ 2. In this section we present an efficient spectral algorithm by
leveraging the problem formulation (6).

Our starting point is that matrixU , as seen in Equations (3), is almost lower-triangular. We can use this
observation to partition Y:,2: column-wise, and reformulate the constraints in problem formulation (6)
as follows:

Y:,2 ∈ {0,−c1, c1(k − 1)}n implies Yi,2 =

{
c1(k − 1) if i ∈ S1,
−c1 if i ∈ ∪kh=2Sh,

Y:,3 ∈ {0,−c2, c2(k − 2)}n implies Yi,3 =

 0 if i ∈ S1,
c2(k − 2) if i ∈ S2,
−c2 if i ∈ ∪kh=3Sh,

...

Y:,k ∈ {0,−ck−1, ck−1}n implies Yi,k =

 0 if i ∈ ∪k−2h=1Sh,
ck−1 if i ∈ Sk−1,
−ck−1 if i ∈ Sk.
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Algorithm 1: SCG (A, k) Spectral Conflicting Group detection

Input :A is the adjacency matrix of the signed network; k is the number of groups.
Output :Groups S1, . . . , Sk.
A(0) ← A;
for t = 1, . . . , k − 1 do

r(t) ← Solve-Max-DRQ (A(t−1), k − t) ; // See Algorithm 2
if t < k − 1 then

St ← {i /∈ ∪t−1j=1Sj : |r(t)i | = (k − t)};
A(t) ← A(t−1);
A

(t)
i,: ← 01×n and A(t)

:,i ← 0n×1 for all i ∈ St ; // Remove edges E(St, V )

else Sk−1 ← {i /∈ ∪t−1j=1Sj : r
(t)
i = 1} and Sk ← {i /∈ ∪t−1j=1Sj : r

(t)
i = −1} ;

end
return S1, . . . , Sk;

Notice that Yi,j = 0 for all i ∈ ∪j−2h=1Sh and Yi,j = −cj−1 for all i ∈ ∪kh=jSh. We let A(0) = A,
and we define A(t) to be the adjacency matrix that results after removing from A(t−1) all entries that
correspond to edges incident to nodes in St. Then, the objective function (6) is equivalent to

tr((Y:,2:)TA(Y:,2:))

tr((Y:,2:)T (Y:,2:))
=

k−1∑
t=1

wt
(Y:,t+1)TA(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
=

k−1∑
t=1

wt
(Y:,t+1)TA(t−1)(Y:,t+1)

(Y:,t+1)T (Y:,t+1)
, (7)

where wt = (Y:,t+1)T (Y:,t+1)/tr((Y:,2:)T (Y:,2:)) ∈ [0, 1] and
∑k−1

t=1 wt = 1. In other words,
Equation (7) shows that the objective function (6) is a convex combination of k− 1 discrete Rayleigh
quotients. Moreover, Equation (7) also suggests that the solution Y:,t+1 characterizes the group
St that conflicts the most with the (not yet decided) rest of groups Sh for h > t. Based on this
observation, we propose a scheme SCG (spectral conflicting groups), shown as Algorithm 1.

SCG executes k−1 iterations. At the t-th iteration, for each t ∈ [k−1], we find the vector Y:,t+1 that
maximizes the discrete Rayleigh quotient of A(t−1), while satisfying the constraints set on matrix Y .
We refer to this problem as MAX-DRQ:

r(t) = argmax
x∈{0,−1,k−t}n\{0}

xTA(t−1)x

xTx
. (8)

The vector Y:,t+1 is then given by Y:,t+1 = ct r
(t). We note that our scheme works with any method

that solves the MAX-DRQ problem. In Algorithm 1 (SCG) we refer to such a general method as
Solve-Max-DRQ. Strategies to solve MAX-DRQ are presented in Section 6. Once the MAX-DRQ
problem is solved in the t-th iteration, the vector r(t) is obtained. If t < k − 1, the t-th group is
recovered by St = {i /∈ ∪t−1j=1Sj : |r(t)i | = (k−t)}, and if t = k−1 (last iteration), the last two groups

are recovered by Sk−1 = {i /∈ ∪t−1j=1Sj : r
(t)
i = 1} and Sk = {i /∈ ∪t−1j=1Sj : r

(t)
i = −1}.

Note that Equation (7) justifies why it is not a good idea to use the k − 1 principal vectors of A to
identify the conflicting groups: the reason is that the coefficients [wt] are not fixed values.

6 Solving the maximum discrete Rayleigh quotient problem

In this section we present two solutions for MAX-DRQ. Our first solution is a deterministic algorithm
presented in Section 6.1. The second solution is a randomized algorithm presented in Section 6.2.
Both solutions first compute the leading eigenvector v1 of the input matrix A(t−1), and then round
v1 to the appropriate discrete form. The difference is the rounding method. We refer to this generic
algorithm as Solve-Max-DRQ, and it is the procedure used in the iterative step of SCG. Pseudocode
for Solve-Max-DRQ is given as Algorithm 2.
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Algorithm 2: Solve-Max-DRQ (A, q) Find maximum discrete Rayleigh quotient

Input :Square and symmetric matrix A, and positive integer q.
Output :The rounded vector r ∈ {0,−1, q}n.
v← the leading eigenvector of A;
(d1, r1)← Round(v, q) ; // d1 = sin θ(v, r1)
(d2, r2)← Round(−v, q) ; // d2 = sin θ(−v, r2)
if d1 ≤ d2 then r← r1;
else r← r2;
return r;

Algorithm 3: MinAngleRound (v, q) Deterministic rounding by minimum-angle heuristic

Input :Vector v ∈ Rn and positive integer q.
Output :Vector u∗ ∈ {0,−1, q}n with min angle to v.
{ik}nk=1 ← Sort v and return the indexes such that vi1 ≥ . . . ≥ vin ;
(d,u∗)← (∞,0);
(k1, k2)← (0, n+ 1);
while k1 < k2 do

u1 ← set the ik1+1-th element of u∗ to q;
u2 ← set the ik2−1-th element of u∗ to −1;
if min{sin θ(v,u1), sin θ(v,u2)} ≥ d then break;
if sin θ(v,u1) < sin θ(v,u2) then (k1, d,u

∗)← (k1 + 1, sin θ(v,u1),u1);
else (k2, d,u

∗)← (k2 − 1, sin θ(v,u2),u2);
end
return (d,u∗);

6.1 Deterministic rounding

Our goal is to find a discrete vector v∗ ∈ {0,−1, q}n that maximizes the quotient xTA(t−1)x/(xTx).
Let v be the leading eigenvector of A(t−1), i.e., the real-valued maximizer of xTA(t−1)x/(xTx).
The idea is to round v to a discrete vector u∗ ∈ {0,−1, q}n that minimizes sin θ(v,u), among all
vectors u ∈ {0,−1, q}n. It can be shown that such u∗ can be found by restricting the search over
O(n2) thresholded candidate vectors obtained by v. We formalize this below.

Definition 1 Let v ∈ Rn, q ∈ [k − 1] and a, b ∈ R be given. Define a threshold function σa,b :
Rn → Rn that maps v to a new vector σa,b(v), whose i-th coordinate is

σa,b(v)i =


q if vi ≥ a > 0,

−1 if vi ≤ b < 0,

0 otherwise,

and denote T = {ti}n+1
i=0 the sequence of all possible thresholds over the coordinates of v, that is,

t0 = ∞, tn+1 = −∞ and ti is the i-th largest coordinate of v, for i ∈ [n]. Then, the set of all
possible thresholded vectors of v is denoted by Γ(v) = {σa,b(v) : for all a, b ∈ T }.
Given a vector v, the discrete vector u∗ ∈ {0,−1, q}n that minimizes sin θ(v,u) can be computed
by using the following result.

Lemma 1 Let v ∈ Rn and q ∈ [k − 1] be given. The minimizer of sin θ(v,u) over all u ∈
{0,−1, q}n is equal to the minimizer of sin θ(v,u) over all u ∈ Γ(v) ∪ Γ(−v).

Since the size of the set Γ(v) ∪ Γ(−v) is O(n2), enumerating all vectors to find the optimal u is not
efficient for large datasets. To make our method scalable, we propose a linear-time rounding heuristic
in Algorithm 3, which finds a local optimum.

This heuristic works by initializing two indexes k1, k2, the indexes of the two thresholds, which are
initially set to 0 and n + 1, respectively. At each iteration, we move only 1 threshold, we either
increase k1 by 1 or decrease k2 by 1. This is determined by comparing sin θ(v, σtk1+1,tk2

(v)) and
sin θ(v, σtk1

,tk2−1
(v)) and choosing the smaller option.
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Algorithm 4: RandomRound (v, q) Randomized rounding

Input :Vector v ∈ Rn and positive integer q.
Output :Vector u ∈ {0,−1, q}n, a randomized rounded vector of v.
u← 0;
for i = 1, . . . , n do

if vi > 0 then ui ← q Bernoulli(|vi|/q) ;
else if vi < 0 then ui ← (−1) Bernoulli(|vi|) ;

end
d← sin θ(v,u);
return (d,u);

6.2 Randomized rounding

Our second algorithm for maximizing xTA(t−1)x/(xTx) in {0,−1, q}n is a randomized-rounding
scheme starting with the eigenvector v of A(t−1). Pseudocode is shown in Algorithm 4.

In more detail, we round v onto {0,−1, q}n by drawing Bernoulli trials. For each positive coordinate
vi we set ui ∼ q Bernoulli(|vi|/q), for each negative coordinate vi we set ui ∼ (−1) Bernoulli(|vi|),
and if vi = 0 we set ui = 0. In this way, we have E[u] = v. By applying similar arguments to the
ones presented by Bonchi et al. [4], we can show that the randomized-rounding algorithm provides a
O(q
√
n)-approximation guarantee to the MAX-DRQ problem. We present this result as Theorem 1.

Furthermore, Corollary 1 states that this result is tight for k = 2.

Theorem 1 Let v be the leading eigenvector of the adjacency matrix A of a signed graph, and let
q ≥ 1 be a positive integer. Then, the RandomRound algorithm with (v, q) as input is a (q

√
n)-

approximation to the optimum of the corresponding MAX-DRQ problem.

Lemma 2 Let OPT be the optimum solution to the MAX-DRQ problem. There exists a problem
instance such that λ1(A) ≥ OPT · Ω(

√
n).

Corollary 1 The integrality gap of algorithm RandomRound is Ω(
√
n), and thus, the approximation

result of Theorem 1 is asymptotically tight up to a factor of q.

7 Experimental evaluation

In this section, we evaluate our framework with both synthetic and real-world graphs. All the
experiments are executed on a machine with Intel Core i5 at 1.8 GHz with 8 GB RAM. All methods
have been implemented in Python 3.1 The datasets we have used are all publicly available and
the detailed information can be found in Supplementary § D.1. Beyond the experiments discussed
here, we present more results in Supplementary § D, including execution times, and a discussion on
deciding the number of groups k.

Proposed methods. Our approach (SCG) is a framework that admits different methods to solve
MAX-DRQ. We have instantiated our framework with the following routines. Minimum angle: the
deterministic rounding algorithm presented in Section 6.1; Randomized rounding: the randomized
rounding algorithm presented in Section 6.2; Maximum objective: a generalization of EigenSign [4],
that rounds v1(A) by finding an optimal threshold to maximize the objective; Bansal: motivated
by the pivot for correlation clustering [2], which finds two conflicting groups by considering the
neighborhood of a single node, and using the node that results in the maximum value of the objective.
These instantiations are denoted by SCG-MA, SCG-R, SCG-MO, and SCG-B, respectively.

Baselines. We use the following baselines: KOCG [11] is a method designed for a similar formulation
to ours. We use the authors’ implementation [10] with default hyperparameters α = 1/(k − 1),
β = 50, and ` = 5000. As KOCG returns a ranked list of disjoint subgraphs, each containing k
conflicting groups, we pick the k groups contained in their top-1 and top-r subgraphs. We choose
r so that the total group size equals the one returned by SCG-MA. We use two spectral algorithms:
BNC [8], which optimizes balanced normalized cut; and SPONGE [14], a method particularly suitable

1https://github.com/rutzeng/SCG-NeurIPS2020.
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Table 1: Polarity objective (Equation (6)) achieved by the proposed methods and the baselines
on real-world signed graphs, for two different values of k: the number of conflicting groups to be
detected. Dashes indicate that a method exceeded the memory limit.

WoW-EP8 Bitcoin WikiVot Referendum Slashdot WikiCon Epinions WikiPol

|V | 790 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E| 116 009 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E| 0.2 0.2 0.2 0.1 0.2 0.6 0.2 0.1

k = 2 SCG-MA 236.6 28.8 71.5 172.2 77.5 155.2 128.3 82.8
SCG-MO 236.6 29.5 71.7 174.1 79.7 175.7 128.7 88.4
SCG-B 200.6 21.7 37.6 116.3 61.0 129.3 156.4 46.5
SCG-R 218.3 14.9 55.7 119.6 29.9 100.2 70.9 36.0
KOCG-top-1 9.0 3.6 4.0 4.3 1.0 6.2 4.2 1.0
KOCG-top-r 18.2 3.8 2.5 14.0 3.7 2.4 6.2 0.9
BNC-k 184.6 5.3 15.8 41.5 — — — —
BNC-(k + 1) -0.7 -10.8 -1.0 -1.0 — — — —
SPONGE-k 191.4 5.1 15.8 41.5 — — — —
SPONGE-(k + 1) 88.0 1.0 1.0 1.0 — — — —

k = 6 SCG-MA 207.3 14.6 45.5 84.9 37.8 102.6 88.8 57.5
SCG-MO 226.9 15.2 47.0 55.6 34.6 111.6 129.2 41.8
SCG-B 211.6 9.3 23.3 116.2 47.7 46.1 94.5 46.0
SCG-R 198.1 5.0 9.7 39.8 7.3 16.2 39.4 5.5
KOCG-top-1 7.0 4.4 5.5 8.8 2.6 4.5 8.7 4.8
KOCG-top-r 8.5 2.9 2.9 5.0 3.6 4.0 6.5 3.0
BNC-k 185.2 5.2 15.8 41.5 — — — —
BNC-(k + 1) -0.2 -4.2 -1.1 -0.8 — — — —
SPONGE-k 58.5 5.0 15.8 41.5 — — — —
SPONGE-(k + 1) 48.1 0.8 1.0 1.0 — — — —

for sparse graphs and large k. To detect k conflicting groups using the spectral clustering algorithms,
we compare with two approaches. The first approach is to directly apply BNC and SPONGE to detect
k clusters and return all the detected clusters as conflicting groups. The second approach is to detect
(k+ 1) clusters, then heuristically treat the largest cluster as the non-conflicting cluster, and return the
k smallest clusters as the detected conflicting groups. Let BNC-k and SPONGE-k denote SPONGE
and BNC with the first approach and let BNC-(k + 1) and SPONGE-(k + 1) denote the two with the
second approach. We use a publicly-available implementation [15] for BNC and SPONGE.

Results on real-world networks. We first measure the quality of the proposed methods and baselines
with respect to the polarity objective, i.e., Equation (6), on real-world signed graphs. The results
are shown in Table 1. The running times of all methods are listed in Supplementary § D.2. We
observe that mostly, SCG-MA and SCG-MO achieve the best polarity scores. They are also the
fastest, and usually find larger groups. An example of the sizes of the groups found by all methods
is given in Supplementary § D.3. The SCG-B algorithm identifies conflicting groups by exploring
local neighborhoods, and its detected groups tend to be located around high-degree nodes. Although
SCG-B achieves the largest polarity on Referendum for k = 6, it only detects 2 groups, already
covered by SCG-MA and SCG-MO. As the groups are not necessarily the high-degree nodes, SCG-B
performs less competitive on WikiVot and WikiCon for k = 6. Finally, SCG-R is not as competitive
as SCG-MA or SCG-MO and is slower due to random sampling.

With respect to our direct competitor KOCG, the KOCG-top-1 variant performs slightly better than
KOCG-top-r when k = 6. As KOCG finds groups in local regions, KOCG-top-1 returns much smaller
groups than the other methods. On the contrary, KOCG-top-r intersects several local groups in
different graph regions but remains ineffective compared to SCG-MA under the same total group size.
All KOCG settings perform worse than BNC and SPONGE on the first 4 datasets.

Finally, the spectral-clustering methods BNC and SPONGE exceed the memory limit (caused by
k-means) on large datasets. The k groups returned by BNC-k and SPONGE-k usually consist of one
large group with many non-conflicting nodes and k − 1 very small groups. Since BNC-(k + 1) and
SPONGE-(k + 1) can use the spare cluster to put the non-conflicting nodes, we expect they perform
better than BNC-k and SPONGE-k but it turns out to be worse on all 4 real-world networks. Despite
of the unexpected results, both versions of BNC and SPONGE are less effective than SCG-MA and
SCG-MO at finding conflicting groups in real-world graphs.

Results on synthetic graphs. In our second experiment, we use synthetic graphs to measure how
well the methods recover ground-truth conflicting groups. We use the modified signed stochastic
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Figure 1: F1-score (left) and polarity score (right) as a function of the parameter η. The input signed
graphs are generated by the m-SSBM model, for a graph of size n = 2 000, with k = 6 ground-truth
groups, each having size ` = 100.

block model (m-SSBM) [4], which has 4 parameters; n: the graph size; k: the number of conflicting
groups; `: the size of each of the conflicting groups (all have the same size); and η ∈ [0, 1]: a
parameter that controls the edge probabilities. Edges in the same group are positive with probability
1− η and negative or absent with probability η/2. Edges between distinct groups are negative with
probability 1− η and positive or absent with probability η/2. All other edges have equal probability
of min(η, 1/2) of being positive or negative. Hence, the smaller the value of η, the denser the
conflicting groups and the lower the noise level. Note that the conflicting groups only emerge when
η ≤ 2/3, since m-SSBM is expected to have more negative edges in the groups and more positive
edge between groups if η > 2/3.

In this experiment we measure the recovery rate of the ground-truth groups using the F1 score, with
precision and recall averaged over all groups. In Figure 1 we report the results of the m-SSBM model
with parameters n = 2 000, k = 6, ` = 100, and η = 0 : 0.1 : 0.6. Each setting is repeated 20 times,
and we report the average F1 score and polarity scores.

As seen in Figure 1, the recovery rate (F1 score) for all methods declines with η, since the graph
becomes sparser and more noisy. It is clear that SCG-MA and SCG-MO are robust methods, handling
very well the increasing noise level. It is worth noting that SPONGE-(k + 1) performs the best in this
experiment with respect to both F1 and polarity. We also see that SCG-B is less competitive here, as
in this data the conflicting groups are not concentrated around high-degree nodes. In summary, under
the m-SSBM model, our polarity score is consistent with the F1 score, and our proposed methods
SCG-MA and SCG-MO are effective in detecting the ground-truth conflicting groups.

8 Conclusions and future work

We propose an efficient method for detecting k conflicting groups in a signed network. Our approach
relies on interpreting the problem objective in terms of the Laplacian of a complete graph, character-
izing the spectral properties of this matrix, and deriving a novel formulation in which each conflicting
group is characterized by the solution to the maximum discrete Rayleigh quotient problem.

Our work opens several exciting directions for future work. First, it remains open whether we can
improve the O(

√
n)-approximation for the maximum discrete Rayleigh quotient problem, using an

approach that does not rely on rounding the leading eigenvector, such as by extending the SDP-based
algorithm in [3]. Second, it would be interesting to explore the applicability of our approach to
unsigned graphs for the task of detecting dense subgraphs. Third, the modified Stochastic Block
Model (m-SSBM) is actually a special case of Label Stochastic Block Model (LSBM) [23]. It would
be relevant to analyze the recovery guarantee of our proposed method in m-SSBM with respect to the
fundamental limit results [44] and the interplay with the Bethe-Hessian operator [34] in the sparse
regime. Finally, the difference in the empirical performance of our two rounding techniques and the
spectral clustering baseline SPONGE [14] in the real-world networks and the synthetic network is
somewhat striking. It is possible that some properties or structures exist in the real-world networks
but not in the synthetic networks. An interesting question is to explain this behavior analytically, in
particular with respect to properties of real-world networks.
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Broader Impact

As the task we tackle in this paper belongs to the broad category of data mining, and as our study is
mainly of theoretical nature, the impact of our work to the society is indirect. With respect to positive
consequences, we name two possible applications that could impact the modern society. First, the
rise of polarization and fake news is related to the existence of conflicting groups. Thus, having an
efficient characterization tool is the first step to mitigate the situation. Second, both collaboration and
competition exist in a diverse environment and detecting conflicting groups helps to understand the
interplay of the two. With respect to negative consequences, we do not foresee specific issues when
applying our method.
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