Discovering conflicting groups in signed networks
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A Proof of Lemma/[ll

Proof: We have ||v||2 = 1 and, without loss of generality, we can assume that the coordinates
of v are sorted in non-increasing order. Let T = {; ?:01 be all possible thresholds for v and
T' = {t/}14} be all possible thresholds for —v. Recall the definition of 6(-,-) from Section
that f(a, b) = arccos({a, b)/||all2||b||2) € [0, n] for any two nonnegative vectors a, b € R", so

sin #(a, b) is always non-negative. Let u* be the minimizer of sin #(v, u) over allu € I'(v)UIL'(—v).

For simplicity, we assume u* € I'(v) and (v, u*) > 0. This is because if the dot product is negative,
we can make it positive by reversing the sign of v. Let k], k5 be the two thresholds such that
u* = oy, ¢,.(v). We will show that sin (v, u) > sin §(v,u*) forany u € {0, —1,¢}".

1 2

Fix any u € {0,—1,¢}". Our first step is to identify the coordinates that u; # u}, denoted by
I={j:u;# u}‘} Moreover, since uj = g forall j < k7, uj = —1forall j > k3, and uj = 0 for
all j € (kT, k3), we further divide Z into 6 disjoint subsets:

In={j€Z:u;=0,j <kj}, Tio={j€Z:u;=-1,j <k},
Iy ={j€Z:u;=gq,jc (ki,k3)}, Ipo={j€Z:u;=—1,j¢€ (k],k3)},
Isn={j€Z:u;=0,j >k}, Iso={j€l:u;=q,j >k}

Denote the overall division by k7 and k5 by Z1 = Z11 U Z19, Lo = Zo1 U T, and T3 = Z31 U Iso.

We claim that for any such u, there exists a vector u € I'(v) U I'(—v) such that sin (v, u) >
sin #(v, w), which is sufficient to complete the proof since u* is the minimizer of sin 6(v, u) for all
u € I'(v) UT(—v). We will show how to find such vector & by examining the following two cases:

(Case 1) (v,u) > 0:

Let ¢; = |Zo1| — |Z1| and ¢ = |Z22| — |Z3]. The claim is proved by setting &t = o, ,
1
which is justified by the following two observations.

+cq 1tk3 —co (V)’

First, observe that |||z < |lul|2 because |03 + |Z12| + ¢°|Z32| = |Ju|3.

Second, write (v, u) as

(vouy=(vu)+q (=D vi+ D vl (D vi+ D, (V)| O
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Notice that some terms of the summation in Equation (T) are negative, in particular,

ST(=vi)+ Y qvi <0,

JEZL12 JE€L32
since v; > O forall j € Z15,and v; < O forall j € Z3».

Therefore, we have
vy <vu)+g (=D vit > v+ Do vi+ D (v |- 2
Jj€Ly JE€EI21 JE€Is JE€EL22

Since v is sorted non-increasingly, the latter two terms in (Z) are smaller than

|Z1] |Za1 | |Zs] |Z22]

~ 2 vk T 2 Vi | + | 2 v+ 2 (Vi)
Jj=1 Jj=1

That is,

|Z1] |Zo1| |Zs| |Z22]

(v,u” ka*—] + Z Vir—|T1|+3 ka s+5 T Z “Vki+|T5] - g)

- <V, 11>

(v, u)

IN

Hence, we have 0 < cosf(v,u) < cosf(v, 1), which is equivalent to sin (v, u) > sin 6(v, 1) due
to the non-negativity of sin 0(-, -).

(Case 2) (v,u) < 0:

Letc; = |{j € To1 : vj < 0}| + |Z32] and c2 = |{j € T2z : v; > 0}| + |Z12|. The claim is proved
by setting u = oy, Lty —v), which is justified in the below two observations.
First, observe that ||@1||2 < ||u||2 because

3+ * {5 € a1+ v; = 0} + [{j € Tz v; < 0} = [[u3.
Second, write (v, u) by Equation (1)) as

(v,u) = (v,u*) +¢ —Zvj+ Z v |+ Zvj+ Z (=vj)|. @
JELL J€Z21UL32 J€EZL3 J€Z12UTa2

Notice that some terms of the summation in Equation (3) are non-negative, in particular

Z qv; + Z (*Vj) > 0.

J€Z21,v; 20 jEIz)z,Vj<0

Therefore, by letting Zy; = {i € Zo1,v; < 0} and T, = {i € Tpo,v; > 0}, we have

(v,u) > (v,u*) +¢ _ZVj+ Z v | + Zvj— Z v; 4

JE€T JET32UT;, JETs JET12UTS,
>q g v — E v )
JET32UL;, JET12UTS,
|Z52UZ,, | n
/ / o ~
>—1\gq E th — E ti ] =—(v,u),
J=1 J=|T12UZ5,|+1

where Inequalities () and (5)) hold because Z; C [k}] and Z3 C [k5, - ,n].

Hence, we have 0 > cos (v, u) > cos (v, 1), which is equivalent to sin (v, u) > sin 6(v, @) due
to the non-negativity of sin (-, -). O



B Proof of Theorem[l

Proof: Let u be the random variable defined in Section such that u; ~ ¢ Bernoulli(]v;|/q) for
positive coordinates v; > 0, u; ~ (—1)Bernoulli(|v;|) for negative coordinates v; < 0, and u; = 0
if v; = 0. For convenience, we define

q, x>0
glxy=¢-1, <0
0, z=0.

We are interested in analyzing the expectation of u” Au/u”"u, which is given by

uTAu uTAu - .
E|:uTu:| Z E|:uTu |11 uqk1+k2]IP’(u u:qk1+k~2)
(k1,k2):1<k1+k2<n

E [HTAU | uTu = qkl + kQ] ]P(llTu = qkl + ]fg)
- > Q)
gk + k2

(k’l,kQ):lSkl-‘erS’n

The term E [u” Au | u”u = gk; + ko] P(u"u = gk + k2) in Equation @, can be written as
Z Ai j9(vi)g(vi)P(u; = g(vi), u; = g(vy) | u'u = gky + k2)P(u"u = gki + k2), (D)
1#]

and using Bayes’ theorem we can re-write Equation (7) as

D Aiig(vi)g(vi)Pa"u = ghitks | w; = g(vi), w5 = g(v))P(wi = g(vi), u; = g(v;)). (8)
i#]

By Equations (6) and (8) and since g(v;)g(v;)P(u; = g(vi),u; = g(v;)) = v;v;, we have
s Do APl u = ok ks v =00 = 6(%)
(k1,k2):1<k1+k2<n aki + ks
=Y Ajviv; 3 P(u"u = gk1 + ky | u; = g(vi),u; = g(v;))
»J J qkl +]<32
i#j (k1,k2):1<k1+k2<n
1
=D AijviviE [uTu | w = g(vi),u; = g(v;)| - €))

i#j

As the reciprocal function is convex, we apply Jensen’s inequality to Equation (9) to obtain

TA A ViV
E[UT “] p— Lizi A Vivy . (10)
uu | 7 EuTuluw = g(vi),u; = g(v;))]
To estimate the denominator in Equation (I0), we compute
Vi
B [T | = g(vi)ow; = o)) = o) 40+ 3 sl
ki kot F
—2
< max (q\/n—2,2q2+qn\/ﬁ) . (1
Combining (I0) and (I2) we get
E [uTAu] > Zz;ﬁj Ai’jvivj _ >\1(A) (12)
utu |7 pax (qx/n —2,2¢> + q’%) max (q\/n —2,2¢> + qnj}?)
Hence, the expected approximation ratio is
TA
O(qVm)E [“ E “} > \i(4) > OPT,
uTu
where OPT is the optimum of MAX-DRQ. O



C Proof of Lemma 2]

Proof: Consider a graph G = (V, E) consisting of |V | = n = 2¢+ 1 nodes, for some ¢ > 1, where
2c nodes form a negative clique and the extra node v is negatively connected to c of the nodes in the
clique. Let A be the signed adjacency matrix of G. We will show the problem instance defined on G

results in an optimal value of MAX-DRQ equal to OPT = O(1), while A1 (A) is Q(y/n).

Any solution u € {0, —1, ¢}" to Max-DRQ defines the two sets S, = {i : u; = ¢} and S,, = {i :
u; = —1}. We claim that maxye(o,—1,4}» u? Au/uTu < 2, and will show it by considering 3 cases:

(Case 1) v ¢ S, U Sp:

2| E(Sp)] 2| E(Sp,Sn) 2| E(Sn)]
T 2/—/% —N— ————
uw Au _ —q7[Sp[([Sp] = 1) +q 2[Sp|[Sn| = [Sn[(1Sa] = 1)
u’u 42| Sp| + |Snl
_ —(alSpl = [Sn])* + ?|Sp + |5n]
42| Sp| + [Snl '

Letr = ¢|S,| — |S,| and let e = r/g|S,| < 1. Then, Equation can be written as
u’Au  q(g+1)|Sp| —r(r+1)
uTu [Spla(g+1) —r
1
@+D+agsy (r+3)°
(g+1)—e qlSpl(g+1—¢)
1
(9+ 1)+ a7s,n
(g+1)—¢
q+2

<—<2=0(1).
= (1)

(Case2) v € Sp:

uAu=—¢* | (1S,| = 1)(|S,] — 2) +2|E({v}, S|

2|E(Sp\{v})I
+q [ 2(1Sp] = D)[Sn| +2[E({v}, Sn)| | = [Snl([Sn] = 1)
2|E(Sp\{v},Sn)| 2|E(S,)]

= —(q(|Spl = 1) = 180])* + S|
+@*(1Sp| — 1) +2¢| E({v}, S0)| — 263 E({v}, S,)]
< —(q(ISp] = 1) = [Su])® + ISul + ¢*(ISp| — 1) + 24]Syl.

Letr = q(|Sy| — 1) — [Sn| and write Equation (14) as

u"Au=—(r —¢)* +q(g+3)(Sy| = 1) +¢* =7
<q(qg+3)(ISp| = 1) +¢* -

By and letting € = r/¢(|S,| — 1) < 1, we have

ul Au < q(Q+3)(|Sp|*1)+q27r
uua = qlg+1)(|Spl = 1)+ (¢ — 1)
2
:1+(q+1)+(q/(|5p|_1)_6) <2=0(1).

13)

(14)

15)



(Case 3) v € S,:

u’Au = ¢[8,|(I1Sp] = 1) +q | |S,pl(1Su] = 1) +2[E({v}, S,)]
—_————

2|E(Sn\{v},Sp)]

= | (Snl = 1)(ISn] = 2) +2[E({v}, Sn)]
2|E(Sn\{v})|

= —(qISpl = (ISn] = 1))2 + QQ‘Spl + 10| — 1
+2q|E({v}, Sp)l = 2|E({v}, Sn)

< = (alSpl = (1Sul = 1))* + @®ISp| + || = 1 +24]S, . (16)

Let r = ¢|Sp| — (]S»| — 1) and write Inequality as
1 1
ulAu=—(r+ )" +qlg+3)[9| + ;
1
< gla+3)S,]+ 1. (17

By and letting e = (7 +1)/q|S,| < 1, we have

uTAu< q(q+3)1Sp| + 5
uu T q(g+1)|S,| - (r+1)
2+1/(4q9|Sp|) + €
(g+1)—c¢
<2=0().

Therefore, we know that the optimal solution OPT of Max-DRQ is O(1). However, consider a
vector x € R" such that

n+1 1 1 -1 -1 (18)
X = s R s RN N
2n \/2n V2n V2n V2n
c entries c entries
where the first entry of x corresponds to v. Then, the vector x defined in Equation (I8) gives
xTAx Vn+1l(n—-1) n-1
= +
xTx 2n 2n
VAt I+l Vati+l
B 2 2n
As \1(A) = maxyern o) X© Ax/xTx, we have shown A1 (4) > OPT - Q(y/n). O



D Experiment Results

D.1 Dataset

WoW-EPS8 []] is the interaction network of authors in the 8th legislature of the EU Parliament, where
edge signs indicate if two authors are collaborative or competitive to each other. Bitcoin [4] is
the trust-distrust network of users trading on the Bitcoin OTC platform. WikiVot [4] collects the
positive and negative votes for electing Wikipedia admins. Referendum [3]] collects the tweets about
the Italian constitutional referendum in 2016, and edge signs indicate if two users are classified
to have the same stance or not. Slashdot [4] is a friend-foe network collected from the Slashdot
Zoo feature. WikiCon [2] collects the positive and negative iterations of users editing the English
Wikipedia. Epinions [4] is the trust-distrust network of users on the online social network Epinions.
WikiPol [3] is the interaction network of users who have edited the English Wikipedia pages about
politics.

D.2 Execution Time

Table 2: Running times for the results shown in Table[I] All times are shown in seconds. Dashes
indicate that a method cannot finish execution due to memory limit exceeded.

WoW-EP8 Bitcoin WikiVot Referendum Slashdot WikiCon Epinions WikiPol

V] 790 5881 7115 10884 82140 116717 131580 138587
|E| 116009 21492 100693 251406 500481 2026646 711210 715883
|E_|/|E| 0.2 0.2 02 0.1 0.2 0.6 0.2 0.1
k=2 SCG-MA 2 1 2 4 10 217 109 25
SCG-MO 2 1 2 4 11 70 94 15
SCG-B 13 9 21 44 693 3584 1906 1624
SCG-R 4 3 6 17 70 485 37 217
KOCG 3 11 16 25 1243 3269 3208 3506
BNC-k 2 1 2 4 — — — —
BNC-(k +1) 2 1 2 4 — — — —
SPONGE-k 2 5 3 4 — _ _ _
SPONGE-(k + 1) 2 11 4 9 — — — —
k=6 SCG-MA 3 1 6 16 75 304 132 136
SCG-MO 3 1 6 18 74 229 107 139
SCG-B 17 29 78 201 3280 10637 5455 5714
SCG-R 3 5 9 21 118 415 219 892
KOCG 1 5 8 14 690 1837 1845 1724
BNC-% 2 1 2 4 — — — —
BNC-(k +1) 2 1 2 4 — — — —
SPONGE-k 2 7 6 20 — — — —
SPONGE-(k + 1) 2 5 4 26 — — — —

D.3 Detected Group Sizes

Figure [2] extracted from the Referendum dataset, shows the typical distribution of the group sizes
for all the comparison methods. This pattern is similar to all other datasets except WoW-EP8. That
is, SCG-MA, SCG-MO, and SCG-R return the largest groups while KOCG-top-1, BNC-(k + 1), and
SPONGE-(k + 1) return the smallest groups.
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Figure 2: The typical group size distribution on all the datasets except WoW-EP8 when k = 6.

On the other hand, WoW-EP8 shows a different group-size distribution, which is shown in Figure
All SCG methods and BNC-k find one giant group. By checking the polarity (Table[T]in main paper),
their scores are high, so this probably suggests there exists a giant conflicting group in the network.
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Figure 3: The group size distribution on WoW-EP8 when k = 6.

D.4 Deciding k£
We present a heuristic similar to Elbow Method [6] to decide &, which consists of the following steps:

1. Run SCG multiple times with different k.

2. Draw a DRQ-Plot, where the Discrete Rayleigh Quotient (DRQ) values in each run are
sorted, and then plot the ¢-th largest DRQ value at the ¢-th location.

3. Decide k to be one of the “knees” of the curve.

The reason why the heuristic works is that, if there exist conflicting groups and the noise-level is
not too high, then the leading eigenvector should be indicative of the true conflicting groups and
have large DRQ values in the first £ — 1 iterations, while the leading eigenvector only captures noise
structures and has low DRQ value after the k-th iteration. Therefore, it is expected to see knees of the
curve at the (k — 1)-th iteration.

First, we evaluate the heuristic using m-SSBM under the same setting (k = 6, ¢ = 100, and n = 2 000)
by varying n = 0 : 0.1 : 0.6. The result of detecting the conflicting groups by SCG-MA is depicted in
Figure ] As expected, the most prominent knee is at the 5-th iteration when the noise-level is not too
high (n < 0.3). As the noise-level increases (1 > 0.4), the knee at the 5-th iteration becomes less
obvious and some artificial knees that fit the random noise emerge.
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Figure 4: Run SCG-MA with different £ on networks generated by m-SSBM (k = 6, ¢ = 100, and
n = 2000). Each setting is repeated 20 times and reported the average.

Finally, we use the heuristic on the real-world datasets to decide k and show the result in Figure 5]
Our analysis suggests that Referendum has 4 conflicting groups, because the most prominent knee



appears at the 3-th iteration, while on Epinions, there are two prominent knees at the 3rd and the
4-th iterations, so there are probably 4 or 5 conflicting groups in the network.
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Figure 5: Run SCG-MA Real-world networks with different k.
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