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A Proof of Lemma 1

Proof: We have ‖v‖2 = 1 and, without loss of generality, we can assume that the coordinates
of v are sorted in non-increasing order. Let T = {ti}n+1

i=0 be all possible thresholds for v and
T ′ = {t′i}

n+1
i=0 be all possible thresholds for −v. Recall the definition of θ(·, ·) from Section 3

that θ(a,b) = arccos(〈a,b〉/‖a‖2‖b‖2) ∈ [0, π] for any two nonnegative vectors a,b ∈ Rn, so
sin θ(a,b) is always non-negative. Let u∗ be the minimizer of sin θ(v,u) over all u ∈ Γ(v)∪Γ(−v).

For simplicity, we assume u∗ ∈ Γ(v) and 〈v,u∗〉 ≥ 0. This is because if the dot product is negative,
we can make it positive by reversing the sign of v. Let k∗1 , k

∗
2 be the two thresholds such that

u∗ = σtk∗1 ,tk∗2
(v). We will show that sin θ(v,u) ≥ sin θ(v,u∗) for any u ∈ {0,−1, q}n.

Fix any u ∈ {0,−1, q}n. Our first step is to identify the coordinates that ui 6= u∗i , denoted by
I = {j : uj 6= u∗j}. Moreover, since u∗j = q for all j ≤ k∗1 , u∗j = −1 for all j ≥ k∗2 , and u∗j = 0 for
all j ∈ (k∗1 , k

∗
2), we further divide I into 6 disjoint subsets:

I11 = {j ∈ I : uj = 0, j ≤ k∗1}, I12 = {j ∈ I : uj = −1, j ≤ k∗1},
I21 = {j ∈ I : uj = q, j ∈ (k∗1 , k

∗
2)}, I22 = {j ∈ I : uj = −1, j ∈ (k∗1 , k

∗
2)},

I31 = {j ∈ I : uj = 0, j ≥ k∗2}, I32 = {j ∈ I : uj = q, j ≥ k∗2}.

Denote the overall division by k∗1 and k∗2 by I1 = I11 ∪ I12, I2 = I21 ∪ I22, and I3 = I31 ∪ I32.

We claim that for any such u, there exists a vector ũ ∈ Γ(v) ∪ Γ(−v) such that sin θ(v,u) ≥
sin θ(v, ũ), which is sufficient to complete the proof since u∗ is the minimizer of sin θ(v,u) for all
u ∈ Γ(v) ∪ Γ(−v). We will show how to find such vector ũ by examining the following two cases:

(Case 1) 〈v,u〉 ≥ 0:

Let c1 = |I21| − |I1| and c2 = |I22| − |I3|. The claim is proved by setting ũ = σtk∗1+c1
,tk∗2−c2

(v),
which is justified by the following two observations.

First, observe that ‖ũ‖2 ≤ ‖u‖2 because ‖ũ‖22 + |I12|+ q2|I32| = ‖u‖22.

Second, write 〈v,u〉 as

〈v,u〉 = 〈v,u∗〉+ q

−∑
j∈I1

vj +
∑

j∈I21∪I32

vj

+

∑
j∈I3

vj +
∑

j∈I12∪I22

(−vj)

 . (1)
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Notice that some terms of the summation in Equation (1) are negative, in particular,∑
j∈I12

(−vj) +
∑
j∈I32

qvj < 0,

since vj > 0 for all j ∈ I12, and vj < 0 for all j ∈ I32.

Therefore, we have

〈v,u〉 ≤ 〈v,u∗〉+ q

−∑
j∈I1

vj +
∑
j∈I21

vj

+

∑
j∈I3

vj +
∑
j∈I22

(−vj)

 . (2)

Since v is sorted non-increasingly, the latter two terms in (2) are smaller than

q

− |I1|∑
j=1

vk∗1−j +

|I21|∑
j=1

vk∗1−|I1|+j

+

|I3|∑
j=1

vk∗2+j +

|I22|∑
j=1

(−vk∗2+|I3|−j)

 .

That is,

〈v,u〉 ≤ 〈v,u∗〉+ q

− |I1|∑
j=1

vk∗1−j +

|I21|∑
j=1

vk∗1−|I1|+j

+

|I3|∑
j=1

vk∗2+j +

|I22|∑
j=1

(−vk∗2+|I3|−j)


= 〈v, ũ〉

Hence, we have 0 ≤ cos θ(v,u) ≤ cos θ(v, ũ), which is equivalent to sin θ(v,u) ≥ sin θ(v, ũ) due
to the non-negativity of sin θ(·, ·).

(Case 2) 〈v,u〉 < 0:

Let c1 = |{j ∈ I21 : vj < 0}|+ |I32| and c2 = |{j ∈ I22 : vj > 0}|+ |I12|. The claim is proved
by setting ũ = σt′c1 ,t

′
c2

(−v), which is justified in the below two observations.

First, observe that ‖ũ‖2 ≤ ‖u‖2 because

‖ũ‖22 + q2|{j ∈ I21 : vj ≥ 0}|+ |{j ∈ I22 : vj ≤ 0}| = ‖u‖22.
Second, write 〈v,u〉 by Equation (1) as

〈v,u〉 = 〈v,u∗〉+ q

−∑
j∈I1

vj +
∑

j∈I21∪I32

vj

+

∑
j∈I3

vj +
∑

j∈I12∪I22

(−vj)

 . (3)

Notice that some terms of the summation in Equation (3) are non-negative, in particular∑
j∈I21,vj≥0

qvj +
∑

j∈I22,vj≤0

(−vj) ≥ 0.

Therefore, by letting I−21 = {i ∈ I21,vi < 0} and I+22 = {i ∈ I22,vi > 0}, we have

〈v,u〉 ≥ 〈v,u∗〉+ q

−∑
j∈I1

vj +
∑

j∈I32∪I−21

vj

+

∑
j∈I3

vj −
∑

j∈I12∪I+22

vj

 (4)

≥ q
∑

j∈I32∪I−21

vj −
∑

j∈I12∪I+22

vj (5)

≥ −

q |I32∪I−21|∑
j=1

t′j −
n∑

j=|I12∪I+22|+1

t′j

 = −〈v, ũ〉,

where Inequalities (4) and (5) hold because I1 ⊆ [k∗1 ] and I3 ⊆ [k∗2 , · · · , n].

Hence, we have 0 ≥ cos θ(v,u) ≥ cos θ(v, ũ), which is equivalent to sin θ(v,u) ≥ sin θ(v, ũ) due
to the non-negativity of sin θ(·, ·). �
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B Proof of Theorem 1

Proof: Let u be the random variable defined in Section 6.2, such that ui ∼ q Bernoulli(|vi|/q) for
positive coordinates vi > 0, ui ∼ (−1)Bernoulli(|vi|) for negative coordinates vi < 0, and ui = 0
if vi = 0. For convenience, we define

g(x) =


q, x > 0

−1, x < 0

0, x = 0.

We are interested in analyzing the expectation of uTAu/uTu, which is given by

E
[
uTAu

uTu

]
=

∑
(k1,k2):1≤k1+k2≤n

E
[
uTAu

uTu
| uTu = qk1 + k2

]
P(uTu = qk1 + k2)

=
∑

(k1,k2):1≤k1+k2≤n

E
[
uTAu | uTu = qk1 + k2

]
P(uTu = qk1 + k2)

qk1 + k2
. (6)

The term E
[
uTAu | uTu = qk1 + k2

]
P(uTu = qk1 + k2) in Equation (6), can be written as∑

i6=j

Ai,jg(vi)g(vj)P(ui = g(vi),uj = g(vj) | uTu = qk1 + k2)P(uTu = qk1 + k2), (7)

and using Bayes’ theorem we can re-write Equation (7) as∑
i 6=j

Ai,jg(vi)g(vj)P(uTu = qk1+k2 | ui = g(vi),uj = g(vj))P(ui = g(vi),uj = g(vj)). (8)

By Equations (6) and (8) and since g(vi)g(vj)P(ui = g(vi),uj = g(vj)) = vivj , we have∑
(k1,k2):1≤k1+k2≤n

∑
i6=j Ai,jvivjP(uTu = qk1 + k2 | ui = g(vi),uj = g(vj))

qk1 + k2

=
∑
i 6=j

Ai,jvivj

∑
(k1,k2):1≤k1+k2≤n

P(uTu = qk1 + k2 | ui = g(vi),uj = g(vj))

qk1 + k2

=
∑
i 6=j

Ai,jvivjE
[

1

uTu
| ui = g(vi),uj = g(vj)

]
. (9)

As the reciprocal function is convex, we apply Jensen’s inequality to Equation (9) to obtain

E
[
uTAu

uTu

]
≥

∑
i 6=j Ai,jvivj

E [uTu | ui = g(vi),uj = g(vj))]
. (10)

To estimate the denominator in Equation (10), we compute

E
[
uTu | ui = g(vi),uj = g(vj))

]
= g(vi)

2 + g(vj)
2 +

∑
k 6=i,k 6=j

g(vk)2 · |vk|
|g(vk)|

≤ max

(
q
√
n− 2, 2q2 + q

n− 2√
n

)
. (11)

Combining (10) and (12) we get

E
[
uTAu

uTu

]
≥

∑
i 6=j Ai,jvivj

max
(
q
√
n− 2, 2q2 + q n−2√

n

) =
λ1(A)

max
(
q
√
n− 2, 2q2 + q n−2√

n

) . (12)

Hence, the expected approximation ratio is

O(q
√
n)E

[
uTAu

uTu

]
≥ λ1(A) ≥ OPT ,

where OPT is the optimum of MAX-DRQ. �
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C Proof of Lemma 2

Proof: Consider a graph G = (V,E) consisting of |V | = n = 2c+1 nodes, for some c ≥ 1, where
2c nodes form a negative clique and the extra node v is negatively connected to c of the nodes in the
clique. Let A be the signed adjacency matrix of G. We will show the problem instance defined on G
results in an optimal value of MAX-DRQ equal to OPT = O(1), while λ1(A) is Ω(

√
n).

Any solution u ∈ {0,−1, q}n to MAX-DRQ defines the two sets Sp = {i : ui = q} and Sn = {i :
ui = −1}. We claim that maxu∈{0,−1,q}n uTAu/uTu ≤ 2, and will show it by considering 3 cases:

(Case 1) v /∈ Sp ∪ Sn:

uTAu

uTu
=
−q2

2|E(Sp)|︷ ︸︸ ︷
|Sp|(|Sp| − 1) +q

2|E(Sp,Sn)|︷ ︸︸ ︷
2|Sp||Sn| −

2|E(Sn)|︷ ︸︸ ︷
|Sn|(|Sn| − 1)

q2|Sp|+ |Sn|

=
−(q|Sp| − |Sn|)2 + q2|Sp|+ |Sn|

q2|Sp|+ |Sn|
. (13)

Let r = q|Sp| − |Sn| and let ε = r/q|Sp| ≤ 1. Then, Equation (13) can be written as

uTAu

uTu
=
q(q + 1)|Sp| − r(r + 1)

|Sp|q(q + 1)− r

=
(q + 1) + 1

4(q|Sp|)

(q + 1)− ε
−

(r + 1
2 )2

q|Sp|(q + 1− ε)

≤
(q + 1) + 1

4(q|Sp|)

(q + 1)− ε

≤ q + 2

q
≤ 2 = O(1).

(Case 2) v ∈ Sp:

uTAu = −q2

(|Sp| − 1)(|Sp| − 2)︸ ︷︷ ︸
2|E(Sp\{v})|

+2|E({v}, Sp)|


+ q

2(|Sp| − 1)|Sn|︸ ︷︷ ︸
2|E(Sp\{v},Sn)|

+2|E({v}, Sn)|

− |Sn|(|Sn| − 1)︸ ︷︷ ︸
2|E(Sn)|

= − (q(|Sp| − 1)− |Sn|)2 + |Sn|
+ q2(|Sp| − 1) + 2q|E({v}, Sn)| − 2q2|E({v}, Sp)|

≤ − (q(|Sp| − 1)− |Sn|)2 + |Sn|+ q2(|Sp| − 1) + 2q|Sn|. (14)

Let r = q(|Sp| − 1)− |Sn| and write Equation (14) as

uTAu = −(r − q)2 + q(q + 3)(|Sp| − 1) + q2 − r
≤ q(q + 3)(|Sp| − 1) + q2 − r. (15)

By (15) and letting ε = r/q(|Sp| − 1) ≤ 1, we have

uTAu

uTu
≤ q(q + 3)(|Sp| − 1) + q2 − r
q(q + 1)(|Sp| − 1) + (q2 − r)

= 1 +
2

(q + 1) + (q/(|Sp| − 1)− ε)
≤ 2 = O(1).
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(Case 3) v ∈ Sn:

uTAu = q2|Sp|(|Sp| − 1) + q

|Sp|(|Sn| − 1)︸ ︷︷ ︸
2|E(Sn\{v},Sp)|

+2|E({v}, Sp)|


−

(|Sn| − 1)(|Sn| − 2)︸ ︷︷ ︸
2|E(Sn\{v})|

+2|E({v}, Sn)|


= − (q|Sp| − (|Sn| − 1))

2
+ q2|Sp|+ |Sn| − 1

+ 2q|E({v}, Sp)| − 2|E({v}, Sn)|
≤ − (q|Sp| − (|Sn| − 1))

2
+ q2|Sp|+ |Sn| − 1 + 2q|Sp|. (16)

Let r = q|Sp| − (|Sn| − 1) and write Inequality (16) as

uTAu = −(r +
1

2
)2 + q(q + 3)|Sp|+

1

4

≤ q(q + 3)|Sp|+
1

4
. (17)

By (17) and letting ε = (r + 1)/q|Sp| ≤ 1, we have

uTAu

uTu
≤

q(q + 3)|Sp|+ 1
4

q(q + 1)|Sp| − (r + 1)

= 1 +
2 + 1/(4q|Sp|) + ε

(q + 1)− ε
≤ 2 = O(1).

Therefore, we know that the optimal solution OPT of MAX-DRQ is O(1). However, consider a
vector x ∈ Rn such that

x =


√
n+ 1

2n
,

1√
2n
, · · · , 1√

2n︸ ︷︷ ︸
c entries

,
−1√
2n
, · · · , −1√

2n︸ ︷︷ ︸
c entries

 , (18)

where the first entry of x corresponds to v. Then, the vector x defined in Equation (18) gives

xTAx

xTx
=

√
n+ 1(n− 1)

2n
+
n− 1

2n

=

√
n+ 1 + 1

2
−
√
n+ 1 + 1

2n
= Ω(

√
n).

As λ1(A) = maxx∈Rn\{0} x
TAx/xTx, we have shown λ1(A) ≥ OPT · Ω(

√
n). �
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D Experiment Results

D.1 Dataset

WoW-EP8 [1] is the interaction network of authors in the 8th legislature of the EU Parliament, where
edge signs indicate if two authors are collaborative or competitive to each other. Bitcoin [4] is
the trust-distrust network of users trading on the Bitcoin OTC platform. WikiVot [4] collects the
positive and negative votes for electing Wikipedia admins. Referendum [3] collects the tweets about
the Italian constitutional referendum in 2016, and edge signs indicate if two users are classified
to have the same stance or not. Slashdot [4] is a friend-foe network collected from the Slashdot
Zoo feature. WikiCon [2] collects the positive and negative iterations of users editing the English
Wikipedia. Epinions [4] is the trust-distrust network of users on the online social network Epinions.
WikiPol [5] is the interaction network of users who have edited the English Wikipedia pages about
politics.

D.2 Execution Time

Table 2: Running times for the results shown in Table 1. All times are shown in seconds. Dashes
indicate that a method cannot finish execution due to memory limit exceeded.

WoW-EP8 Bitcoin WikiVot Referendum Slashdot WikiCon Epinions WikiPol

|V | 790 5 881 7 115 10 884 82 140 116 717 131 580 138 587
|E| 116 009 21 492 100 693 251 406 500 481 2 026 646 711 210 715 883
|E−|/|E| 0.2 0.2 0.2 0.1 0.2 0.6 0.2 0.1

k = 2 SCG-MA 2 1 2 4 10 217 109 25
SCG-MO 2 1 2 4 11 70 94 15
SCG-B 13 9 21 44 693 3 584 1 906 1 624
SCG-R 4 3 6 17 70 485 37 217
KOCG 3 11 16 25 1 243 3 269 3 208 3 506
BNC-k 2 1 2 4 — — — —
BNC-(k + 1) 2 1 2 4 — — — —
SPONGE-k 2 5 3 4 — — — —
SPONGE-(k + 1) 2 11 4 9 — — — —

k = 6 SCG-MA 3 1 6 16 75 394 132 136
SCG-MO 3 1 6 18 74 229 107 139
SCG-B 17 29 78 201 3 280 10 637 5 455 5 714
SCG-R 3 5 9 21 118 415 219 892
KOCG 1 5 8 14 690 1 837 1 845 1 724
BNC-k 2 1 2 4 — — — —
BNC-(k + 1) 2 1 2 4 — — — —
SPONGE-k 2 7 6 20 — — — —
SPONGE-(k + 1) 2 5 4 26 — — — —

D.3 Detected Group Sizes

Figure 2, extracted from the Referendum dataset, shows the typical distribution of the group sizes
for all the comparison methods. This pattern is similar to all other datasets except WoW-EP8. That
is, SCG-MA, SCG-MO, and SCG-R return the largest groups while KOCG-top-1, BNC-(k + 1), and
SPONGE-(k + 1) return the smallest groups.

SCG-MA SCG-MO SCG-B SCG-R KOCG-Top-1 KOCG-Top-r BNC-k BNC-(k+1) SPONGE-k SPONGE-(k+1)

101

103

|S
t|

[Referendum] Detected Group Size

Figure 2: The typical group size distribution on all the datasets except WoW-EP8 when k = 6.

On the other hand, WoW-EP8 shows a different group-size distribution, which is shown in Figure 3.
All SCG methods and BNC-k find one giant group. By checking the polarity (Table 1 in main paper),
their scores are high, so this probably suggests there exists a giant conflicting group in the network.
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SCG-MA SCG-MO SCG-B SCG-R KOCG-Top-1 KOCG-Top-r BNC-k BNC-(k+1) SPONGE-k SPONGE-(k+1)
100

101

102

103

|S
t|

[WoW-EP8] Detected Group Size

Figure 3: The group size distribution on WoW-EP8 when k = 6.

D.4 Deciding k

We present a heuristic similar to Elbow Method [6] to decide k, which consists of the following steps:

1. Run SCG multiple times with different k.

2. Draw a DRQ-Plot, where the Discrete Rayleigh Quotient (DRQ) values in each run are
sorted, and then plot the i-th largest DRQ value at the i-th location.

3. Decide k to be one of the “knees” of the curve.

The reason why the heuristic works is that, if there exist conflicting groups and the noise-level is
not too high, then the leading eigenvector should be indicative of the true conflicting groups and
have large DRQ values in the first k − 1 iterations, while the leading eigenvector only captures noise
structures and has low DRQ value after the k-th iteration. Therefore, it is expected to see knees of the
curve at the (k − 1)-th iteration.

First, we evaluate the heuristic using m-SSBM under the same setting (k = 6, ` = 100, and n = 2 000)
by varying η = 0 : 0.1 : 0.6. The result of detecting the conflicting groups by SCG-MA is depicted in
Figure 4. As expected, the most prominent knee is at the 5-th iteration when the noise-level is not too
high (η ≤ 0.3). As the noise-level increases (η ≥ 0.4), the knee at the 5-th iteration becomes less
obvious and some artificial knees that fit the random noise emerge.

1 2 3 4 5 6 7 8 9
i-th largest

25

50

75

100

125

150

175

200

DR
Q

[ =0.0] SCG-MA
k=2, f1-score=0.5
k=3, f1-score=0.5
k=4, f1-score=0.6
k=5, f1-score=0.8
k=6, f1-score=0.9
k=7, f1-score=0.8
k=8, f1-score=0.8
k=9, f1-score=0.7
k=10, f1-score=0.6

1 2 3 4 5 6 7 8 9
i-th largest

30

40

50

60

70

80

90

100

110
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[ =0.3] SCG-MA
k=2, f1-score=0.4
k=3, f1-score=0.6
k=4, f1-score=0.8
k=5, f1-score=0.9
k=6, f1-score=0.9
k=7, f1-score=0.8
k=8, f1-score=0.7
k=9, f1-score=0.7
k=10, f1-score=0.6

1 2 3 4 5 6 7 8 9
i-th largest

30

40

50

60

70

80

DR
Q

[ =0.4] SCG-MA
k=2, f1-score=0.3
k=3, f1-score=0.6
k=4, f1-score=0.7
k=5, f1-score=0.8
k=6, f1-score=0.8
k=7, f1-score=0.7
k=8, f1-score=0.6
k=9, f1-score=0.6
k=10, f1-score=0.5

1 2 3 4 5 6 7 8 9
i-th largest

15
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40
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[ =0.6] SCG-MA
k=2, f1-score=0.1
k=3, f1-score=0.1
k=4, f1-score=0.1
k=5, f1-score=0.1
k=6, f1-score=0.1
k=7, f1-score=0.1
k=8, f1-score=0.1
k=9, f1-score=0.1
k=10, f1-score=0.1

Figure 4: Run SCG-MA with different k on networks generated by m-SSBM (k = 6, ` = 100, and
n = 2 000). Each setting is repeated 20 times and reported the average.

Finally, we use the heuristic on the real-world datasets to decide k and show the result in Figure 5.
Our analysis suggests that Referendum has 4 conflicting groups, because the most prominent knee

7



appears at the 3-th iteration, while on Epinions, there are two prominent knees at the 3rd and the
4-th iterations, so there are probably 4 or 5 conflicting groups in the network.
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i-th largest
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Figure 5: Run SCG-MA Real-world networks with different k.
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