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Abstract

Gaussian Graphical Models (GGMs) have wide-ranging applications in machine
learning and the natural and social sciences. In most of the settings in which they
are applied, the number of observed samples is much smaller than the dimension
and they are assumed to be sparse. While there are a variety of algorithms (e.g.
Graphical Lasso, CLIME) that provably recover the graph structure with a log-
arithmic number of samples, to do so they require various assumptions on the
well-conditioning of the precision matrix which preclude long-range dependen-
cies, present in many settings of interest.

Here we give the first fixed polynomial-time algorithms for learning attractive
GGMs and walk-summable GGMs with a logarithmic number of samples and
without any such assumptions. In particular, our algorithms can tolerate strong
dependencies among the variables. Our result for structure recovery in walk-
summable GGMs is derived from a more general result for efficient sparse lin-
ear regression in walk-summable models without any norm dependencies. We
complement our results with experiments showing that many existing algorithms
fail even in some simple settings where there are long dependency chains. Our
algorithms do not.

1 Introduction

A Gaussian Graphical Model (GGM) in n dimensions is a probability distribution with density
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where 1 is the mean and X is the covariance matrix. In other words, it is just a multivariate Gaussian.

What makes the multivariate Gaussian so interesting as a graphical model is that its conditional
independence structure is completely encoded in the precision matrix, © = X~'. For a given
©, if we let G be the graph with vertex set [n] and an edge between vertices 4, j iff ©;; # 0,
then X ~ N(u,X) exhibits the following remarkable Markov property with respect to G: for any
set S C [n], if removing the nodes S from G disconnects nodes ¢ and j, then X; and X ;j are
conditionally independent given Xg. This is a very special and useful algebraic property, because
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it means that if we can just estimate the support of the matrix © accurately, we can potentially
discover a lot of valuable information about the random variables X1, ..., X,,. It was for this reason
that Dempster [[1] initiated the study of learning GGMs in the 1970s.

GGMs have wide-ranging applications in machine learning and the natural and social sciences where
they are one of the most popular ways to model statistical relationships between observed variables.
For example, they are used to infer the structure of gene regulatory networks (see e.g. [12, 3 14} 15]])
and to learn functional brain connectivity networks [6, [7]. In causal inference, GGM routines are
often used as a basic subroutine when attempting to learn causal models (see e.g. [8]), because it
corresponds to looking for the moral graph of the directed model, which (1) greatly constrains the
possible set of causal structures which need to be considered, and (2) can be learned from purely
observational data, unlike the original causal structure. It is important to note that in most of the
settings in which GGMs are applied, the number of observed samples is small compared to the
dimensionality of the data. This means that in practice, it is only possible to learn the GGM in a
meaningful sense under some sort of sparsity assumption. We will make the assumption that the
rows and columns of © are d-sparse — i.e., the case where the dependency graph G has maximum
degree at most d.

From a theoretical standpoint, there is vast literature on learning sparse GGMs under various as-
sumptions. Many approaches focus on sparsistency — where the goal is to learn the sparsity pattern
of © assuming some sort of lower bound on the strength of non-zero interactions. This is a natural
objective because once the sparsity pattern is known, estimating the entries of © is straightforward
(e.g. one can use ordinary least squares); because of this, the problems of learning GGMs and sparse
linear regression are very closely related. A popular approach to learning GGMs is the Graphical
LasscE] [9] which solves the following convex program:

max (log det(©) - (£, 0) = A|]|:)

where ¥ is the empirical covariance matrix and ||©||; is the £; norm of the matrix as a vector.

It is known that if © satisfies various conditions, which typically include an assumption similar to or
stronger than the restricted eigenvalue (RE) condition (a condition which, in particular, lower bounds
the smallest eigenvalue of any 2d x 2d principal submatrix of ) then Graphical Lasso and related
£1 methods can succeed in recovering the graph structure (see e.g. [10} [11]]). For the Graphical
Lasso itself, under some incoherence assumptions on the precision matrix (stronger than RE), it
has been shown [[12]] that the sparsity pattern of the precision matrix can be accurately recovered
from O((1/a?)d? log(n)) samples; here « is an incoherence parameter and we are omitting the
dependence on some additional terms. We emphasize that this is only the best known theoretical
guarantee — the performance in real life often seems better than this pessimistic bound.

Another popular approach to learning GGMs is the CLIME estimator which solves the following
linear program:
m@in||@||1 st 120 = I|loo <A

The analysis of CLIME assumes a bound M on the maximum ¢;-norm of any row of the inverse
covariance (given that the X;’s are standardized to unit variance). This is also a type of condition
number assumption, although with respect to a different geometry than RE: more precisely, since
M = max |Oul
llulloo <1
it can be thought of as the condition number of ¥ when viewed as an operator mapping £oo — oo}
this can be smaller than the normal Euclidean condition number. CLIME succeeds at structure
recovery when given
m > CM*logn
samples (here for simplicity we are assuming the entries ©;; are either zero or bounded away from
zero by an absolute constant ¢ so that M = (d)).

While these works show that sparse GGMs can be estimated when the number of samples is loga-
rithmic in the dimension, there is an important caveat in their guarantees. They all need to assume

SWe note that [9] did not introduce this objective (see discussion there), but rather an optimization procedure
used to maximize it, and Graphical Lasso technically refers to this specific optimization procedure.



that © is well-conditioned, and differ mainly in the strength of their assumption: roughly speaking,
one of the stronger assumptionsﬂ used in this literature is that © is well-conditioned in the usual
sense, and the weakest is the /o, — f~, condition number bound assumed by CLIME. This is of-
ten heuristically justified by the belief that a small condition number is information-theoretically
required for structure recovery to be possible. However, and as we will discuss later, recent works
have pointed out that this is actually not the case — the correct information-theoretic condition is
significantly weaker than even the assumption which CLIME makes. Indeed, the fact that bounded
condition number is not the right assumption for structure recovery is hinted at by the fact that it
does not behave nicely under benign operations like rescaling individual variables. In the high-
dimensional setting, bounded condition number can be a somewhat strong condition: in particular,
this assumption is violated by simple and natural models (e.g. a graphical model on a path such as a
time series), where these bounds turn out to be polynomial in the dimension.

In this paper, we study some fundamental classes of GGMs and show how to learn them efficiently
in the low-sample regime under the correct information-theoretic assumption, even when they are
ill-conditioned. We also complement our results with examples that break both previous algorithms
and our own algorithms for learning general sparse GGMs. This leaves open the interesting ques-
tion (raised in [14], and closely related to similar questions about sparse linear regression [15]) of
whether some sparse GGMs may be computationally hard to learn with so few samples. Finally,
we show experimentally that popular approaches, like the Graphical Lasso and CLIME, do in fact
need a polynomial in n number of samples even in some relatively benign examples (and where our
algorithm does succeed).

Our work was motivated by a recent paper of Misra, Vuffray and Lokhov [14] which studied the
question of how many samples are needed information-theoretically to learn sparse GGMs in the ill-
conditioned case. They required only the following natural non-degeneracy condition (which also
appeared in [[16] [I7])): that for every 4, j with ©;; # 0, we have a lower bound on the conditional
partial correlatiorﬂ below:

o loul v X [ Xl
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Intuitively, this assumption means that if we have already observed all of the coordinates of X except
for X; and X, then the remaining randomness over X; and X; has a correlation coefficient of at
least k. This condition is the correct one because: (1) the absence of an edge in the GGM exactly
corresponds to zero partial correlation in the above sense, (2) it has the correct symmetries — it is
not affected by rescaling of any coordinate, and (3) it is the same condition which is needed in the
classical, low-dimensional OLS regression ¢-test [[18] to successfully reject the null hypothesis that
the true coefficient of X; is zero when regressing X; off of X ;.

Crucially, this assumption could be much weaker than any condition number bound, because it
allows for the random variables to be strongly correlated. Here is a basic example (from [14]):
suppose we have three Gaussians X7, X2 and X3 where X is heavily correlated with X5. In this
case, the condition number of ¥ will explode as X; and X5 become more correlated. Nevertheless,
it remains possible to test if there is a x-nondegenerate edge between X; and X3, as long as we
correctly adjust for the effect of X5. In contrast, if we were unaware of the value of X5, it would be
very difficult to test for the same edge between X; and X3, because the X; and X» edge contributes
a very large amount of variance to X;.

The work of [[14] exhibited an algorithm achieving this requirement — more precisely, they showed
that it is always possible to estimate the graph structure with

d
m > C'—2 logn
K

samples without requiring any additional assumptions, clarifying that further condition number as-
sumptions are indeed unnecessary. On the other hand, the result of [17] gives an information-

®Indeed, there are even stronger assumptions such as quantitative versions of faithfulness which we do not
discuss but are needed to prove the correctness of the popular PC algorithm [13].

"Here X.; (resp. X~ ;) denotes the random vector formed by deleting coordinate i (resp. 1, j) of X;
please see Preliminaries for further details and formal definitions of conditional variances, covariances.



theoretic lower bouncﬁ of Q((1/k?)1logn) on the sample complexity for structure recovery. To
summarize, the upper bound of [[14] differs from the lower bound of [[17] by exactly a factor of d (it
is unknown what the optimal dependence is) and otherwise is optimal.

However, the algorithm of [14] runs in time n°(¥), making it impossible to run except for small
instances. This is because their algorithm is based on a reduction to a sequence of sparse linear re-
gression problems that can all be ill-conditioned. It is believed that such problems exhibit wide gaps
between what is possible information theoretically and what is possible efficiently. For instance, it
is known that the general sparse linear regression problem under fixed design is NP—har(ﬂ [19,115].
Misra et al. solve the sparse linear regression problems using exhaustive search over d-size neigh-
borhoods (hence the n°(%) time). This leads to the main question we study:

Can we get efficient and practical algorithms for learning GGMs (run-time < n.°(%)) in some natural,
but still ill-conditioned, cases?

2  Our Results and Technical Overview

We show that for some popular and widely-used classes of GGMs—attractive GGMs and walk-
summable GGMs — it is possible to achieve both logarithmic sample complexity (the truly high-
dimensional setting) and computational efficiency, even when O is ill-conditioned.

Attractive GGMs

First we study the class of attractive GGMs, in which the off-diagonal entries of © are non-positive.
In terms of the correlation structure, this means that all partial correlations are nonnegative. There
are several practical motivations for studying attractive GGMs: in phylogenetic applications, ob-
served variables are often positively dependent because of shared ancestry [20]; in various copula
models that are popular in finance, we posit a latent global market variable that also leads to positive
dependence [21]; see also [22] for more discussion.

A well-studied special case (which essentially captures all attractive GGMs — see Lemma is
the discrete Gaussian Free Field (GFF), in which case © is the generalized Laplacian associated
to a weighted graph. This is a natural model because the Laplacian encourages “smoothness” with
respect to the graph structure: see e.g. [23]]; for this reason, the GFF is an important modeling tool in
active and semi-supervised learning (see [24, 25, 26]]); the GFF also arises in nature from a number
of diverse phenomena in random walks, statistical physics, and random surfaces [27} 128, [23].

In the GFF setting, © will be ill-conditioned, even in the weak ¢, — f,, sense, whenever some
pair of vertices have large effective resistance between them (e.g., paths, rectangular grids, etc.,);
informally, it happens when the graph has many sparse cuts.

We show experimentally (in Appendix [) that simple examples, like the union of a long path and
some small cliques, do indeed foil the Graphical Lasso and other popular methods. Intuitively, this
is because GFFs on a path exhibit long-range correlations that violate the assumptions used in current
works — our examples show that the assumptions made in the literature are to some extent necessary
for these algorithms. This analysis reveals a blind spot of the Graphical Lasso: It performs poorly
in the presence of long dependency chains, which could lead to missing some important statistical
relationships in applications.

We propose the following simple algorithm and show that it succeeds in learning the graph structure
of attractive GGMs. This algorithm, called GREEDYANDPRUNE, does the following to learn the
neighborhood of node ¢:

1. Set S = () and let ¥ > 0 be a thresholding parameter.

2. (Greedy/OMP step) Repeat the following 7' times: set j to be the the minimizer of
Var(X;|Xg, X;) and add j to S.

8 A subtle point arises when interpreting this bound, because d and  are closely related quantities (see e.g.
Lemma@below). In the lower bound constructions of [[17] they have d = O(1/k) and the term dominating
their bound depends only on k.

°For proper learning, where the algorithm is required to output a d-sparse estimator.



3. (Pruning step) For each j € S: if \E(XAXS) > (1- V)\//a\r(Xi|XS\{j}), remove j from
S.

4. Return S as the neighborhood of node i.

where Var indicates the variance is estimated from sample, using Ordinary Least Squares. A more
detailed description of the algorithm is given in the Appendix. In the literature, this is called a
forward-backward method [29].

Theorem 1 (Informal version of Theorem [/). Fix a k-nondegenerate attractive GGM. The
GREEDYANDPRUNE algorithm runs in polynomial time and returns the true neighborhood of every
node i with high probability with m > C(d/k?)1og(1/k)log(n) samples, where C'is a universal
constant.

Our algorithm matches the sample complexity of the previous best (inefficient) algorithms for this
setting [16, [14] and obtains, up to log factors, the optimal dependence on « for fixed d.

Analysis for Attractive GGMs The main intuition behind the algorithm and the crux of our anal-
ysis is the following: For attractive GGMs the conditional variance of a variable X; when we con-
dition on a set Xg is a monotonically decreasing and supermodular function of S. This fact was
previously observed in the GFF setting (independently in [26] 30]) with relatively involved proofs;
we give a new, short proof of this fact using just basic linear algebra. Other works such as [31} 32]]
have considered supermodularity in somewhat related regression settings, but with important differ-
ences (see Further Discussion).

Given the supermodularity result, we next need to address the issue that we don’t have access
to actual conditional variances, but only their empirical estimates. To achieve the efficient sam-
ple complexity of Theorem |l| we carefully analyze the alignment between the true decrement of
conditional variance in one step, Var(X;|Xg) — Var(X;|Xgsug;y) and the noisy empirical decre-

ment \//a\r(X,- | Xs) — \//a\r(Xi | Xsugj})- A subtle obstacle is that we need to control the differences
\//a\r(Xi |Xs) —\//—a\r(XZ- | X suq;3) without assuming too much accuracy on the estimates \//a\r(Xi | Xs)

themselves. Fortunately, this can be shown using matrix concentration, combined with some tools
from classical low-dimensional regression tests [18]].

To complete the analysis, we need a new structural result for attractive GGMs which bounds the
conditional variance after the first step of greedy, so that only a bounded number of iterations of
greedy are required to learn a superset of the neighborhood. We prove this by reducing to the setting
of discrete GFFs, where we can use an electrical argument based on effective resistances. Formally,
we prove the following new structural result for walk-summable GGMs:

Lemma 1 (Lemma [9) of the Appendix). Suppose that i is a node with d > 1 neighbors in an
attractive or walk-summable GGM. Then there exists a neighbor j such that

4d
Oy

Var(Xi|Xj) S = 4dVar(Xl|X~Z)

Previous work on Learning Attractive GGMs. Some prior work on learning attractive GGMs
have focused on the Maximum Likelihood Estimator (MLE). This was shown to exist and be unique
using connections to total positivity in [33} [34], but we are not aware of any sample complexity
guarantees in the context of structure learning. It also is likely broken by the same examples (see
Section[l) as the Graphical Lasso (since the constrained MLE is the same as the Graphical Lasso with
zero regularization and a non-negativity constraint). Finally, the recent work [22] studied adaptive
estimators for learning GGMs, but only for the case where the model is well-conditioned.

Optimal Information-Theoretic Bounds. The previous literature leaves open the information-
theoretically optimal sample complexity for learning attractive GGMs. We resolve this question: a
simple estimator based on {y-constrained least squares, which we refer to as SEARCHANDVALI-
DATE, achieves sample complexity matching the information-theoretic lower bounds of [[L7] (whose
instances can easily be made attractive) up to constants:

Theorem 2 (Informal version of Theorem[I1). In a k-nondegenerate attractive GGM, as long as
m = Q((1/k2?)log(n)), with high probability Algorithm SEARCHANDVALIDATE returns the true

neighborhood of every node i. This algorithm runs in time O(n%+1).



The results of [17] imply that Q((1/x2)log(n)) samples are required even to distinguish the empty
graph from a graph with a single k-nondegenerate edge in an unknown location. This bound does not
depend on d, which may appear surprising. This is possible because d < 1/x? in xK-nondegenerate
attractive GGMs — see Lemma [6] We also give a version of the above result for general models
with sample complexity O(dlog(n)/x?) and time complexity O(n?*!), giving a faster alternative
to [[14] with the same sample complexity guarantee.

Theorem [2|is proved by a careful analysis of the signal-vs-entropy tradeoff between choosing the
correct support (which is best in expectation) and an incorrect support with & disagreements for
each k. To do this we again need to study structural properties of the GGM; we establish something
similar to a “margin condition” in empirical process theory [35]. Precisely analyzing the differences
in empirical risk again builds upon some classical ideas in regression testing [18]].

This result also identifies an important barrier to improving the information theoretic lower bound
of [17], as their lower-bound instances can easily be made attractive. If this bound is not tight for
general GGMs, it appears significantly new ideas will be needed to separate the sample complex-
ity of learning attractive and non-attractive GGMs — they must rely upon the ability of negative
correlations to create nontrivial cancellations.

Walk-Summable GGMs

While attractive GGMs are natural in some contexts, in others they are not. For example, in Genome
Wide Association Schemes (GWASs), genes typically have inhibitory effects too. This leads us to
another popular and well-studied class of GGMs: the walk-summable models. These were origi-
nally introduced by Maliutov, Johnson, and Willsky [36] to explain the convergence properties of
Gaussian Belief Propagation observed in practice (see also [37]).

All attractive GGMs are walk-summable, as are other important classes of GGMs like pairwise nor-
malizable and non-frustrated models [36]. A number of equivalent definitions are known for walk-
summability. The following definition is perhaps the easiest to work with: © is walk-summable
if making all off-diagonal entries of © negative preserves the fact that © is positive definite. Per-
haps less well known, walk-summable models are exactly those GGMs with Symmetric Diagonally
Dominant (SDD, see Preliminaries) precision matrices under a rescaling of the coordinates — see
e.g. [38L139]. In the linear algebra literature [38]], a walk-summable matrix © is referred to as a
symmetric H-matrix with nonnegative diagonal.

Analysis for learning Walk-Summable GGMs. The analysis of learning walk-summable models
is considerably different from the attractive case, because supermodularity (and even weak super-
modularity |32]]) of the conditional variance fails to hold — see Section Regardless, we are still
able to prove that GREEDYANDPRUNE learns all walk-summable models with sample complex-
ity that scales logarithmically with n. We also propose a variant HYBRIDMB that achieves better
sample complexity.

The key idea in this analysis is that a single greedy step can serve as a kind of sparse weak precondi-
tioner, roughly in terms of the ¢, — £, geometry considered in CLIME. More precisely, we show
that after a single step of greedy, the unknown sparse regression vector has small ¢;-norm (inde-
pendent of n and scaling correctly with the noise level). This is shown in the proof of Theorem
based on effective resistance arguments relatd to Lemma [I} The ¢;-norm bound not only implies
that greedy works, but also that appropriate invovations of /;-based methods (like the Lasso) can
now be guaranteed to work. We emphasize that such bounds do not hold without our “weak precon-
ditioning” step.

Concretely, we propose an algorithm called HYBRIDMB based on this idea and show that it learns
walk-summable GGMs without any condition number dependence. This algorithm does the follow-
ing to learn the neighborhood of node 7, where some technical details are left to the full algorithm
description given in the Appendix:

1. (Greedy step) Set j to be the minimizer of \//a\r(Xi|X i)



2. (Lasso with implicit weak preconditioning) Solve for w, a in

. X
min [E X; — Z wk—k—an

el =y kelos) \/ Var(Xal X))

We detail the selection of A in the full version of the algorithm — see the Appendix.

3. (Pruning step) We perform a pruning step similar to GREEDYANDPRUNE to zero out some
of the entries of w, and to test if j is an actual neighbor.

4. Return j (if it passed the test) and the remaining support of w as the neighborhood of <.

The analysis of HYBRIDMB uses the aforementioned structural results for walk-summable models
and a statistical analysis for the regression problem arising after the greedy step. The regression anal-
ysis is similar in spirit to the usual generalization bounds for ¢;-constrained regression but slightly
more subtle. The key insight is that the output of the algorithm is the same if we replace Xj by
X — E[X}|X,]; this change of basis is unknown to the algorithm, but the analysis is much easier
because X; becomes independent of the other regressors.

Theorem 3 (Informal version of Theorem [I7). Fix a walk-summable, r-nondegenerate GGM. Al-
gorithm HYBRIDMB runs in polynomial time and returns the true neighborhood of every node 1
with high probability given m > C(d/r*)log(n) samples, where C'is a universal constant.

We can also prove a similar (but slightly weaker) guarantee for Algorithm GREEDYANDPRUNE
— see Theorem @ For context, we note that prior to our work, Anandkumar, Tan, Huang and
Willsky [16] gave an inefficient n°(%) time algorithm for learning walk-summable models with
similar guarantees and requiring some additional assumptions.

The above structure learning result requires k-nondegeneracy and sparsity of the entire model. How-
ever, it is proved using the following general result for sparse linear regression, which requires only
a joint walk-summability assumption:

Theorem 4 (Informal version of Theorem[16). Suppose thatY = w - X + & where w is d-sparse,
¢ ~ N(0,0?) is independent of multivariate Gaussian r.v. X ~ N(0,X), and suppose that the
joint distribution of (X1, ..., Xn,Y) is a walk-summable GGM. Given m samples from this model,
WS-REGRESSION runs in polynomial time and returns w such that

E[(w- X — - X)?] = O(0?+/dlog(n)/m)

with high probability.

Although this result gives a “slow rate” of /1/m, it is quite different from the usual slow rate
guarantee for the Lasso. The latter guarantees an upper bound on the prediction error of the form
O(cRW \/log(n)/m + RW log(n)/m) where R is an ¢; norm bound on w and W is an ¢, bound
on X, see e.g. [40| [41]. To interpret this, we can rescale the problem so that R, W = ©(1). Then
Theorem |16 guarantees error on the order of the noise level 0% using O(dlog(n)) samples — in
comparison, the standard slow rate result only guarantees error on the order of o plus an additional
term. This difference is the key to achieving structure recovery from O(logn) samples: o can be
orders of magnitude smaller compared to RW in our applications. Compared to £y-constrained least
squares, which requires runtime O(n?), the above result is computationally efficient and still has the
correct dependence on d and o2.

General Models. There do exist some well-conditioned GGMs which are not walk-summable.
However, our analysis actually shows that our methods (GREEDYANDPRUNE, HYBRIDMB) also
recover similar sample complexity bounds to [42] under their assumptions (the aforementioned
o — [l condition number bound) — see Theorem Therefore, our results are a strict ex-
tension of the situation considered in prior work.

Non-Gaussian Models. It’s well-known that many results for Gaussian Graphical Models can
be generalized to other distributions in the following sense: if we can learn a GGM with precision
matrix © = X1, then the result will generally extend to estimating © = X! for X with sufficiently
strong concentration assumptions. The reason is that for any result which depends only on the first



two moments of X (i.e. any quantity definable in terms of X, ), we can generalize it to such an
X by considering the Gaussian with matching first and second moments, and higher moments are
generally needed only for concentration purposes.

We briefly note that the guarantees for our algorithms will also extend in this sense if, for any
w € R™, the sub-Gaussian constant of w - X is upper bounded by C'Var(w - X) for a fixed constant
C, as the needed concentration estimates generalize [43]. On the other hand, for non-Gaussian
distributions the connection between © and conditional independence will not generally hold.

2.1 Further Discussion

GGMs vs Ising Models. There exist parallels but also surprisingly significant differences between
learning GGMs and Ising models. For Ising models, Bresler [31]] gave a greedy algorithm that builds
a superset of the neighborhood around each node and then prunes to learn the true graph structure
using O(f(d) log n) samples and under some relatively mild assumptions. This greedy algorithm is
able to perform structure learning in Ising models even when they exhibit long range correlations,
which was previously considered a difficult case to analyze. However in our setting, and unlike the
previously described situation for Ising models, variables have real values and can have arbitrarily
small or large variance. It turns out this changes the problem dramatically, as it means that the inter-
node fluctuations in the random field (which contribute to Var(X;)) may be orders of magnitude
larger than the per-node fluctuations (corresponding to Var(X;|X.;)). This is exactly the setting
o < RW discussed in the context of sparse linear regression.

As a result of this difference, greedy methods fail to learn general GGMs from O(polylog(n))
samples (see Appendix [I)), so any analysis of greedy methods must rely on structural results for a
subclass of models. The same issue comes up when learning the model directly from ¢;-constrained
regression guarantees as in [44} 145] — in fact, we will see in Section[I]that natural methods based
only on /7 regularization fail even in some relatively simple attractive GGMs (where greedy works).

Sparse Linear Regression and Submodularity. As previously mentioned, Das and Kempe [32]
studied the problem of sparse regression without assuming the restricted eigenvalue condition.
While in sparse regression, in order to learn the parameters accurately (in additive error) some
bound on the condition number is needed, they studied the problem of selecting a subset of columns
that maximizes squared multiple correlation (a.k.a. minimizes mean squared error). They then gave
approximation guarantees for greedy algorithms under an approximate submodularity condition and
assuming access to the true joint covariance matrix (in other words, they studied this as a purely
algorithmic problem while ignoring sample complexity).

Our algorithm for attractive models follows the same supermodularity-based strategy, but has no
knowledge of the true model except for the samples it sees. Therefore it requires a careful analysis of
the interaction between the greedy iteration and noise. In the more general setting of walk-summable
GGMs, we show the conditional variance does not satisfy an approximate supermodularity condition
with any constant submodularity ratio. (See Remark[7])

Some other Related Work on Sparse Linear Regression. In the literature on sparse regression,
it is well known that the analyses of the Lasso which work well in a compresssed sensing style
setting (i.e. with restricted eigenvalues, incoherent columns, etc.) is not always the correct tool
to use when the coordinates of X (columns of the design matrix) are highly correlated — see e.g.
[46. 147, 148]]. For example, the work of Koltchinskii and Minsker [49] discusses this issue in the con-
text of Brownian motion and other situations and develops general new guarantees for ¢ -penalized
regression which apply under correlated design (as well as infinite dimensional settings). They con-
sider the case where the response is a linear combination of well-separated measurements in time,
which is incomparable to the situation we analyze. It would be interesting to see if the ideas used in
Algorithms HYBRIDMB and GREEDYANDPRUNE can be used in some of these other settings.

3 Simulations and Experiments

We ran several simulations on synthetic data (i.e. generated by a true GGM), and also a small
Riboflavin dataset from [50], to compare our method to those previously proposed in the literature,
including the Graphical Lasso, CLIME, ACLIME and the Lasso-based Meinhausen-Buhlmann
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Figure 1: Normalized error (measured by ||© — ©||; /n), for a GGM supported on a path and some
disjoint cliques Full details are given in the Appendix, where this figure is reproduced as Figure

estimator. We found that both GREEDYANDPRUNE and HYBRIDMB always performed around as
well as the previous methods, and greatly dominated the previous algorithms in some of the synthetic
experiments.

Due to space reasons, we only include Figure[T]which shows the result of a synthetic experiment on a
simple ill-conditioned attractive GGM, where the goal is to estimate the precision matrix entrywise
accurately. A detailed description of all simulations and experiments performed, hyperparameter
selection, etc. is given in Appendix [I}

4 Some Difficult Examples

A natural question, given our results, is whether the GREEDYANDPRUNE algorithm could possibly
learn all sparse k-nondegenerate GGMs with O(log n) sample complexity (without requiring walk-
summability). Here we answer this question in the negative. Note by the analysis from Section|[G.2]
that if our GREEDYANDPRUNE fails to succeed with O(log n) samples, then any analysis based on
bounded ¢; -norm must also fail, since greedy methods always succeed if the ¢;-norm is small.

It is not too hard to find examples which break the greedy method when run once from a single
node, with the goal of recovering just that node’s neighborhood. For example, if we take n pairs
of near-duplicate variables (X;, X/) with Var(X;) = ©(n) and Var(X; — X/) = O(1) and define
Y = X; — X/ for some 4, then using OMP to find a predictor of Y will fail to find the edge from
X; to'Y with O(log n) samples. However, if we run a greedy method to find a predictor of X, then
we actually will discover this edge. In the following example, we see there are edges which are not
discovered from either direction:

Example 1 (Example breaking GREEDYANDPRUNE). Fixd > 2 andlet Z1, . .., Zq be the result of
taking d i.i.d. Gaussians and conditioning ony . Z; = 0. Define X; = Z;+6W; and Y; = Z;+5W/
where W;, W/ ~ N (0, 1) independently. Let % be the covariance matrix of X1, ..., X4, Y1,...,Yy
(so the Z are treated as latent variables).

It can be checked that the GGM with covariance matrix Xy remains k nondegenerate for a fixed
even as 0 is taken arbitrarily small. Now consider the GGM which is block diagonal with first block
Y. and the second block the identity matrix, and suppose n is large. If we try to learn the neighbors
of X;, greedy will with high probability fail to find a superset of the correct neighborhood of node
X, because after conditioning on'Y;, the angles between the residual of X; and all of the other
random variables are all near 90 degrees (going to 90 as § — 0).

To summarize, this example is sparse and £ = ©(1) nondegenerate but GREEDYANDPRUNE fails to
learn this GGM from O(log n) samples. In Appendix E] give an even harder example, which exper-
imentally seems to break all polynomial time GGM learning algorithms proposed in the literature.
The following important problem, first posed in [14]], remains open: are x-nondegenerate GGMs
learnable from O(logn) samples with polynomial time algorithms?



Broader Impact

We expect our work will be most useful to theorists and practitioners interested in learning graphical
models from data and related problems; for example, we hope it will raise awareness that the output
of GGM learning algorithms commonly used in practice can be misleading when the data is poorly
conditioned. As we established in our paper, our methods provably succeed for a subset of ill-
conditioned GGMs but there remain other situations where even these methods (as well as all other
popular approaches) fail. As with other linear models and machine learning tools, the algorithm can
fit biases in the data. For this reason it remains necessary for practitioners to apply due diligence
when interpreting the results of this, or any other, GGM learning algorithm.
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