
Reviewer 1: On the assumptions in Proposition 1. Note that, although we require such a mixture to exist, we do not1

require this mixture to be known (hence the mixture search portion of our algorithm). In practice, one could begin2

with a set of distributions, run Mix&Match to find the mixture distribution with smallest validation loss, and if the3

model does not have high enough accuracy, simply add more distributions and re-run Mix&Match. Note also that, to4

our knowledge, there are no other known techniques that can provably correct for distribution shift when the shift is due5

in part to changes in latent variables (see Remark 1). Our framework also permits shifts in p(y|x), which cannot be6

tolerated under the common covariate shift assumption. Therefore, while such an assumption need not always be true, it7

allows us to prove results in a nontrivial setting, and additionally seems to be quite an effective heuristic in practice, as8

we demonstrate in several experiments in Section 6 and Appendix H.9

Regarding comments on experiments: Refer to the response for Reviewer 4.10

Lower bound on regret: Assuming you mean Theorem 3 here – the theorem is correct as stated. Recall that we are11

solving a minimization problem.12

Reviewer 2: On typo in β-smooth definition: Yes, this was a typo. We however use the correct defn. in all of our proofs.13

Strong convexity assumption: While ideally we could relax this assumption, it allows us to prove theorems for a variety14

of distribution shifts that existing techniques cannot provably correct. Additionally, this assumption does not appear to15

limit the practical applicability. Indeed, our algorithm performs well in practice when training neural networks on a16

variety of problems, as we demonstrate in our experiments.17

Theorem 2 scaling with κ. Larger κ will not imply a faster convergence rate, as there is a κ dependence in the third term18

in C̃. The emphasis in Theorem 2 is on the scaling with respect to d0 and G∗, since Mix&Match aims to reuse models19

to get an exponentially decaying term in d20.20

Smoothness of G. We mean Lipschitz continuity, as we want close-by models to imply the solution values are close.21

G(., .) in Theorem 2. Yes, this is a clash in notation. The use of this term is meant to follow the notation in Bottou et.22

al., 2018. It is defined in the formal statement of Theorem 2 (Theorem 5 in the appendix).23

L251+L266 comment. The key point is that, by reusing models from the parent node, by Corollary 1, the d20 term24

decays exponentially with height. Thus, as long as this term is large relative to the noise of the stochastic gradient, it is25

sufficient to take a number of steps to reach the error guarantee required by our algorithm. Beyond this point, however,26

the SGD budget for a node must scale with tree height.27

Reviewer 3: Validation set size: The constraint that the validation loss can only be queried after using ≥ 1 SGD28

step simply ensures that, in our model, an algorithm which queries the validation loss infinitely many times without29

using any computational budget is disallowed. We do not require that the validation loss can be obtained accurately30

uniformly over all models – we only need this guarantee for the models that our guarantees require, which is much31

fewer. Additionally, as the search tree grows deeper, models along a given path in the tree become increasingly similar,32

and have similar loss (Corollary 1). Thus, we can leverage results such as the recent work “Model Similarity Mitigates33

Test Set Overuse,” Mania et. al. 2019.34

w∗ vs w0 in Theorem 2. Yes, this is a typo and should be ‖wt+1 −w∗(α)‖2.35

Strong convexity. We assume also that f(., z) is convex. We use strong convexity of the averaged distribution to obtain36

SGD concentration results on the `2 distance between the final iterate and optimal solution (Theorem 2), and then also37

to argue that close mixtures imply close models (Theorem 1).38

Reviewer 4: Environment scaling+partitioning: For more insights in scaling with respect to number of environments39

K, please refer to Corollary 2 in the appendix. This also provides a reference for the simplex bisection strategy. We40

will add more details addressing these issues in the main body of the paper.41

Experiments: In the Allstate experiment (Figure 1a), the mixture is mostly (∼ 93%) CT data (see Table 2 in the42

appendix). Thus, it seems reasonable that OnlyCT outperforms the Genie during earlier iterations when features from43

minority classes are less likely to be useful. For each plot, we run all algorithms with the same hyperparameters (SGD44

step size, neural network architecture, etc.). Since all algorithms we compare against use SGD with identical parameters45

running simply on different mixture distributions, we view this as a fair comparison point. Additionally, after 60k SGD46

iterations, Genie does outperform all other algorithms. We chose to include the intermediate measurement points47

before 60k iterations to increase transparency of the performance of each algorithm over time.48

The hyperparameters are listed in the shell scripts in the experiment_running folder. The Allstate parameter settings49

are in allstate_aimk_alt_newfeats_alt2.sh. For example, in this file, the variable NU configures the step size50

for every experiment, and BATCH configures the SGD batch size. Line 42 of this file runs the Genie experiment. This51

script sets up the necessary parameters to run the python script for the experiments, run_single_experiment.py.52


