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Abstract

We consider a covariate shift problem where one has access to several different
training datasets for the same learning problem and a small validation set which
possibly differs from all the individual training distributions. The distribution shift
is due, in part, to unobserved features in the datasets. The objective, then, is to find
the best mixture distribution over the training datasets (with only observed features)
such that training a learning algorithm using this mixture has the best validation
performance. Our proposed algorithm, Mix&Match, combines stochastic gradient
descent (SGD) with optimistic tree search and model re-use (evolving partially
trained models with samples from different mixture distributions) over the space of
mixtures, for this task. We prove a novel high probability bound on the final SGD
iterate without relying on a global gradient norm bound, and use it to show the
advantages of model re-use. Additionally, we provide simple regret guarantees for
our algorithm with respect to recovering the optimal mixture, given a total budget
of SGD evaluations. Finally, we validate our algorithm on two real-world datasets.

1 Introduction

Suppose a predictive healthcare company has collected data from several regions of the world for a
prediction task, and would like to deploy their model in a new region where only preliminary data has
been collected. Obtaining more data before product deployment is prohibitively expensive, so they
hope to leverage the data they have to deploy their product in this new region. The differences between
the distributions from these different regions might arise due to shifts in the observed variables such
as weight and height, but might also be caused by shifts in unobserved variables not considered or
available during data collection, such as prevalence and expression of different conditions, genes, etc.

A natural idea, which allows exploiting the large amount of data from various regions, is to train
models on several different mixture distributions over these datasets, and deploy the model that
performs best when validated on the small validation data from the new region.
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In this paper, we study the problem of correcting for distribution shift using mixture search. Given
large datasets from several sources for a common task, and a small validation (enough to validate, but
not train a model), we show how to design an algorithm to utilize the large amount of data available
for training to train a model performing well on the target distribution.

A notable challenge in our setting is that, in contrast to the typical covariate shift setting, the validation
distribution could have shifted due to both observed and unobserved variables. As we discuss in
Section 4 and Remark 1 common techniques from the covariate shift and domain adaptation literature
such as importance weighting [37] and moment matching [13] can fail when these shifts are due in
part to shifts in unobserved variables. Hence, our goal is to design a method which is provably robust
to such shifts and is also useful in practice.

Perhaps surprisingly, we show that searching over mixtures of training distributions provably recovers
the optimal model for the validation dataset under mild conditions, even when training and validation
distribution shift occurs in part due to shifts caused by latent variables (Proposition 1). Further, we
show how to efficiently explore this mixture search space by leveraging models trained on near-by
mixture distributions. The main contributions in this paper are as follows:

(i) Search based methods for covariate shift: With latent/unobserved features, we show in Section 4
that traditional methods such as moment matching cannot learn the best mixture distribution (over
input datasets) that optimizes performance with respect to a validation set. Instead, we show that
searching over input mixture distributions using validation loss results in the recovery of the true
model (with respect to the validation, Proposition 1). This motivates our tree search based approach.

(ii) Mix&Match – Optimistic tree search over models: We propose Mix&Match – an algorithm
that is built on SGD and a variant of optimistic tree-search (closely related to Monte Carlo Tree
Search). Given a budget (denoted as Λ) on the total number of online SGD iterations, Mix&Match
adaptively allocates this budget to different population reweightings (mixture distributions over input
datasets) through an iterative tree-search procedure (Section 5). Importantly, Mix&Match expends
a majority of the SGD iteration budget on reweightings that are "close" to the optimal reweighting
mixture by using two important ideas:
(a) Parsimony in expending iterations: For a reweighting distribution that we have low confidence of
being “good,” Mix&Match expends only a small number of SGD iterations to train the model; doing
so, however, results in biased and noisy evaluation of this model, due to early stopping in training.
(b) Re-use of models: Rather than train a model from scratch, Mix&Match reuses and updates a
partially trained model from past reweightings that are “close” to the currently chosen reweighting
(effectively re-using SGD iterations from the past).

(iii) SGD concentrations without global gradient bounds: The analysis of Mix&Match requires a
new concentration bound on the error of the final iterate of SGD. Instead of assuming a uniform bound
on the norm of the stochastic gradient over the domain, as is typical in the stochastic optimization
literature, we directly exploit properties of the averaged loss (strong convexity) and individual loss
(smoothness) combined with a bound on the norm of the stochastic gradient at a single point to bound
the norm of the stochastic gradient at each iterate. Using a single parameter (Λ, the budget allocated
to Mix&Match), we are able to balance the worst-case growth of the norm of the stochastic gradient
with the probability of failure of the SGD concentration. This new result (Theorem 5) provides
tighter high-probability guarantees on the error of the final SGD iterate in settings where the diameter
of the domain is large and/or cannot be controlled.

2 Related Work

Transfer learning has assumed an increasingly important role, especially in settings where we are
either computationally limited or data-limited but can leverage significant computational and data
resources on domains that differ slightly from the target domain [30, 29, 10]. This has become an
important paradigm in neural networks and other areas [5, 39, 28, 22]. A related problem is that
of covariate shift [36, 40, 13], where the target population distribution may differ from that of the
training distribution. Some recent works have considered addressing this problem by reweighting
samples from the training dataset so that the distribution better matches the test set, for example by
using unlabelled data [20, 13] or variants of importance sampling [37, 38]. The authors in [25] study
a related problem of learning from different datasets, but provide minimax bounds in terms of an
agnostically chosen test distribution.
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Our work is related to, but differs from all the above. As we explain in Section 3, we share the goal
of transfer learning: we have access to enough data for training from a family of distributions that are
different than the validation distribution (from which we have only enough data to validate). However,
to address the effects of latent features, we adopt an optimistic tree search approach – something that,
as far as we know, has not been undertaken.

A key component of our tree-search based approach to correcting for distribution shift is the compu-
tational budget. We use a single SGD iteration as the currency denomination of our budget, which
requires us to minimize the number of SGD steps in total that our algorithm computes, and thus to
understand the final-iterate optimization error of SGD in high probability. There are many works
deriving error bounds on the final SGD iterate in expectation (e.g. [8, 7, 27]) and in high probability
(e.g. [31, 18] and references therein). However, to our knowledge, optimization error bounds on the
final iterate of SGD when the stochastic gradient is assumed bounded only at the optimal solution
exist only in expectation [27]. We prove a similar result in high probability.

Optimistic tree search makes up the final important ingredient in our algorithm. These ideas have
been used in a number of settings [9, 14]. Most relevant to us is a recent extension of these ideas to a
setting with biased search [34, 35].

3 Problem Setting and Model

Data model: Each dataset D consists of samples of the form z = (x, y) ∈ Rd × R, where x
corresponds to the observed feature vector, and y is the corresponding label. Traditionally, we would
regard dataset D as governed by a distribution p(x, y). However, we consider the setting where each
sample z is a projection from some higher dimensional vector ẑ = (x,u, y), where u ∈ Rd̂ is the
unobserved feature vector. The corresponding distribution function describing the dataset is thus
p(x,u, y). This viewpoint allows us to model, for example, predictive healthcare applications where
the unobserved features u could represent uncollected, region specific information that is potentially
useful in the prediction task (e.g., dietary preferences, workday length, etc.).

We assume access toK training datasets {Di}Ki=1 (e.g., data for a predictive healthcare task collected
in K different countries) with corresponding p.d.f.’s {pi(x,u, y)}Ki=1 through a sample oracle to
be described shortly. Taking 4 := {α ∈ RK : α � 0, ‖α‖1 = 1} as the (K − 1)-dimensional
mixture simplex, for any α ∈ 4, we denote the mixture distribution over the training datasets
as p(α)(x,u, y) :=

∑K
i=1αipi(x,u, y). Samples from these datasets may be obtained through a

sample oracle which, given a mixture α, returns an independent sample from the corresponding
mixture distribution. In the healthcare example, sampling from p(α) would mean first sampling an
index i from the multinomial distribution represented by α and then drawing a new medical record
from the database of the ith country. Additionally, we have access to a small (see Remark 5 in the
Appendix) validation dataset Dte with corresponding distribution p(te)(x,u, y), for example, from a
new country where only limited data has been collected. We are interested in training a predictive
model for the validation distribution, but we do not have oracle sampling access to this distribution
– if we did, we could simply train a model through SGD directly on this dataset. Instead, we only
assume oracle access to evaluating the validation loss of a constrained set of models (we define our
loss model and the constrained set shortly).

Loss function model: We denote the loss for a particular sample z and model w ∈ W := Rm
as f(w; z). For any mixture distribution α ∈ 4, we denote F (α)(w) := Ez∼p(α) [f(w; z)] as the
averaged loss function over distribution p(α). Note that when α is clear from context, we write
F (w). Similarly, we denote F (te)(w) := Ez∼p(te) [f(w; z)] as the averaged validation loss. We
place the following assumptions on our loss function, similar to [27] (refer to Appendix B for these
standard definitions):

Assumption 1. For each loss function f(·; z) corresponding to a sample z ∈ Z , we assume that
f(·; z) is β-smooth and convex. Additionally, we assume that, for each α ∈ 4, the averaged loss
function F (α)(·) is µ-strongly convex.

Notice that Assumption 1 requires only the averaged loss function F (α)(·) – not each individual loss
function f(·; z) – to be strongly convex. Additionally, we assume the stochastic gradient satisfies:
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Assumption 2 (A weaker gradient norm bound). For all α ∈ 4, there exists constants G∗(α) ∈ R+

such that ‖∇f(w∗(α); z)‖22 ≤ G∗(α). When α is clear from context, we write G∗.

We note that Assumption 2 is weaker than the typical universal bound on the norm of the stochastic
gradient assumed in, for example, [18], and is taken from [27].

4 Problem Formulation

Given K training datasets {Di}Ki=1 (e.g., healthcare data from K countries) and a small (see Re-
mark 5), labeled validation dataset Dte (e.g., preliminary data collected in a new country), we wish
to find a model ŵ such that the loss averaged over the validation distribution, p(te), is as small as
possible, using a computational budget to be described shortly. Under the notation introduced in
Section 3, we wish to approximately solve the optimization problem:

min
w∈W

F (te)(w), (1)

subject to a computational budget of Λ SGD iterations and constrained such that F (te)(·) can be
evaluated only at models w obtained using at least 1 SGD iteration. A computational budget is often
used in online optimization as a model for constraints on the number of i.i.d. samples available to the
algorithm (see for example the introduction to Chapter 6 in [8]).

Note that one could run SGD directly on the validation dataset,Dte, in order to minimize the expected
loss on this population, as long as the number of SGD steps is linear in the size of Dte [17]. When
the number of validation samples is small relative to the computational budget Λ, such as in the
predictive healthcare example where little data from the new target country is available, the resulting
error guarantees of such a procedure will be correspondingly weak. Thus, we hope to leverage both
training data and validation data in order to solve Equation 1.

Though we cannot train a model using Dte, we will assume Dte is sufficiently large to obtain an
accurate estimate of the validation loss. We model evaluations of validation loss through oracle access
to F (te)(·), which may be queried only on models trained by running at least one SGD iteration
on some mixture distribution over the training datasets.

Let w∗(α) := arg minw∈W F (α)(w) be the optimal model for training mixture distribution p(α).
Similarly, let us denote ŵ(α) as the model obtained after running 1 ≤ T ≤ Λ steps of online SGD
on p(α). Then we can minimize validation loss F (te)(·) by (i) iteratively selecting mixtures α ∈ 4,
(ii) using a portion of the SGD budget to solve for ŵ(α), and (iii) evaluating the quality of the
selected mixture by obtaining the validation loss F (te)(ŵ(α)) (through oracle access, as discussed
earlier). That is, using Λ total SGD iterations, we can find a mixture distribution α(Λ) and model
ŵ(α(Λ)) so that F (te)(ŵ(Λ)) is as close as possible to

min
α∈4

G(α) = min
α∈4

F (te)(w∗(α)), (2)

where G(α) := F (te)(w∗(α)) is the test loss evaluated at the optimal model for p(α).

Under rather general conditions, we can show that solving Equation 1 and Equation 2 are actually
equivalent:

Proposition 1. Suppose that p(α∗)(x,u) = p(te)(x,u) for some mixture distribution α∗ ∈ 4, and
additionally that pi(y|x,u) = p(te)(y|x,u) for every i ∈ [K]. Then validation loss can be written
in terms of mixtures of training loss:

F (te)(w) = F (α∗)(w) (3)

for each w ∈ W . As a consequence, finding w∗ which solves Equation 1 is equivalent to finding
the mixture α∗ and corresponding model w∗(α∗) which solves Equation 2, since F (te)(w∗) =
F (α∗)(w∗) = F (α∗)(w∗(α∗)).

Proposition 1 follows immediately by noting that, p(te)(x,u, y) = p(α∗)(x,u, y), and thus
p(te)(x, y) = p(α∗)(x, y), and by using the definition of F (te).
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We take as our objective to minimize simple regret with respect to the optimal model w∗(α∗):

R(Λ) := G(α(Λ))− min
α∈4

G(α). (4)

That is, we measure the performance of our algorithm by the difference in validation loss between
the best model corresponding to our final selected mixture, w∗(α(Λ)) and the best model for the
validation loss, w∗(α∗).

Note that the conditions placed on the distributions pi in Proposition 1 are quite general. Indeed, they
generalize the settings considered in multi-source domain adaptation [24] (where the assumption is
that p(te)(x, y) = p(α∗)(x, y) for some α∗ ∈ 4) as well as the covariate shift assumption from, e.g.,
[19, 36] (where the assumption is that p(te)(y|x) = pi(y|x)). Thus, we are able to address a novel
setting in which distribution shift can be attributed to both observed and unobserved features.

Further, one should not view a specific choice of K data sources as an inherent restriction. One
could split this dataset into K ′ > K sources (even if K = 1) by running an unsupervised clustering
algorithm to create new data sources grouped by some notion of feature similarity.

Remark 1 (Difficulties with moment matching and domain invariant representations). Note
that we cannot learn α∗ simply by matching the mixture distribution over the training sets to that
of the validation set (both with only the observed features and labels). This is because pk(x, u)
decomposes as pk(x, u) = pk(x)pk(u|x), where pk(u|x) is unknown and potentially differs across
datasets. Thus, in a setting with unobservable features, approaches that try to directly learn the
mixture weights by comparing with the validation set (e.g., using an MMD distance or moment
matching) learns the wrong mixture weights. Further, our scenario also admits cases where the
observed p(y|x) (label distribution conditioned on observed variables) can shift which is non-trivial.
In fact, when observed conditional distribution of labels differ between training and validation,
strong lower bounds exist on many variants of another popular method called domain invariant
representation (see Corollary 4.1 in [41]).

5 Theoretical Foundations for Algorithm

We now present Mix&Match (Algorithm 1), our proposed algorithm for minimizing G(α) =
F (te)(w∗(α)) over the mixture simplex4 using Λ total SGD iterations. To solve this minimization
problem, our algorithm must search over the mixture simplex, and for each α ∈ 4 selected by the
algorithm, approximately evaluate G(α) by obtaining an approximate minimizer ŵ(α) of F (α)(·)
and evaluating Ĝ(α) = F (α)(ŵ(α)). Two main ideas underlie our algorithm: parsimony in
expending SGD iterations – using a small number of iterations for mixture distributions that we
have a low confidence are “good” – and model reuse – using models trained on nearby mixtures as a
starting point for training a model on a new mixture distribution. We now outline why and how the
algorithm utilizes these two ideas.

Warming up: model search with optimal mixture. By Proposition 1, G(α) = F (α∗)(w∗(α)) for
all α ∈ 4. Therefore, if we were given α∗ a priori, then we could run stochastic gradient descent to
minimize the loss over this mixture distribution on the training datasets, F (α∗)(·), in order to find an
ε−approximate solution to w∗(α∗), the desired optimal model for the validation distribution. In our
experiments (Section 6 and Appendix H), we will refer to this algorithm as the Genie. Our algorithm,
thus, will be tasked to find a mixture close to α∗.

Close mixtures imply close optimal models. Now, suppose that instead of being given α∗, we were
given some other α̂ ∈ 4 which is close to α∗ in `1 distance. The following theorem tells us that
optimal models for these two mixtures will also be close:

Theorem 1. Consider a loss function f(w; z) which satisfies Assumption 1 and Assumption 2, and the
convex bodyX = Conv{w∗(α) ∈ W|α ∈ 4}. Then for anyα1,α2 ∈ 4, ‖w∗(α1)−w∗(α2)‖2 ≤
2σ
µ ‖α1 −α2‖1, where σ2 = supw,w′∈X

α∈4
β2‖w −w′‖22 + G∗(α).

The above theorem is essentially a generalization of Theorem 3.9 in [17] to the case when only E[f ],
not f , is strongly convex. As a consequence of Theorem 1, our algorithm needs only to find a mixture
α̂ sufficiently close to α∗.
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Smoothness of G(·) and existence of “good” simplex partitioning implies applicability of op-
timistic tree search algorithms. This notion of smoothness of G(α) immediately implies that
we can use the optimistic tree search framework similar to [9, 14] in order to minimize G(α) by
performing a tree search procedure over hierarchical partitions of the mixture simplex4 – indeed,
in this literature, such smoothness conditions are directly assumed. Additionally, the existence of a
hierarchical partitioning such that the diameter of each partition cell decays exponentially with tree
height is also assumed. In our work, however, we prove that the smoothness condition on G(·) holds,
and by using the simplex bisection strategy described in [21], the cell diameter decay condition also
holds, making tree search a natural algorithm to choose:

Corollary 1 (of Theorem 1). There exists a hierarchical partitioning P of the simplex of mixture
weights4 (namely, the simplex bisection strategy described in [21]), such that, for any cell (h, i) ∈ P ,
and any α1,α2 ∈ (h, i),

‖α1 −α2‖1 ≤
√

2K

(√
3

2

) h
K−1−1

where K − 1 = dim(4). Combined with Theorem 1, this implies that ‖w∗(α1) − w∗(α2)‖22 ≤

ν1ρ
h, and |G(α1) − G(α2)| ≤ ν2ρ

h
2 , where ν1 =

(
4σ
√

2K√
3µ

)2

, ρ =
(√

3
2

) 2
K−1

, ν2 =
√
ν1 supα∈4 ‖w∗(α)−w∗(α∗)‖2, and ρ2 =

√
ρ.

Thus, it is natural to design our algorithm in the tree search framework.

Tree search framework. Mix&Match proceeds by constructing a binary partitioning tree T over
the space of mixtures 4. Each node (h, i) ∈ T is indexed by the height (i.e. distance from the
root node) h and the node’s index i ∈ [2h] in the layer of nodes at height h. The set of nodes
Vh = {(h, i) : i ∈ [2h]} at height h are associated with a partition Ph = {Ph,i : i ∈ [2h]} of the
mixture simplex4 into 2h disjoint partition cells whose union is4. The root node (0, 1) is associated
with the entire simplex4, and two children of node (h, i), {(h+ 1, 2i− 1), (h+ 1, 2i)} correspond
to the two partition cells of the parent node’s partition. The resulting hierarchical partitioning will be
denoted P = ∪hPh, and can be implemented using the simplex bisection strategy of [21]. Combined
with the smoothness results on our objective function, T gives a natural structure to search for α∗.

Multi-fidelity evaluations of G(·) – associating T with mixtures and models. We note that, in
our setting, G(α) = F (te)(w∗(α)) cannot be directly evaluated, since we cannot obtain w∗(α)
explicitly, but only an approximate minimizer ŵ(α). Thus, we take inspiration from recent works
in multi-fidelity tree-search [34, 35]. Specifically, using a height-dependent SGD budget function
λ(h), the algorithm takes λ(h) SGD steps using some selected mixture αh,i ∈ Ph,i to obtain
an approximate minimizer ŵ(αh,i) and evaluates the validation loss F (te)(ŵ(αh,i)) to obtain an
estimate for G(αh,i). λ(·) is designed so that estimates of G(·) are “crude” early during the
tree-search procedure and more refined deeper in the search tree.

Warm starting with the parent model. When our algorithm, Mix&Match selects node (h, i), it
creates child nodes {(h+1, 2i−1), (h+1, 2i)}, and runs SGD on the associated mixturesαh+1,2i−1

and αh+1,2i, starting each SGD run with initial model ŵ(αh,i), the final iterate of the parent node’s
SGD run. Since αh,i and αh+1,j (j ∈ {2i − 1, 2i}) are exponentially close as a function of h (as
a consequence of our simplex partitioning strategy), so too are w∗(αh,i) and w∗(αh+1,j) (since
close mixtures implies close models). Thus, as long as the parent’s final iterate is exponentially
close to w∗(αh,i), then the initial iterate for the SGD runs associated to the child nodes will also be
exponentially close to their associated solution,w∗(αh+1,j). Therefore, a good initial condition of
weights for a child node’s model is that resulting from the final iterate of the parent’s model.

Constant SGD steps suffice for exponential error improvement. In a noiseless setting (e.g., the
setting of Theorem 3.12 in [8]), optimization error scales linearly in the squared distance between the
initial model and the optimal model, and thus, in this setting, we could simply take a constant number
of gradient descent steps to obtain a model with error decaying exponentially in h + 1. However,
in SGD, optimization error depends not only on the initial distance to the optimal model, but also
on the noise of the stochastic gradient. While some SGD results give guarantees in expectation
which scale with the distance between the initial and optimal iterate (e.g., Theorem 4.7 in [7]),
existing high-probability results (i) rely on a global bound on the norm of the stochastic gradient and
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(ii) scale with the diameter of the search space (e.g., [18]). We are able to establish the following
high-probability SGD result for the final SGD iterate which captures the error scaling with respect to
the distance of the initial iterate from the optimal model d0(α) = ‖w0(α)−w∗(α)‖2, the norm of
the stochastic gradient only at the optimal solution G∗, and the global diameter bound D:
Theorem 2 (Informal statement of Theorem 5). If we run SGD for t+ 1 steps to minimize training
loss over mixture distribution α starting from a fixed vector w0 ∈ W and using decreasing step size
ηt = 2

µ(t+E) , where E = 4096κ2 log Λ8 and κ = β
µ is the condition number, then with probability at

least 1− t+1
Λ8 , for any k ∈ Z≥0, the error of the last iterate satisfies

‖wt+1 −w∗‖22 ≤
Γ(d2

0,G∗)
t+ E + 1︸ ︷︷ ︸

bound on E[d2t+1]
from [27]

+
C̃(D2, D

√
G∗)

µΛ7︸ ︷︷ ︸
Global diameter bound

controlled by Λ

+
4
√

2 log(Λ8)

√
Ĉ(k; d0,G∗)

µ(t+ E + 1)αk+1︸ ︷︷ ︸
term to control martingale deviations

where Γ(d2
0,G∗) = max{Ed2

0, 8G∗/µ2}, αk+1 =
∑k+1
i=1

1
2i ∈

[
1
2 , 1
)

and Ĉ(k; d0,G∗) scales poly-
nomially in G∗ and d0, where the polynomial dependence is independent of k.

The crucial insight that allows this bound without the global stochastic gradient bound is that, under
our β-smoothness assumption and Assumption 2, however, we can show that, until we hit the noise
floor of G∗(α) (the bound on the norm of the gradient only at the optimal modelw∗(α)), the noise of
the stochastic gradient also decays exponentially with tree height (see e.g. Lemma 3 in the Appendix
for a proof). As a consequence, until we hit this noise floor, we may take a constant number of
SGD steps to exponentially improve the optimization error as we descend our search tree (refer to
Corollary 3 in the Appendix for details). In fact, all of our experiments (Section 6 and Appendix H)
use a height-independent budget function λ.

Growing the search tree. Now we present our final bound that characterizes the performance
of Mix&Match as Theorem 3. In the deterministic black-box optimization literature [26, 34], the
quantity of interest is generally simple regret, R(Λ), as defined in Equation 4. In this line of work,
the simple regret scales as a function of near-optimality dimension, which is defined as follows [14]:
Definition 1. The near-optimality dimension of G(·) with respect to parameters (ν1, ρ) is given by:

d(ν1, ρ) = inf

{
d′ ∈ R+ : ∃ C(ν1, ρ), s.t. ∀h ≥ 0,Nh(3ν̃ρh2 ) ≤ C(ν1, ρ)ρ−d

′h
2

}
,

where Nh(ε) is the number of cells (h, i) such that infα∈(h,i)G(α) ≤ G(α∗) + ε, ρ2 =
√
ρ,

ν̃ =
√
ν1(L+

β
√
ν1

6 ), and L = β supα∈4 ‖w∗(α)−w∗(α∗)‖2.

The near-optimality dimension intuitively states that there are not too many cells which contain a
point whose function values are close to optimal at any tree height. The lower the near-optimality
dimension, the easier is the black-box optimization problem [14]. Theorem 3 provides a similar
simple regret bound on R(Λ) = G(α(Λ)) − G(α∗), where α(Λ) is the mixture weight vector
returned by the algorithm given a total SGD steps budget of Λ and α∗ is the optimal mixture. The
proof of Theorem 3 is in Appendix E.

Theorem 3. Let h′ be the smallest number h such that
∑h
l=0 2C(ν1, ρ)λ(l)ρ

−d(ν1,ρ)l
2 > Λ −

2λ(h+ 1). Then, with probability at least 1− 1
Λ3 , the tree in Algorithm 1 grows to a height of at least

h(Λ) = h′ + 1 and returns a mixture weight α(Λ) such that

R(Λ) ≤ 4ν̂ρ
h(Λ)−1
2 (5)

where ν̂ =
√
ν1

(
L+ β

8

√
ν1

)
, and L = β supα∈4 ‖w∗(α)−w∗(α∗)‖2.

Theorem 3 shows that, given a total budget of Λ SGD steps, Mix&Match recovers a mixture α(Λ)

with test error at most 4ν̂ρ
h(Λ)−1
2 away from the optimal test error if we perform optimization using

that mixture. The parameter h(Λ) depends on the number of steps needed for a node expansion at
different heights and crucially makes use of the fact that the starting iterate for each new node can be
borrowed from the parent’s last iterate. The tree search also progressively allocates more samples
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Algorithm 1 Mix&Match (Simplified – details in Algorithm 2): Tree-Search over the mixtures of
training datasets

Input: Real ρ, ρ2 ∈ (0, 1), ν1 > 0 and hierarchical partition P of 4 as specified in Corollary 1, ν =
√
ν1

(
β
√
ν1

2
+ L

)
total SGD budget for entire tree search procedure Λ > 0, initial modelw0 ∈ W .

1: Initialize search tree T0 = {(0, 1)} with initial model ŵ(α0,1) trained using SGD (from Theorem 2) on
training mixture distribution α0,1 ∈ P0,1 to optimization error 2ν1ρ

0. Denote λ(0) as the number of SGD
steps taken.

2: Cost (Number of SGD steps used): C = λ(0)
3: while C ≤ Λ do
4: Select the leaf (h, j) ∈ Leaves(Tt) with minimum bh,j := F (te)(ŵ(αh,j))− 2νρh2 .
5: Add to Tt the 2 children of (h, j) (as determined by P) by running SGD on two mixtures from the two

child partitions of Ph,i to obtain optimization error 2ν1ρ
h+1.

6: C = C + 2λ(h+ 1).
7: end while
8: Let h(Λ) be the height of Tt
9: Let i∗ := arg mini F

(te)(ŵ(αh(Λ),i)).
10: Return αh(Λ),i∗ and ŵ(αh(Λ),i∗).

to deeper nodes, as we get closer to the optimum. Similar simple regret scalings have been recently
shown in the context of deterministic multi-fidelity black-box optimization [34]. Note that Theorem 3
roughly corresponds to a regret scaling on the order of Õ

(
1

Λc

)
for some constant c (dependent on

d(ν2, ρ2)). Thus, when |Dte| is much smaller than the total computational budget Λ, our algorithm
gives a significant improvement over training only on the validation dataset. In our experiments in
Section 6 and Appendix H, we observe that our algorithm indeed outperforms the algorithm which
trains only on the validation dataset for several different real-world datasets.

6 Empirical Results

Algorithms compared: We compare the following algorithms: (a) Uniform trains on samples
from each data source uniformly, (b) Genie samples from training data sources according to α∗ in
those cases when α∗ is known explicitly (this can be viewed as the best-case comparison for our
algorithm, since it already knows α∗), (c) Validation trains only on samples from the validation
dataset, (d) Mix&MatchCH+0.1Step runs Mix&Match by partitioning the α simplex using a random
coordinate halving strategy for half of the budget and using the remaining half of the budget to train
the model on the mixture distribution selected by Mix&Match (with step size multiplied by 0.1),
(e) OnlyX trains on samples only from data source X, (f) IW-Uniform computes importance weights
by training a logistic regression model then runs importance-weighted Uniform, (g) IW-ERM similarly
computes importance weights and then runs importance-weighted empirical risk minimization, and
(h) MMD constructs a representative training set by computing the MMD metric using validation data.
We describe results with other Mix&Match algorithm variants in Appendix H.

Models and metrics: We use fully connected neural networks with ReLU activations for all our
experiments, training with cross-entropy loss on the categorical labels. We use the test AUROC as
the metric for comparison between the above mentioned algorithms. For multiclass problems, we
use multiclass AUROC metric described in [15]. The reason for using AUROC is due to the label
imbalances due to covariate shifts between the training sources and our test and validation sets. Since
all algorithms we compare against use SGD, we use the same hyperparameters (SGD step size, neural
network architecture, etc.) across all algorithms for each dataset/plot (however, they are different
across plots/datasets). Experiment code is availale here.

Plot details: In the experiments displayed below, we plot the performance of each algorithm at
intermediate measurement points, where each displayed data point is the result of averaging over 10
experiments, with error bars of 1 standard deviation. That is, for each algorithm, we specify a total
SGD budget (60k for the Allstate experiment, and 200k for the MNIST experiment), and report the
test AUC measured at intermediate intervals throughout each experiment’s duration.

Allstate Purchase Prediction Challenge: The Allstate Purchase Prediction Challenge Kaggle
dataset [1] has entries from customers across different states in the US. The goal is to predict
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Figure 1: Experimental results for Allstate experiment (left) and MNIST experiment (right)

what option a customer would choose for an insurance plan in a specific category (Category G with 4
options ). The dataset features include (a) demographics and details regarding vehicle ownership of a
customer and (b) timestamped information about insurance plan selection across seven categories
(A-G) used by customers to obtain price quotes. There are multiple timestamped category selections
and corresponding price quotes for a customer. We collapse the selections and the price quote to a
single set of entries using summary statistics of the time stamped features.

In this experiment, we split the Kaggle dataset into K = 3 training datasets correspond to customer
data from three states: Florida (FL), Connecticut (CT), and Ohio (OH). The validation and test
datasets also consist of customers from these states, but the proportion of customers from various
states is fixed. Details about the test and validation set formation is in the Appendix. In this case, α∗
is explicitly known for the Genie algorithm.

As shown in Figure 1a, with respect to the AUROC metric, Mix&MatchCH is competitive with the
Genie algorithm and has superior performance to all other baselines. The Validation algorithm
has performance inferior to the uniform sampling scheme. Therefore, we are operating in a regime in
which training on the validation set alone is not sufficient for good performance. Note that, since the
validation mixture is mostly (∼ 93%) CT data (see Table 2 in the Appendix), it is reasonable that
OnlyCT outperforms Genie during earlier iterations.

Colored MNIST: We evaluate our algorithms on an MNIST digit binary classification problem
to predict whether a given digit is smaller than or larger than 5. Similarly to the colored MNIST
experiment from [2], each label is flipped with probability 0.25 (so a classifier ignoring color should
have accuracy 0.75), the images are colored one of two colors according to the label of the image,
and then the color is flipped with probability ei ∈ {0.1, 0.2, 0.7} for data source i ∈ [3]. Thus, each
training environment has spurious color correlations with the label, with the majority of training
labels positively correlated with the labels, while the validation environment has negative correlation
with the labels, as the color in this environment is flipped with probability 0.6.

In Figure 1b, we observe that, since the training environments have labels both positively and
negatively correlated with color, Mix&Match trains a model which outperforms the other baselines,
and has performance competitive with Only0.7, which is trained on a classifier negatively correlated
with color, even though the majority of training examples have the opposite color correlation. (Note
that we do not compare against the Genie in this experiment, since α∗ is not explicitly given).

We note that, in Figure 1b, Mix&Match has a seemingly sudden jump in AUC after half of the SGD
budget has been used. A closer examination of Figure 1a shows a similar phenomenon, again at the
half SGD budget mark (30k). Recall that the implementation of Mix&Match in our experiments,
Mix&MatchCH+0.1Step, devotes half of its budget to tree-search, and half of its budget to optimize
the best model output by tree-search. The measurement points for Mix&Match during the first half of
the SGD budget correspond to the AUC of the model currently being trained by Mix&Match, which
might not be the best model selected at the end of the tree-search. Thus, we should expect that the
AUC of the model being trained by Mix&MatchCH+0.1Step to be higher in the second half of the
SGD budget than in the first half. We refer to Appendix H for further details and experiments.
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Broader Impact

This work addresses the problem of using abundant training data from several domains, along with a
limited amount of data from a new, related domain, to train effective models for this new domain.
As we discussed in the introduction, a natural motivation for this setup is that a company wants to
make predictions on a new population, but most data available at training time is not drawn from
this target distribution. Our focus in this work is primarily theoretical – we design an algorithm
that can provably succeed at training a good model for the target distribution. As such, one should
be cautious when using the ideas from this paper in settings where humans are impacted and our
assumptions cannot be verified. Indeed, biases present in training data could lead to unwanted biases
in the resulting model, and our results do not have known provable guarantees when training complex
neural networks as is often done in practice. However, we hope the ideas presented in this paper, and
in particular, the ideas of model reuse for efficient mixture search, serve as useful starting points for
deploying such models in real-world settings.
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