
A A More Detailed Discussion on Prior Work

Transfer learning has assumed an increasingly important role, especially in settings where we
are either computationally limited, or data-limited, and yet we have the opportunity to leverage
significant computational and data resources yet on domains that differ slightly from the target
domain [30, 29, 10]. This has become an important paradigm in neural networks and other areas
[39, 28, 5, 22].

An important related problem is that of covariate shift [36, 40, 13]. The problem here is that the target
distribution may be different from the training distribution. A common technique for addressing this
problem is by reweighting the samples in the training set, so that the distribution better matches that
of the training set. There have been a number of techniques for doing this. An important recent thread
has attempted to do this by using unlabelled data [20, 13]. Other approaches have considered a related
problem of solving a weighted log-likelihood maximization [36], or by some form of importance
sampling [37, 38] or bias correction [40]. In [25], the authors study a related problem of learning from
different datasets, but provide mini-max bounds in terms of an agnostically chosen test distribution.

Our work is related to, but differs from all the above. As we explain in Section 3, we share the goal
of transfer learning: we have access to enough data for training, but from a family of distributions
that are different than the validation distribution (from which we have only enough data to validate).
Under a model of covariate shift due to unobserved variables, we show that a target goal is finding an
optimal reweighting of populations rather than data points. We use optimistic tree search to address
precisely this problem – something that, as far as we know, has not been undertaken.

A key part of our work is working under a computational budget, and then designing an optimistic
tree-search algorithm under uncertainty. We use a single SGD iteration as the currency denomination
of our budget – i.e., our computational budget requires us to minimize the number of SGD steps
in total that our algorithm computes. Enabling MCTS requires a careful understanding of SGD
dynamics, and the error bounds on early stopping. There have been important SGD results studying
early stopping, e.g., [17, 7] and generally results studying error rates for various versions of SGD and
recentered SGD [27, 11, 32]. Our work requires a new high probability bound, which we obtain in
the Supplemental material, Section D. In [27], the authors have argued that a uniform norm bound on
the stochastic gradients is not the best assumption, however the results in that paper are in expectation.
In this paper, we derive our SGD high-probability bounds under the mild assumption that the SGD
gradient norms are bounded only at the optimal weight w∗.

There are several papers [18, 31] which derive high probability bounds on the suffix averaged and final
iterates returned by SGD for non-smooth strongly convex functions. However, both papers operate
under the assumption of uniform bounds on the stochastic gradient. Although these papers do not
directly report a dependence on the diameter of the space, since they both consider projected gradient
descent, one could easily translate their constant dependence to a sum of a diameter dependent term
and a stochastic noise term (by using the bounded gradient assumption from [27], for example).
However, as the set into which the algorithm would project is unknown to our algorithm (i.e., it
would require knowing w∗), we cannot use projected gradient descent in our analysis. As we see
in later sections, we need a high-probability SGD guarantee which characterizes the dependence
on diameter of the space and noise of the stochastic gradient. It is not immediately clear how the
analysis in [18, 31] could be extended in this setting under the gradient bounded assumption in [27].
In Appendix D, we instead develop the high probability bounds that are needed in our setting.

Optimistic tree search makes up the final important ingredient in our algorithm. These ideas have
been used in a number of settings [9, 14]. Most relevant to us is a recent extension of these ideas to a
setting with biased search [34, 35].

B Standard Definitions from Convex Optimization

Recall that we assume throughout the paper that our loss functions satisfy the following assumptions
similar to [27]:

Assumption 1 (Restated from main text). For each loss function f(·; z) corresponding to a sample
z ∈ Z , we assume that f(·; z) is: (i) β-smooth (Definition Definition 2) and (ii) convex (Definition 3).
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Additionally, we assume that, for each α ∈ 4, the averaged loss function F (α)(·) is: (i) µ-strongly
convex (Definition 4).

We now state the definitions of these notions, which are standard in the optimization literature (see,
for example, [8]).
Definition 2 (β-smooth). We call a function g(·) β-smooth when, for all w,w′ ∈ W when the
gradient of f is β-Lipschitz, i.e.,

‖∇g(w)−∇g(w′)‖2 ≤ β‖w −w′‖2.
Definition 3 (Convex). We call a function g(·) convex when, for all w,w′ ∈ W ,

g(w) ≥ g(w′) + 〈∇g(w′),w −w′〉.
Definition 4 (µ-strongly convex). We call a function g(·) µ-strongly convex if, for all w,w′ ∈ W ,

g(w) ≥ g(w′) + 〈∇g(w′),w −w′〉+
µ

2
‖w −w′‖22.

C Smoothness with Respect to α

C.1 Statement of main results

Our first result shows that the optimal weights with respect to the two distributions p(α1) and p(α2)

are close, if the mixture weights α1 and α2 are close. This is the crucial observation upon which
Corollary 2 relies.
Theorem 4 (Restatement of Theorem 1). Consider a loss function f(w; z) which satisfies Assump-
tion 1 and Assumption 2, and a convex body X = Conv{w∗(α) ∈ W | α ∈ A}. Then for any
α1,α2 ∈ 4, ‖w∗(α1)−w∗(α2)‖2 ≤

2σ‖α1−α2‖1
µ . where σ2 = supw,w′∈X supα∈A β

2‖w −
w′‖2 + G∗(α).

The above theorem is essentially a generalization of Theorem 3.9 in [17] to the case when only
E[f ], not f , is strongly convex. Theorem 4 implies that, if the partitions are such that for any cell
(h, i) at height h, ‖α1 −α2‖1 ≤ ν′ρh for all α1,α2 ∈ (h, i), where ρ ∈ (0, 1), then we have that
‖w∗(α1)−w∗(α2)‖2 ≤ ν1ρ

h, for some ν1 ≥ 0. We note that such a partitioning does indeed exist:
Corollary 2 (of Theorem 4, restatement of Corollary 1). There exists a hierarchical partitioning P
of the simplex of mixture weights A (namely, the simplex bisection strategy described in [21]) such
that, for any cell (h, i) ∈ P, and any α1,α2 ∈ (h, i),

‖α1 − α2‖1 ≤
√

2K

(√
3

2

) h
K−1−1

, (6)

where K − 1 = dim(4). Combined with Theorem 4, this implies

‖w∗(α1)−w∗(α2)‖22 ≤ ν1ρ
h (7)

and

|G(α1)−G(α2)| ≤ ν2ρ
h
2 , (8)

where ν1 =
(

4σ
√

2K√
3µ

)2

, ρ =
(√

3
2

) 2
K−1

, ν2 = L
√
ν1, L = β supα∈4 ‖w∗(α) − w∗(α∗)‖, and

ρ2 =
√
ρ.

Refer to Appendix C for the proofs of these claims.

C.2 Proving the main results

In this section we prove Theorem 4. The analysis is an interesting generalization of Theorem 3.9
in [17]. The key technique is to create a total variational coupling betweenα1 andα2. Then using this
coupling we prove that SGD iterates from the two distributions cannot be too far apart in expectation.
Therefore, because the two sets of iterates converge to their respective optimal solutions, we can
conclude that the optimal weights w∗(α1) and w∗(α2) are close.
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Lemma 1. Under conditions of Theorem 4, let wn(α1) and wn(α2) be the random variables
representing the weights after performing n steps of online projected SGD onto a convex body
X = Conv{w∗(α) | α ∈ A} using the data distributions represented by the mixtures α1 and α2

respectively, starting from the same initial weight w0, and using the step size sequence

ηt =
2

µ
(
t+ 1

µ max{κ2(µ+ β), 4β})
)

Then we have the following bound,

E [‖wn(α1)−wn(α2)‖] ≤
2σ ‖α1 −α2‖1

µ
.

where σ2 = supw,w′∈X supα∈A β
2‖w −w′‖2 + G∗(α).

Proof. We closely follow the proof of Theorem 3.9 in [17]. Let wt+1(αi) = ΠX (wt −
ηt∇f(wt;Z

(i)
t )) denote the SGD update while processing the t-th example from αi for i ∈ {1, 2}.

Let I, J be two random variables whose joint distribution follows the variational coupling betweenα1

and α2. Thus the marginals of I and J are α1 and α2 respectively, while P(I 6= J) = dTV (α1,α2).
At each time It ∼ I and Jt ∼ J are drawn. If It = Jt, then we draw a data sample Zt from DIt and
set Z(1)

t = Z
(2)
t = Zt. Otherwise, we draw Z

(1)
t from DIt and Z(2)

t from DJt independently.

Therefore, following the analysis in [17], if It = Jt, then, by Lemma 3.7.3 in [17], by our choice of
step size, and since Euclidean projection does not increase the distance between projected points (see
for example Lemma 3.1 in [8]),

δ2
t+1 = ‖wt+1(α1)−wt+1(α2)‖2

= ‖ΠX (wt(α1)− ηt∇f(wt(α1);Zt))−ΠX (wt(α2)− ηt∇f(wt(α2);Zt))‖2

≤ ‖wt(α1)− ηt∇f(wt(α1);Zt)−wt(α2) + ηt∇f(wt(α2;Zt)‖2

= δ2
t + η2

t ‖∇f(wt(α1);Zt)−∇f(wt(α2;Zt)‖2

− 2ηt〈∇f(wt(α1);Zt)−∇f(wt(α2);Zt),wt(α1)−wt(α2)〉
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Now, taking expectations with respect to Zt, we get the following:

EZt [1{It = Jt}δ2
t+1]

≤ P(It = Jt)δ
2
t + η2

tEZt1{It = Jt} ‖∇f(wt(α1);Zt)−∇f(wt(α2);Zt)‖2︸ ︷︷ ︸
≤β2δ2t by smoothness of f

− 2ηtEZt1{It = Jt}〈∇f(wt(α1);Zt)−∇f(wt(α2);Zt),wt(α1)−wt(α2)〉
≤ P(It = Jt)δ

2
t + P(It = Jt)η

2
t β

2δ2
t

− 2ηt

K∑
i=1

EZt
[〈
∇f(wt(α1);Zt)−∇f(wt(α2);Zt),

wt(α1)−wt(α2)

〉
| It = i = Jt

]
P(It = i = Jt)

(a)
= P(It = Jt)δ

2
t + P(It = Jt)η

2
t β

2δ2
t

− 2ηt

K∑
i=1

〈∇F (ei)(wt(α1))−∇F (ei)(wt(α2)),wt(α1)−wt(α2)〉P(It = i = Jt)

≤ P(It = Jt)δ
2
t + P(It = Jt)η

2
t β

2δ2
t

− 2ηtP(It = Jt)

×

 µβ

µ+ β
‖wt(α1)−wt(α2)‖2 +

1

µ+ β
‖∇F (e1)(wt(α1))−∇F (e1)(wt(α2))‖2︸ ︷︷ ︸

≤µ2δ2t by strong convexity of F


︸ ︷︷ ︸

bound holds by Lemma 3.11 in [8]

= P(It = Jt)


(

1− 2ηt
µβ

µ+ β

)
δ2
t − ηt

(
2µ2

µ+ β
− β2ηt

)
︸ ︷︷ ︸
≥0 by choice of ηt

δ2
t


(b)

≤ P(It = Jt)(1− µηt)δ2
t

where (a) follows from linearity of expectation, and noting that, conditioned on the event It =

i, Zt ∼ Di. The last inequality (b) follows since 2β
µ+β ≥ 1 (since β ≥ µ), and since ηt =

2

µ(t+ 1
µ max{κ2(µ+β),4β})

≤ 2
κ2(µ+β) . Thus, when It = Jt, we have that

EZt [1{It = Jt}δt+1] ≤
√

EZt [1{It = Jt}δ2
t+1] Using concavity of

√
. and Jensen’s

≤
√
P(It = Jt)(1− µηt)δ2

t using our bound above

≤ P(It = Jt)(1− µηt/2)δt since
√

1− µηt ≤ 1− µηt
2

.

On the other hand, when It 6= Jt, we have that

δt+1 ≤ ‖wt(α1)− ηt∇f(wt(α1;Z
(1)
t )−wt(α2) + ηt∇f(wt(α2;Z

(2)
t ))‖

≤ ‖wt(α1)− ηt∇f(wt(α1;Z
(1)
t )−wt(α2) + ηt∇f(wt(α2;Z

(1)
t )‖

+ ηt(‖∇f(w(α2);Z(1))‖+ ‖∇f(w(α2);Z(2))‖)
≤ (1− µηt/2)δt + ηt(‖∇f(w(α2);Z(1))‖+ ‖∇f(w(α2);Z(2))‖) By above

≤ (1− µηt/2)δt + ηt
√

2β2‖wt(α2)−w∗(α1)‖2 + 2G∗(α1)

+ ηt
√

2β2‖wt(α2)−w∗(α2)‖2 + 2G∗(α2)) by Lemma 2
≤ (1− µηt/2)δt + 2σηt
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where σ2 = supw,w′∈X supα∈A β
2‖w −w′‖2 + G∗(α).

Thus, by combining both of these results, we obtain:

E[δt+1] ≤ (1− µηt/2)E[δt] + 2σηtP{It 6= Jt}
= (1− µηt/2)E[δt] + σηt ‖α1 −α2‖1 .

Since by construction, δ0 = 0, we get the following result from the recursion,

E[δn] ≤
n∑

t=t0

{
n∏

s=t+1

(
1− 1

s+ E

)}
2σ

µ(t+ E)
‖α1 −α2‖1

=

n∑
t=t0

t+ E

n+ E

2σ

µ(t+ E)
‖α1 −α2‖1

≤ n− t0 + 1

n+ E

2σ

µ
‖α1 −α2‖1

≤ 2σ

µ
‖α1 −α2‖1 .

Proof of Theorem 4. First, note that by definitionw∗(α) is not a random variable i.e it is the optimal
weight with respect to the distribution corresponding to α. On the other hand, wn(·) is a random
variable, where the randomness is coming from the randomness in SGD sampling. By the triangle
inequality, we have the following:

‖w∗(α1)−w∗(α2)‖ ≤ ‖w∗(α1)−wn(α1)‖+ ‖wn(α1)−wn(α2)‖+

‖w∗(α2)−wn(α2)‖
=⇒ ‖w∗(α1)−w∗(α2)‖ = E[‖w∗(α1)−w∗(α2)‖]

≤ E[‖w∗(α1)−wn(α1)‖] + E[‖wn(α1)−wn(α2)‖]
+ E[‖w∗(α2)−wn(α2)‖]. (9)

The expectation in the middle of the r.h.s. is bounded as in Lemma 1. The other two terms, on the
other hand, can be made arbitrarily small by choosing n sufficiently large. Indeed, using the step
size schedule as in Lemma 1, we can use Theorem 2 in [27]1 2 and Jensen’s inequality to bound the
other two terms on the r.h.s. as

E[‖wn(α1)−w∗(α1)‖2] ≤
√
E[‖wn(α1)−w∗(α1)‖22] by concavity of

√
.

≤

√
32G∗

µ2(n− T + E)

where we take G∗ = max{G∗(α1),G∗(α2)}, E = 1
µ max{κ2(µ + β), 4β}, T =

4κmax
{
βµ
G∗ ‖w0(α1)−w∗(α1)‖2, 1

}
− 4κ, and as long as n ≥ T . Now, noting that the inequality

Equation 9 holds for all n, we have the bound claimed in Theorem 4.

Proof of Corollary 2. This proof is a straightforward consequence of Theorem 3.1 in [21] and Theo-
rem 4. In particular, Theorem 3.1 in [21] tells us that under the method of bisection of the simplex
which they describe,

‖α1 −α2‖2 ≤

(√
3

2

)b h
K−1 c

diam(4),

1Note that the step size schedule in Lemma 1 takes a larger value of E than used in Theorem 2 from [27].
However, their results continue to hold for this choice of E, as noted in page 13 of their proof of this theorem.

2Note that here, we are considering projected SGD, while the analysis in [27] is done without projection.
However, the proof of Theorem 2 trivially continues to hold under projection, as a result of the inequality
‖ΠX (w̃t+1)−w∗‖2 ≤ ‖w̃t+1 −w∗‖2 (see Lemma 3.1 in [8]), for example.
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where diam(4) = sup{‖α−α′‖2 | α,α′ ∈ 4}, and K − 1 = dim(4). As noted in Remark 2.5
in [21], diam(4) =

√
2 since4 is the unit simplex. Thus, by the Cauchy-Schwartz inequality, and

since
⌊

h
K−1

⌋
> h

K−1 − 1, we have the following:

‖α1 −α2‖1 ≤
√
K‖α1 −α2‖2

≤
√

2K

(√
3

2

)b h
K−1 c

≤
√

2K

(√
3

2

) h
K−1−1

.

Now, from Assumption 1 and Cauchy-Schwarz, we have that

F (α∗)(w∗(α1))− F (α∗)(w∗(α2))

≥ 〈∇F (α∗)(w∗(α2)),w∗(α1)−w∗(α2)〉+
µ

2
‖w∗(α1)−w∗(α2)‖2

≥
(
−‖∇F (α∗)(w∗(α2))‖+

µ

2
‖w∗(α1)−w∗(α2)‖

)
‖w∗(α1)−w∗(α2)‖

=

−‖∇F (α∗)(w∗(α2))−∇F (α∗)(w∗(α∗))︸ ︷︷ ︸
=0

‖

︸ ︷︷ ︸
≤β‖w∗(α2)−w∗(α∗)‖

+
µ

2
‖w∗(α1)−w∗(α2)‖


× ‖w∗(α1)−w∗(α2)‖

≥
(
−β‖w∗(α2)−w∗(α∗)‖+

µ

2
‖w∗(α1)−w∗(α2)‖

)
‖w∗(α1)−w∗(α2)‖

and by a similar argument, exchanging the roles of α1 and α2, we have

F (α∗)(w∗(α2))− F (α∗)(w∗(α1))

≥
(
−β‖w∗(α1)−w∗(α∗)‖+

µ

2
‖w∗(α1)−w∗(α2)‖

)
‖w∗(α1)−w∗(α2)‖

Thus, we have that
|F (α∗)(w∗(α1))− F (α∗)(w∗(α2))|

≤ max
α∈{α1,α2}

∣∣∣β‖w∗(α)−w∗(α∗)‖ − µ

2
‖w∗(α1)−w∗(α2)‖

∣∣∣ ‖w∗(α1)−w∗(α2)‖

Now, taking L = β supα∈4 ‖w∗(α)−w∗(α∗)‖, we may use this result along with Theorem 4 to
obtain:

|G(α1)−G(α2)| = |F (te)(w∗(α1))− F (te)(w∗(α2))|
= |F (α∗)(w∗(α1))− F (α∗)(w∗(α2))|
≤ L‖w∗(α1)−w∗(α2)‖2

≤ 2Lσ‖α1 −α2‖1
µ

≤ 4Lσ
√

2K√
3µ

(√
3

2

) h
K−1

,

which is the desired result.

D New High-Probability Bounds on SGD without a Constant Gradient
Bound

In this section, we will prove a high-probability bound on any iterate of SGD evolving over the
time interval t = 1, 2, . . . , T, without assuming a uniform bound on the stochastic gradient over the
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domain. Instead, this bound introduces a tunable parameter Λ > (T + 1) that controls the trade-off
between a bound on the SGD iterate d2

t , and the probability with which the bound holds. As we
discuss in Remark 3, this parameter can be set to provide tighter high-probability guarantees on the
SGD iterates in settings where the diameter of the domain is large and/or cannot be controlled.

Theorem 5 (Formal statement of Theorem 2). Consider a sequence of random samples z0, z1, . . . , zT
drawn from a distribution p(z). Define the filtration Ft generated by σ{z0, z1, . . . , zt}. Let us define
a sequence of random variables by the gradient descent update: wt+1 = wt − ηt∇f(wt; zt), t =
1, . . . , T , and w0 is a fixed vector inW. Take d2

t = ‖wt −w∗‖22.

If we use the step size schedule ηt = 2
µ(t+E) , where E = 4096κ2 log Λ8, then, under Assumption 1

and Assumption 2, and taking Λ ≥ t+ 1, we have the following high probability bound on the final
iterate of the SGD procedure after t time steps for any k ≥ 0:

Pr

d2
t+1 >

G(d2
0,G∗)

t+ E + 1
+

8(t+ 1)C̃(D2, D
√
G∗)

µ(t+ 1 + E)Λ7
+

4
√

2 log(Λ8)

√
Ĉ(k; d0,G∗)

µ(t+ E + 1)αk+1

 ≤ t+ 1

Λ8

(10)

where

G(d2
0,G∗) = max

{
Ed2

0,
8G∗
µ2

}
C̃(D2, D

√
G∗) = D

√
8β2D2 + 2G∗

Ĉ(k; d0,G∗) = Ĉ(k) = O(log Λ8) Defintion in Corollary 4, discussed in Remark 4.

αk+1 =

k+1∑
i=1

1

2i
.

In particular, when we choose k = 0, the above expression becomes

Pr

(
d2
t+1 >

G(d2
0,G∗)

t+ E + 1
+

8(t+ 1)C̃(D2, D
√
G∗)

µ(t+ 1 + E)Λ7
+

4
√

2Č log(Λ8)

µ
√
t+ E + 1

)
≤ t+ 1

Λ8
(11)

where

Č = max

8d2
0(4β2d2

0 + G∗)
(1 + E) log Λ8

,

(
32
√

2G∗
µ

+
2

E

)2

,

(
64β2c21

(1 + E) log Λ8
+

8G∗c1
log Λ8

)2


c1 = G(d2
0,G∗) +

8C̃(D2, D
√
G∗)

µΛ6

Remark 2. This result essentially states that the distance of wt to w∗ is at most the sum of three
terms with high probability. Recall from the first step of the proof of Theorem 2 in [27] that
E[d2

t ] ≤ (1 − µηt)E[d2
t ] + 2η2

t G∗ + E[Mt], where Mt = 〈∇F (wt) − ∇f(wt; zt),wt −w∗〉 is a
martingale difference sequence with respect to the filtration generated by samples w0, . . . ,wt (in
particular, note that E[Mt] = 0). We obtain a similar inequality in the high probability analysis
without the expectations, so bounding theMt term is the main difficulty in proving the high probability
convergence guarantee. Indeed, the first term in our high-probability guarantee corresponds to a
bound on the (1− µηt)dt + 2ηtG∗ term. Thus, as in the expected value analysis from [27], this term
decreases linearly in the number of steps t, with the scaling constant depending only on the initial
distance d0 and a uniform bound on the stochastic gradient at the optimum model parameter (w∗).

The latter two terms correspond to a bound on a normalized version of the martingale
∑
iMi, which

appears after unrolling the aforementioned recursion. Due to our more relaxed assumption on the
bound on the norm of the stochastic gradient, we employ different techniques in bounding this term
than were used in [18]. The second term is a bias term that depends on the worst case diameter
bound D (or if no diameter bound exists, then D represents the worst case distance betweenwt and
w∗, see Remark 3), and appears as a result of applying Azuma-Hoeffding with conditioning. Our
bound exhibits a trade-off between the bias term which is O(D2/poly(Λ)), and the probability of the
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bad event which is t+1
Λ8 . This trade-off can be achieved by tuning the parameter Λ. Notice that while

the probability of the bad event decays polynomially in Λ, the bias only increases as poly(log Λ).

The third term represents the deviation of the martingale, which decreases nearly linearly in t (i.e. tγ
for any γ close to 1). The scaling constant, however, depends on γ. By choosing Λ appropriately (in
the second term), this third term decays the slowest of the three, for large values of t, and is thus the
most important one from a scaling-in-time perspective.
Remark 3. In typical SDG analysis (e.g. [12, 18]), a uniform bound on the stochastic gradient
is assumed. Note that if we assume a uniform bound on dt, i.e. dt ≤ D ∀ t ∈ [1, T ], then under
Assumption 1, we immediately obtain a uniform bound on the stochastic gradient, since:

‖∇f(wt; z)‖ ≤ ‖∇f(wt; z)−∇f(w∗; z)‖+ ‖∇f(w∗; z)‖

≤ βdt +
√
G∗

≤ βD +
√
G∗ :=

√
Ḡ (12)

If we do not have access to a projection operator on our feasible set of w, or otherwise choose not
to run projected gradient descent, then we obtain a worst-case upper bound of D = O (tu) where
u = 2

√
2κ3/2, since:

dt+1 ≤ dt + ηt‖∇f(wt; zt)‖ by triangle inequality and definition of the SGD step

≤ dt + ηt

√
2β2κd2

t + 2G∗ by Lemma 2

≤

(
1 +

α
√

2κβ

µ(t+ E)

)
dt +

α
√

2G∗
µ(t+ E)

by choice of ηt =
α

µ(t+ E)
, where α > 1 must hold

= O
(
tα
√

2κ3/2
)

we take α = 2 throughout this paper

Thus, when we do not assume access to the feasible set of w and do not run projected gradient
descent, a convergence guarantee of the form Õ

(
Ḡ
t

)
that follows from a uniform bound on the

stochastic gradient does not suffice in our setting because Ḡ scales polynomially in t. We further note
that even if we do have access to a projection operator, Ḡ scales quadratically in the radius of the
projection set, and thus can be very large.

Instead, we wish to construct a high probability guarantee on the final SGD iterate in a fashion
similar to the expected value guarantee given in [27]. Now under our construction, we have an
additional parameter, Λ, which we may use to our advantage to obtain meaningful convergence
results even when D scales polynomially. Indeed, we observe that each occurrence of C̃ in our
construction is normalized by at least Λ2. Thus, since C̃ = O(D2), by replacing Λ ← Λ2u+1 in
our analysis, and assuming Λ is polynomial in t, we can obtain (ignoring polylog factors) Õ

(
1
tγ

)
convergence of the final iterate of SGD, for any γ < 1. Note that this change simply modifies the
definition of rt by a constant factor. Thus, our convergence guarantee continues to hold with minor
modifications to the choice of constants in our analysis.

A direct consequence of Theorem 5 and the fact that ‖w0 − w∗h+1,2i‖22 ≤ 2‖w0 − wh,i‖22 +

2‖w∗h,i − wh+1,2i‖22 ≤ 4ν1ρ
h by Theorem 4 is the following Corollary, which guides our SGD

budget allocation strategy.
Corollary 3. Consider a tree node (h, i) with mixture weights αh,i and optimal learning parameter

w∗h,i. Assuming we start at a initial pointw0 such that
∥∥∥w0 −w∗h,i

∥∥∥2

2
≤ ν1ρ

h and take t = λ(h+1)

SGD steps using the child node distribution p(α∗h+1,2i) where, λ(h+ 1) is chosen to satisfy

G(4ν1ρ
h,G∗)

λ(h+ 1) + E
+

8λ(h+ 1)C̃(D2, D
√
G∗)

µ(λ(h+ 1) + E)Λ7
+

4
√

2 log(Λ8)

√
Ĉ(k)

µ(λ(h+ 1) + E)αk+1
≤ ν1ρ

h+1, (13)

then by Theorem 5, with probability at least 1− 1
Λ7 we have ||wt −w∗h+1,2i||22 ≤ ν1ρ

h+1.

In particular, if we assume that D2 = K(t)d2
0 for some K(t) such that K(t)/Λ6 = K̂ = O(1) (refer

to Remark 3 for why this particular assumption is reasonable), then when G = Ed2
0 (i.e. Ed2

0 ≥ 8G∗
µ )
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and Ĉ(0) =
8d20(4β2d20+G∗)

1+E (note that a similar statement can be made if the third term inside the
max in Č from Theorem 5, instead of the first term, is maximal), taking k = 0, we may choose λ(h)
independently of h:

λ(h+ 1) = λ =

(
1

ρ
√

1 + E

(
4E + 64

√
2κK̂ +

16
√
EK̂

√
µΛ3

+ 128κ
√

log(Λ8) +
16
√

2E log(Λ8)
√
µ

))2

− E. (14)

We will proceed in bounding the final iterate of SGD as follows:

• One main difficulty in analyzing the final iterate of SGD in our setting is our relaxed
assumption on the norm of the gradient – namely, we assume that the norm of the gradient
is bounded only at the optimal w∗. We thus will rely on Lemma 2 and Lemma 3 to proceed
with our analysis.
• In Lemma 4 and Lemma 5, we will derive a bound on the distance from the optimal solution

which takes a form similar to that in the expected value analysis of [27, 7].
• Afterwards, we will define a sequence of random variables rt and Vt, in order to prove a

high-probability result for d2
t > rt in Lemma 8.

• Given this high probability result, it is then sufficient to obtain an almost sure bound on rt.
We will proceed with bounding this quantity in several stages:

– First, we obtain a useful bound on rt in Lemma 9 which normalizes the global diameter
term D by a term which is polynomial in our tunable parameter Λ. Note that this step
is crucial to our analysis, as D can potentially grow polynomially in the number of
SGD steps T under our assumptions, as we note in Remark 3.

– Given this bound, we are left only to bound the Vt term. We first obtain a crude bound on
this term in Lemma 10, which would allow us to achieve a Õ(1/

√
t) converge guarantee.

We then refine this bound in Corollary 4, which allows us to give a convergence
guarantee of Õ(K(γ)/tγ) for any γ < 1 and for some constant K(γ). We discuss
how this refinement affects constant and log Λ factors in our convergence guarantee in
Remark 4.

– Finally, we collect our results to obtain our final bound on rt+1 in Corollary 5.
• With a bound on rt+1 and a high probability guarantee of dt+1 exceeding rt+1, we can

finally obtain our high probability guarantee on error the final SGD iterate in Theorem 5.

Since quite a lot of notation will be introduced in this section, we provide a summary of parameters
used here:

Parameter Value Description
g(wt; zt), gt ∇f(wt; zt) Interchangeable notation for stochastic gradient
κ β

µ The condition number
dt ‖wt −w∗‖22 The distance of the tth iterate of SGD
ηt

2
µ(t+E) The step size of SGD

E 4096κ2 log Λ4

T The number of SGD iterations
Λ ≥ T + 1 Tunable parameter to control high probability

bound
Mt 〈∇F (wt)−gt,wt−w∗〉
%t 2dt

√
8β2d2

t + 2G∗ Upper bound on the martingale difference se-
quence

D supt=0,...,T dt The uniform diameter bound (discussed in Re-
mark 3)

We begin by noting that crucial to our analysis is deriving bounds on our stochastic gradient, since
we assume the norm of the stochastic gradient is bounded only at the origin. The following results
are the versions of Lemma 2 from [27] restated as almost sure bounds.
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Lemma 2 (Sample path version of Lemma 2 from [27]). Under Assumption 1 and Assumption 2, the
following bound on the norm of the stochastic gradient holds almost surely.

‖g(wt, Zt)‖2 ≤ 4βκ(F (wt)− F (w∗)) + 2G∗ (15)

Proof. As in [27], we note that since

‖a− b‖2 ≥ 1

2
‖a‖2 − ‖b‖2, (16)

we may obtain the following bound:

1

2
‖∇f(wt; z)‖2 − ‖∇f(w∗; z)‖2 ≤ ‖∇f(wt; z)−∇f(w∗; z)‖2

≤ β2‖wt −w∗‖2 by β-smoothness of f

≤ 2β2

µ
(F (wt)− F (w∗)) by µ-strong convexity of F

Rearranging, we have that

‖∇f(wt; z)‖2 ≤ 4βκ(F (wt)− F (w∗)) + 2G∗, (17)

as desired.

Lemma 3 (Centered sample path version of Lemma 2 from [27]). Under Assumption 1 and Assump-
tion 2, for any random realization of z, the following bound holds almost surely:

‖∇f(wt; z)−∇F (wt)‖2 ≤ 8β2‖wt −w∗‖2 + 2G∗ (18)

Proof. The proof proceeds similarly to Lemma 2, replacing the stochastic gradient with the mean-
centered version to obtain:

1

2
‖∇f(wt; z)− E[∇f(wt; z)]‖2 − ‖∇f(w∗; z)− E[∇f(w∗; z)]‖2

≤ ‖∇f(wt; z)−∇f(w∗; z)− E[∇f(wt; z)] + E[∇f(w∗; z)]‖2

≤ 2(‖∇f(wt; z)−∇f(w∗; z)‖2 + ‖E[∇f(wt; z)]− E[∇f(w∗; z)]‖2)

≤ 2(‖∇f(wt; z)−∇f(w∗; z)‖2 + E[‖∇f(wt; z)−∇f(w∗; z)]‖2])

≤ 4β2‖wt −w∗‖2

Now, rearranging terms, and recalling that E[∇f(w∗; z)] = ∇F (w∗) = 0, we have

‖∇f(wt; z)−∇F (wt; z)‖2 = ‖∇f(wt; z)− E[∇f(wt; z)]‖2

≤ 8β2‖wt −w∗‖2 + 2‖∇f(w∗; z)‖2

≤ 8β2‖wt −w∗‖2 + 2G∗

as desired.

Given these bounds on the norm of the stochastic gradient, we are now prepared to begin deriving
high probability bounds on the optimization error of the final iterate.

Lemma 4. Suppose F and f satisfy Assumption 1 and Assumption 2. Consider the stochastic gradient
iteration wt+1 = wt − ηt∇f(wt; zt), where z is sampled randomly from a distribution p(z). Let
w∗ = arg minw F (w). Let Mt = 〈∇F (wt) − g(wt, Zt),wt −w∗〉, where g(w, z) = ∇f(w, z)
. Additionally, let us adopt the notation dt = ‖wt −w∗‖2. Then the iterates satisfy the following
inequality:

d2
t+1 ≤ (1− µηt)d2

t + 2G∗η2
t + 2ηtMt (19)

as long as 0 < ηt ≤ 1
2βκ , where κ = β

µ .
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Proof. The proof crucially relies on techniques employed in [27], and in particular, on Lemma 2, We
now apply this result to bound dt+1 :

‖wt+1 −w∗‖2 = ‖wt − ηtg(wt; zt)−w∗‖2 by definition of SGD

= ‖wt −w∗‖2 + η2
t ‖g(wt; zt)‖2

− 2ηt〈g(wt; zt),wt −w∗〉
≤ ‖wt −w∗‖2 + 2η2

t (G∗ + 2βκ(F (wt)− F (w∗)))

− 2ηt(〈∇F (wt),wt −w∗〉
+ 〈gt −∇F (wt),wt −w∗〉) by Lemma 2

≤ ‖wt −w∗‖2 + 2η2
t (G∗ + 2βκ(F (wt)− F (w∗)))

− 2ηt(F (wt)− F (w∗) +
µ

2
‖wt −w∗‖2

+ 〈gt −∇F (wt),wt −w∗〉) by µ-s.c. of F

= (1− µηt)‖wt −w∗‖2

−2ηt(1− 2βκηt)(F (wt)− F (w∗))

− 2ηt〈gt −∇F (wt),wt −w∗〉+ 2G∗η2
t

≤ (1− µηt)d2
t + 2G∗η2

t + 2ηtMt assuming ηt ≤
1

2βκ

which is the desired result.

Now given this recursion, we may derive a bound on dt+1 in a similar form as expected value results
from Theorem 2 from [27] and Theorem 4.7 in [7]. Namely,

Lemma 5. Using the same assumptions and notation as in Lemma 4, by choosing ηt = 2
µ(t+E) ,

where E ≥ 4κ2 we have the following bound on the distance from the optimum:

d2
t ≤

G(d2
0,G∗)

t+ E
+

t−1∑
i=0

c(i, t− 1)Mi

≤ G(d2
0,G∗)

t+ E
+

4

µ(t+ E)

t∑
i=0

Mi

where

G(d2
0,G∗) = max{Ed2

0,
8G∗
µ2
}, and c(i, t) = 2ηi

t∏
j=i+1

(1− µηj)

Proof. We first note that our choice of ηt does indeed satisfy ηt ≤ 1
2βκ , so we may apply Lemma 4.

As in the aforementioned theorems, our proof will proceed inductively.
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Note that the base case of t = 0 holds trivially by construction. Now let us suppose the bound holds
for some l < t. Then, using the recursion derived in Lemma 4, we have that

d2
l+1 ≤ (1− µηl)d2

l + 2G∗η2
t + 2ηtMt

≤ (1− µηl)

(
G(d2

0,G∗)
l + E

+

l−1∑
i=0

c(i, l − 1)Mi

)
+ 2G∗η2

l + 2ηlMl

= (1− µηl)
G(d2

0,G∗)
l + E

+ 2G∗η2
l +

l∑
i=0

c(i, l)Mi

= G(d2
0,G∗)

l + E − 2

(l + E)2
+

8G∗
µ2(l + E)2

+

l∑
i=0

c(i, l)Mi

= G(d2
0,G∗)

l + E − 1

(l + E)2
− G(d2

0,G∗)
(l + E)2

+
8G∗

µ2(l + E)2
+

l∑
i=0

c(i, l)Mi

Now note that, by definition of G(d2
0,G∗), we have that

−G(d2
0,G∗)

(l + E)2
+

8G∗
µ2(l + E)2

≤ 0 (20)

Therefore, we find that

d2
l+1 ≤ G(d2

0,G∗)
l + E − 1

(l + E)2
+

l∑
i=0

c(i, l)Mi

= G(d2
0,G∗)

(l + E)2 − 1

(l + E)2

1

t+ E + 1
+

l∑
i=0

c(i, l)Mi

≤ G(d2
0,G∗)

(l + 1) + E
+

l∑
i=0

c(i, l)Mi

Thus, the result holds for all t.

We now note that c(i, t) ≤ 4
µ(t+E) . Observe that

c(i, t) = 2ηi

t∏
j=i+1

(1− µηj)

=
4

µ(i+ E)

t∏
j=i+1

j + E − 2

j + E

=
4

µ(i+ E)

i+ E − 1

t+ E

≤ 4

µ(t+ E)

Now, in order to obtain a high probability bound on the final iterate of SGD, we need to obtain a
concentration result for

∑t
i=0Mi. We note that, from Lemma 3, we obtain an upper bound on the

magnitude of Mi :

|Mt| ≤ ‖g(wt; zt)−∇F (wt)‖‖wt −w∗‖

≤
√

8β2d2
t + 2G∗dt.
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We consider the usual filtration Ft that is generated by {zi}i≤t and w0. Just for completeness of
notation we set z0 = 0 (no gradient at step 0).

By this construction, we observe that Mt is a martingale difference sequence with respect to the
filtration Ft. In other words, St =

∑t
s=1Ms is a martingale.

Lemma 6. E[Mt | Ft−1] = 0, ∀t > 0.

Proof. Given the filtration, Ft−1, w0, z1 . . . zt−1 is fixed. This implies that wt is fixed. However,
conditioned on {zi}i<t, zt is randomly sampled from p(z). Therefore, E[g(wt, zt) − ∇F (wt) |
Ft−1] = Ezt|Ft−1

[g(wt, zt) −∇F (wt) | wt] = Ezt∼p(z)[g(wt, zt) −∇F (wt) | wt] = 0. Hence,
E[Mt | Ft−1] = 0

Recall that, Ms is uniformly upper bounded by %t = dt
√

8β2d2
t + 2G∗. Thus, we have that

%2
t ≤ d2

t (8β
2d2
t + 2G∗).

Let D = sup0≤t≤T dt. Then, |Mt| ≤ dt
√

8β2d2
t + 2G∗ ≤ C̃(D2, D

√
G∗) = D

√
8β2D2 + 2G∗.

In order to obtain a high probability bound on the final SGD iterate, we will introduce the following
sequence of random variables and events, and additionally constants c′(t) to be decided later.

1. Initialization at t = 0: Let V0 =
8d20(4β2d20+G∗)

1+E , r0 = d2
0, and take A0 to be an event that

is true with probability 1. Let M0 = 0. Pr(E0)=1, δ0 = 0.

2. rt = G
t+E + 4

µ(t+E) (t− 1)δt−1C̃(D2, D
√
G∗) + 4

µ

√
2 log(Λ8/c′(t))

t+E

√
Vt−1

3. Vt = 1
t+E+1

∑t
i=0 8ri(4β

2ri + G∗).

4. Event At is all sample paths satisfying the condition: d2
t ≤ rt.

5. Let Et =
⋂
i≤tAi. Further, let Pr(Ect )/Pr(Et) = δt.

We now state a conditional form of the classic Azuma-Hoeffding inequality that has been tailored to
our setting, and provide a proof for completeness.
Lemma 7 (Azuma-Hoeffding with conditioning). Let Sn = f(z1 . . . zn) be a martingale sequence
with respect to the filtration Fn generated by z1 . . . zn. Let ψn = Sn − Sn−1. Suppose |ψn| ≤
cn(z1 . . . zn−1) almost surely. Suppose E[ψn | Fn−1] = 0.

Let An−1 be the event that cn ≤ dn, where An−1 is defined on the filtration Fn−1, and dn is a
constant dependent only on the index n. Define En =

⋂
i≤nAi. Further suppose that that ∃R̄ large

enough such that |ψn| ≤ R̄ almost surely. Finally let Pr(Ecn)/Pr(En) = δn. Then,

Pr
(
Sn ≥ γ + nδnR̄ | En

)
≤ exp

(
− γ2

2
∑n
i=1 d

2
i

)
(21)

Proof. We first observe that E[ψi | Fi−1] = 0. Therefore, for i ≤ n we have:

|E[ψi | En,Fi−1]| = Pr(Ecn)

Pr(En)
|E[ψi | Ecn,Fi−1]|

≤ Pr(Ecn)

Pr(En)
R̄

≤ δnR̄ (22)

Consider the sequence S′i = Si −
∑i
j=1 E[ψj | Fj−1, En] for i ≤ n.

Pr(S′i ≥ γ | En) ≤ e−θγE[eθS
′
i | En]

= e−θγE[E[eθS
′
i | En,Fi−1] | En]

= e−θγE[eθS
′
i−1E[eθ(ψi−E[ψi|Fi−1,En]) | En,Fi−1] | En]

(23)
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Observe that E[ψi−E[ψi | Fi−1, En] | Fi−1, En] = 0. i.e. ψi−E[ψi | Fi−1, En] is a mean 0 random
variable with respect to the conditioning events Fi−1, En.

Further, for any sample path where En holds, we almost surely have |ψi − E[ψi | Fi−1, En]| ≤
2ci(z1, z2 . . . zi−1) ≤ 2di.

Therefore, E[eθ(ψi−E[ψi|Fi−1,En]) | En,Fi−1] ≤ e4θd2i /2

Therefore, Equation 23 yields the following:

Pr(S′i ≥ γ | En) ≤ e−θγE[eθS
′
i−1 | En][e

4θd2i
2 ]

= e−θγeθ
∑i
j=1 4d2j/2 (24)

Let θ = γ∑n
i=1 4d2i

. Then, we have for i = n:

Pr

(
Sn ≥ γ +

n∑
i=1

E[ψi | Fi−1, Ei]
∣∣∣∣ En

)
≤ exp

(
− γ2

8
∑n
i=1 d

2
i

)
a⇒Pr

(
Sn ≥ γ + nδnR̄ | En

)
≤ exp

(
− γ2

8
∑n
i=1 d

2
i

)
(25)

(a) - This is obtained by substituting the almost sure bound Equation 22 for all i ≤ n.

Using our iterative construction and the conditional Azuma-Hoeffding inequality, we obtain the
following high probability bound:

Lemma 8. Under the construction specified above, we have the following:

Pr(d2
t+1 > rt+1 | Et) ≤

c′(t+ 1)

Λ8
(26)

When c′(i) = 1, we have:

Pr(Ect+1) ≤ t+ 1

Λ8
(27)

Proof. By the conditional Azuma-Hoeffding Inequality (Lemma 7), we have the following chain:

Pr(Act+1|Ai, i ≤ t)= Pr(d2
t+1 > rt+1 | Ai, i ≤ t)

≤ Pr

(
4

µ(t+ 1 + E)

t∑
i=1

(Mi − δtC̃(D2, D
√
G∗)) >

4

µ(t+ 1 + E)

√√√√ t∑
i=0

%2
i

√
2 log

(
Λ8

c′(t+ 1)

) ∣∣∣∣ Ai, i ≤ t
)

a
≤ exp

− (2 log( Λ8

c′(t+1) ))
∑t
i=0 %

2
i

2
∑t
i=0 %

2
i


=
c′(t+ 1)

Λ8

(a)- We set ψi in Lemma 7 to be the variables Mi, filtrations Ft to be that generated by zt ∼ p(z)
(and w0) in the stochastic gradient descent steps. ct (in Lemma 7) set to %t, dt (in Lemma 7) is set to
rt , R̄ (in Lemma 7) is set to C̃(D2, D

√
G∗) and δt (in Lemma 7) is set to Pr(Ect )/Pr(Et). Now, if we

apply Lemma Lemma 7 to the sequence Mi with the deviation γ set to
√∑t

i=0 %
2
i

√
2 log

(
Λ8

c′(t+1)

)
,

we obtain the inequality.
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Pr(Ect+1) ≤
t+1∑
i=1

Pr(min{j : d2
j > rj} = i)

≤
t+1∑
i=1

Pr(Aci | Aj , j < i) =

t+1∑
i=1

c′(i)

Λ8
(28)

Choosing c′(i) = 1, we thus obtain our desired result.

From Lemma 8, we have a high probability bound on the event that d2
t > rt. In order to translate this

to a meaningful SGD convergence result, we will have to substitute for δt. We thus upper bound rt as
follows:
Lemma 9. Under the above construction, where c′(i) is chosen to be 1, we have the following almost
sure upper bound on rt, ∀ t ≤ Λ

rt ≤
G(d2

0,G∗)
t+ E

+
8tC̃(D2, D

√
G∗)

µ(t+ E)Λ7
+

4
√

2 log(Λ8)
√
Vt−1

µ
√
t+ E

(29)

where C̃(D2, D
√
G∗) = D

√
8β2D2 + 2G∗, and D is taken to be a uniform diameter bound3.

Proof. From Lemma 8, we have: δt =
Pr(Ect )
Pr(Et) ≤

t
Λ8−t ≤

2
Λ7 . Here, we assume that Λ > 2.

Substituting in the expression for rt, we have the result.

Given this bound from Lemma 9, we now must construct an upper bound on Vt. We will proceed in
two steps, first deriving a crude bound on Vt, and then by iteratively refining this bound. We now
derive the crude bound.
Lemma 10. The following bound on Vt holds almost surely:

Vt ≤ Č log Λ8 (30)

assuming that we choose

E ≥ 128β2c22 log Λ8

Č ≥ max

{
V0

log Λ8
, (8G∗c2 + min{2/E, 1})2,

(
64β2c21

(1 + E) log Λ8
+

8G∗c1
log Λ8

)2
}

c1 = G(d2
0,G∗) +

8C̃(D2, D
√
G∗)

µΛ6

c2 =
4
√

2

µ

Λ ≥ t+ 1

Proof. We will prove the claim inductively.

We note that the base case when t = 0 holds by construction, assuming that Č ≥ V0

log Λ4 .

Now let us suppose that our claim holds until some t. Then by applying the bound on rt derived in
Lemma 9, we have the following bound:

rt+1 ≤
G(d2

0,G∗)
t+ 1 + E

+
8(t+ 1)C̃(D2, D

√
G∗)

µ(t+ 1 + E)Λ7
+

4
√

2Č log Λ8

µ
√
t+ E + 1

≤ c1
t+ E + 1

+
c2
√
Č log Λ8

√
t+ E + 1

,

3See Remark 3 for a discussion on our reasoning for using a global diameter bound here.
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where c1 = G(d2
0,G∗) + 8C̃(D2,D

√
G∗)

µΛ6 and c2 = 4
√

2
µ . Plugging in this bound to our definition of

Vt+1, we obtain:

Vt+1 =
t+ 1 + E

t+ 2 + E
Vt + 32β2r2

t+1 + 8G∗rt+1

≤ Č log Λ8

t+ E + 2

(t+ E + 1) +
64β2c22 log Λ8

t+ E + 1
+

8G∗c2√
Č(t+ E + 1)


+

1

(t+ E + 1)(t+ E + 2)

(
64β2c21

(t+ E + 1)
+ 8G∗c1

)
shown below
≤ Č log Λ8

Rearranging, we find that we equivalently need:

64β2c21
(t+ E + 1) log Λ8

+
8G∗c1
log Λ8

≤
√
Č(
√
Č(t+ E + 1− 64β2c22 log Λ8)

− 8G∗c2
√
t+ E + 1).

Now, setting E = 2 ∗ 64β2c22 log Λ8, we find that a sufficient condition to complete our induction
hypothesis is:

64β2c21
(t+ E + 1) log Λ8

+
8G∗c1
log Λ8

≤
√
Č((
√
Č − 4G∗c2)(t+ 1) + (

√
Č − 8G∗c2)E/2). (31)

Now, observe that by choosing

Č ≥ max

{
(8G∗c2 + min{2/E, 1})2,

(
64β2c21

(1 + E) log Λ8
+

8G∗c1
log Λ8

)2
}

(32)

the sufficient condition Equation 31 is satisfied. Hence, our claim holds for all t.

Now given this crude upper bound, we may repeatedly apply Lemma 8 from [27] in order to obtain
the following result:

Corollary 4 (of Lemma 10 + Lemma 8 in [27]). After k ≥ 0 applications of Lemma 8 from [27],
under the same assumptions as in Lemma 10, we have the following bound on Vt :

Vt ≤
Ĉ(k)

(t+ E + 1)αk
(33)

where

Ĉ(k + 1) = 2k+1C(k + 1) + V0
1 + E

(2 + E)1−αk+1

C(k + 1) =
64β2c21

(E + 1)2−αk+1
+

64Ĉ(k)c22
µ2(E + 1)αk+1

+
8G∗c1

(E + 1)1−αk+1
+ 8
G∗
µ

√
Ĉ(k)c2

αk+1 =

k+1∑
i=1

1

2i

Ĉ(0) = Č log Λ8

α0 = 0

where E, Č, c1, c2 are defined as in Lemma 10.
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Proof. We will construct this bound inductively. We begin by noting that, when k = 0, the bound
holds by Lemma 10. Now let us assume the bound holds until some k. Observe, then, that, by
plugging into the bound in Lemma 9, we may write

Vt+1 ≤ βtVt + γt (34)
where

βt =
t+ 1 + E

t+ 2 + E

γt =
C(k + 1)

(t+ E + 1)αk+1(t+ E + 2)

C(k + 1) =
64β2c21

(E + 1)2−αk+1
+

64Ĉ(k)c22
µ2(E + 1)αk+1

+
8G∗c1

(E + 1)1−αk+1
+ 8
G∗
µ

√
Ĉ(k)c2

Now, we may apply Lemma 8 in [27] to obtain:

Vt+1 ≤
t∑
i=0

 t∏
j=i+1

βj

 γi + V0

t∏
i=0

βi

=

t∑
i=0

i+ 2 + E

t+ 2 + E

C(k + 1)

(i+ E + 1)αk+1(i+ E + 2)
+ V0

1 + E

t+ 2 + E

≤ C(k + 1)

t+ 2 + E

∫ t+1+E

E

1

xαk+1
dx+ V0

1 + E

t+ 2 + E

≤ C(k + 1)

(1− αk)(t+ E + 2)αk+1
+ V0

1 + E

t+ E + 2

≤ Ĉ(k + 1)

(t+ E + 2)αk+1
,

where Ĉ(k + 1) = C(k+1)
1−αk+1

+ V0
1+E

(2+E)1−αk+1
= 2k+1C(k + 1) + V0

1+E
(2+E)1−αk+1

.

Thus, our claim holds for all k.

Remark 4. Note that while Ĉ(k) in Corollary 4 has complicated dependencies on G∗, d0, β, and µ,
it is straightforward to argue that Ĉ(k) ≤ ρk log Λ8 where ρk is a constant that is independent of Λ.
Indeed, note that, from Corollary 4, we have that

Ĉ(k + 1) ≤ 2k+1

[
e1

(E + 1)2−αk+1
+

e2

(E + 1)1−αk+1
+

e3

(E + 1)αk+1
Ĉ(k) + e4

√
Ĉ(k)

]
+

e5

(2 + E)1−αk+1

for some e1, . . . , e5 which are independent of Λ. Note that when k = 0, the claimed bound on Ĉ(0)
holds by definition, for proper choice of ρ0. Assuming the bound holds until k, we may construct
a bound of the desired form by choosing ρk+1 as a function of the eis. Note that E + 1 ≥ 1, and
that each ei is independent of Λ, so ρk+1 is also independent of Λ. We may thus conclude that
Ĉ(k) = O(log Λ8).

We may collect these results to obtain:
Corollary 5 (of Lemma 9 + Corollary 4). Under the assumptions on E in Lemma 10 and the
definition of Ĉ(k) from Corollary 4, the following bound holds almost surely, for any k ≥ 0,

rt+1 ≤
G(d2

0,G∗)
t+ E + 1

+
8(t+ 1)C̃(D2, D

√
G∗)

µ(t+ 1 + E)Λ7
+

4
√

2 log(Λ8)

√
Ĉ(k)

µ(t+ E + 1)
∑k+1
i=1 2−i

(35)

We are now prepared to state and prove our main SGD result.

Proof of Theorem 5. The proof is an immediate consequence of Lemma 8 combined with Corollary 5.

29



E Putting It Together: Tree-Search

E.1 Statement of main results

Now we present our final bound that characterizes the performance of Algorithm 1 as Theorem 6.
In the deterministic black-box optimization literature [26, 34], the quantity of interest is generally
simple regret, R(Λ), as defined in Equation 4. In this line of work, the simple regret scales as a
function of near-optimality dimension, which is defined as follows:

Definition 5. The near-optimality dimension of G(·) with respect to parameters (ν1, ρ) is given by:

d(ν1, ρ) = inf

{
d′ ∈ R+ : ∃ C(ν1, ρ), s.t. ∀h ≥ 0,Nh(3ν̃ρh2 ) ≤ C(ν1, ρ)ρ−d

′h
2

}
,

where Nh(ε) is the number of cells (h, i) such that infα∈(h,i)G(α) ≤ G(α∗) + ε, ρ2 =
√
ρ, and

ν̃ =
√
ν1(L+

β
√
ν1

6 ).

The near-optimality dimension intuitively states that there are not too many cells which contain a
point whose function values are close to optimal at any tree height. The lower the near-optimality
dimension, the easier is the black-box optimization problem [14]. Theorem 6 provides a similar
simple regret bound on R(Λ) = G(α(Λ)) − G(α∗), where α(Λ) is the mixture weight vector
returned by the algorithm given a total SGD steps budget of Λ and α∗ is the optimal mixture. The
proof of Theorem 6 is in the following subsection.

Theorem 6 (Restatement of Theorem 3 from Section 5). Let h′ be the smallest number h such that∑h
l=0 2C(ν1, ρ)λ(l)ρ

−d(ν1,ρ)l
2 > Λ− 2λ(h+ 1). Then, with probability at least 1− 1

Λ3 , the tree in
Algorithm 1 grows to a height of at least h(Λ) = h′ + 1 and returns a mixture weight α(Λ) such that

R(Λ) ≤ 4ν̂ρ
h(Λ)−1
2 (36)

where ν̂ =
√
ν1

(
L+ β

8

√
ν1

)
Theorem 6 shows that, given a total budget of Λ SGD steps, Mix&Match recovers a mixture α(Λ)

with test error at most 4ν̂ρ
h(Λ)−1
2 away from the optimal test error if we perform optimization using

that mixture. The parameter h(Λ) depends on the number of steps needed for a node expansion at
different heights and crucially makes use of the fact that the starting iterate for each new node can be
borrowed from the parent’s last iterate. The tree search also progressively allocates more samples
to deeper nodes, as we get closer to the optimum. Similar simple regret scalings have been recently
shown in the context of deterministic multi-fidelity black-box optimization [34]. Note that Theorem 6
roughly corresponds to a regret scaling on the order of Õ

(
1

Λc

)
for some constant c (dependent on

d(ν2, ρ2)). Thus, when |Dte| is much smaller than the total computational budget Λ, our algorithm
gives a significant improvement over training only on the validation dataset. In our experiments in
Section 6 and Appendix H, we observe that our algorithm indeed outperforms the algorithm which
trains only on the validation dataset for several different real-world datasets.

E.2 Proof of main results

We begin by establishing a Lipschitz-like bound for our objective function

Lemma 11. Let L = β supα∈4 ‖w∗(α)−w∗(α∗)‖. Then, taking ŵ(α) as the model returned by
SGD run as in Theorem 5, we have the following bound for any mixture α ∈ 4:

−L‖ŵ(α)−w∗(α)‖2 ≤ F (te)(ŵ(α))−G(α)

≤
(
L+

β

2
‖ŵ(α)−w∗(α)‖2

)
‖ŵ(α)−w∗(α)‖2
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Proof. Observe that, for any α ∈ 4, by β-smoothness and Cauchy-Schwarz, and recalling that α∗

is the mixture for which F (α∗) = F (te), and F (te)(w∗(α)) = G(α),

F (α∗)(ŵ(α))− F (α∗)(w∗(α))

≤ 〈∇F (α∗)(w∗(α)), ŵ(α)−w∗(α)〉+
β

2
‖ŵ(α)−w∗(α)‖2

≤ ‖∇F (α∗)(w∗(α))−∇F (α∗)(w∗(α∗))︸ ︷︷ ︸
=0

‖‖ŵ(α)−w∗(α)‖+
β

2
‖ŵ(α)−w∗(α)‖2

≤
(
β‖w∗(α)−w∗(α∗))‖+

β

2
‖ŵ(α)−w∗(α)‖

)
‖ŵ(α)−w∗(α)‖

≤
(
β‖w∗(α)−w∗(α∗))‖+

β

2
‖ŵ(α)−w∗(α)‖

)
‖ŵ(α)−w∗(α)‖

and similarly, by β-smoothness and strong convexity, we have that

F (α∗)(ŵ(α))− F (α∗)(w∗(α))

≥ 〈∇F (α∗)(w∗(α)), ŵ(α)−w∗(α)〉+
µ

2
‖ŵ(α)−w∗(α)‖2

≥ −‖∇F (α∗)(w∗(α))−∇F (α∗)(w∗(α∗))︸ ︷︷ ︸
=0

‖‖ŵ(α)−w∗(α)‖+
µ

2
‖ŵ(α)−w∗(α)‖2

≥
(
−β‖w∗(α)−w∗(α∗))‖+

µ

2
‖ŵ(α)−w∗(α)‖

)
‖ŵ(α)−w∗(α)‖

≥ −β‖w∗(α)−w∗(α∗))‖‖ŵ(α)−w∗(α)‖

Plugging in the definition of L to the above bounds yields the claim.

Using Lemma 11, we can now establish the following guarantee for the Mix&Match algorithm.

Lemma 12. With probability at least 1− 1
Λ3 , Algorithm 1 only expands nodes in the set J := ∪Λ

h=1Jh,
where Jh is defined as follows,

Jh := {nodes (h, i) such that G(αh,i)− 3ν̃ρh2 ≤ G(α∗)},

where ν̃ =
√
ν1

(
L+ β

6

√
ν1

)
.

Proof. Let At be the event that the leaf node that we decide to expand at time t lies in
the set J . Also let Lt be the set of leaf-nodes currently exposed at time t. Let Bt =⋂

(h,i)∈Lt

{
‖ŵ(αh,i)−w∗(αh,i)‖22 ≤ ν1ρ

h
}

denote the event that every leaf node has a model that

is ν1ρ
h close to the corresponding optimal model.
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Now we have the following chain,

P(Bct ) = P
(
∃(h, i) ∈ Lt : ‖ŵ(αh,i)−w∗(αh,i)‖22 > ν1ρ

h
)

=

t/2∑
l=1

P
(
|Lt| = l, ∃(h, i) ∈ Lt : ‖ŵ(αh,i)−w∗(αh,i)‖22 > ν1ρ

h
)

≤
t/2∑
l=1

l∑
k=1

P
(
|Lt| = l, ‖ŵ(αhk,ik)−w∗(αhk,ik)‖22 > ν1ρ

h
)

≤
t/2∑
l=1

l∑
k=1

P
(
‖ŵ(αhk,ik)−w∗(αhk,ik)‖22 > ν1ρ

h
)

(a)

≤
t/2∑
l=1

l∑
k=1

1

Λ7

≤ 1

Λ5

Here, (a) is due to the h.p. result in Corollary 3.

Now note that, due to the structure of the algorithm, an optimal node (partition containing the optimal
point) at a particular height has always been evaluated prior to any time t, for t ≥ 2. Now we will
show that if Bt is true, then At is also true. Let (h, i) be a optimal node that is exposed at time t. Let
b∗h,i be the lower confidence bound we have for that node. Let us assume that the confidence boost
assigned to each node’s value in bh,i in Algorithm 1 is γ(h) for some function γ.

Therefore, given Bt we have that, taking L = β supα∈4 ‖w∗(α)−w∗(α∗)‖

b∗h,i = min
(h,i)∈Lt

F (te)(ŵ(αh,i))− γ(h)

≤ min
(h,i)∈Lt

G(αh,i) +

(
L+

β

2
‖ŵ(αh,i)−w∗(αh,i)‖

)
‖ŵ(αh,i)−w∗(αh,i)‖2 − γ(h)

≤ min
(h,i)∈Lt

G(αh,i) + L
√
ν1ρ

h/2 +
β

2
ν1ρ

h − γ(h)

Now, as long as γ(h) ≥ 2L
√
ν1ρ

h/2 + β
2 ν1ρ

h, then the following inequality implies that

b∗h,i ≤ G(α∗)

So for a node at time t to be expanded, the lower confidence value of that node bh,i must be lower

than G(α∗). Now again, given Bt, we have that, by choosing γ(h) = 2
√
ν1

(
L+ β

2

√
ν1

)
ρh/2

(satisfying the above inequality constraint),

b∗h,i = min
(h,i)∈Lt

F (te)(ŵ(αh,i))− γ(h)

≥ min
(h,i)∈Lt

G(αh,i)− L‖ŵ(αh,i)−w∗(αh,i)‖ − γ(h)

≥ min
(h,i)∈Lt

G(αh,i)− L
√
ν1ρ

h/2 − γ(h)

≥ min
(h,i)∈Lt

G(αh,i)− 3
√
ν1

(
L+

β

6

√
ν1

)
︸ ︷︷ ︸

=ν̃

ρh/2

Therefore, we have that P(Act) ≤ P(Bct ). Now, letA be the event that over the course of the algorithm,
no node outside of J is ever expanded. Let T be the random variable denoting the total number of
evaluations given our budget. We now have the following chain.
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P(Ac) = P

(
Λ⋃
T=1

{
T⋃
t=1

{Act}

}
∩ {T = l}

)

≤
Λ∑
T=1

P

(
T⋃
t=1

{Act}}

)

≤ 1

Λ3

as desired.

Lemma 13. Let h′ be the smallest number h such that
∑h
l=0 2C(ν1, ρ)λ(h)ρ

−d(ν1,ρ)l
2 > Λ−2λ(h+

1). The tree in Algorithm 1 grows to a height of at least h(Λ) = h′ + 1, with probability at least
1− 1

Λ3 . Here, λ(h) is as defined in Corollary 3.

Proof. We have shown that only the nodes in J = ∪hJh are expanded. Also, note that by definition
|Jh| ≤ C(ν1, ρ)ρ

−d(ν1,ρ)
2 .

Conditioned on the event A in Lemma 12, let us consider the strategy that only expands nodes in J ,
but expands the leaf among the current leaves with the least height. This strategy yields the tree with
minimum height among strategies that only expand nodes in J . The number of SGD steps incurred
by this strategy till height h′ is given by,

h′∑
l=0

2C(ν1, ρ)λ(l)ρ
−d(ν1,ρ)l
2 .

Since the above number is greater than to Λ − 2λ(h′ + 1) another set of children at height h′ + 1
is expanded and then the algorithm terminates because of the check in the while loop in step 4 of
Algorithm 1. Therefore, the resultant tree has a height of at least h′ + 1.

Proof of Theorem 6. Given that event A in Lemma 12 holds, Lemma 13 shows that at least one node
at height h′ (say (h′, i)) is expanded and one of that node’s children say αh′+1,i′ is returned by
the algorithm. Note that (h′, i) is in Jh and therefore G(αh′,i) − 3ν̃ρh

′

2 ≤ G(α∗). Invoking the
smoothness property in Corollary 2, we get that

G(αh′+1,i′)−G(α∗) = G(αh′+1,i′)−G(αh′,i) +G(αh′,i)−G(α∗)

≤ ν2ρ
h′

2 + 3ν̃ρh
′

2

= 4
√
ν1

(
L+

β

8

√
ν1

)
︸ ︷︷ ︸

ν̂

ρh
′

2

F Scaling of h(Λ) and λ(h)

In this section, we discuss how to interpret the scaling of the height function h(Λ) from Theorem 6
and the SGD budget allocation strategy λ(h) from Corollary 3.

Let us take k = 0 in Theorem 5, and assume the third term in the high probability bound is dominant:
that is, for some constant K large enough, taking C = 4

√
2ČK log Λ8

µ , we want to choose λ(h) to
satisfy:

C log Λ√
λ(h) + E

≤ ν1ρ
h+1
2 . (37)
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Then, solving for λ(h), we have that

λ(h) =

(
C log Λ

ν1ρ
h+1
2

)2

− E (38)

= Õ

(
1

ρ2h
2

)
(39)

Thus, outside of the constant scaling regime discussed in Corollary 3, we expect SGD to take an
exponential (in height) number of SGD steps in order to obtain a solution that is of distance ν1ρ

h+1
2

from the optimal solution w.h.p. (Recall that ρ2 ∈ (0, 1))

In light of this, we may discuss now how the depth of the seach tree, h(Λ), scales as a function of the
total SGD budget Λ. We will let

λ(h) =

{
λconst When h is in constant step size regime
C′ log2 Λ
ν1ρ2h2

Outside of this regime, for C ′ chosen large enough
(40)

We may thus solve for h′ from Theorem 6 as follows. Denote hconst as the maximum height of the
tree for which λ(h) = λconst for all h ≤ hconst. Then:

h(Λ)−1∑
i=0

2C(ν1, ρ)λ(l)ρ
−d(ν1,ρ)l
2 = 2C(ν1, ρ)λconst

hconst∑
i=0

ρ
−d(ν1,ρ)l
2

+ 2C̃ log2 Λ

h(Λ)−1∑
l=hconst+1

ρ
−(d(ν1,ρ)+2)l
2

= 2C(ν1, ρ)λconst
ρ
−d(ν1,ρ)(hconst+1)
2 − 1

ρ
−d(ν1,ρ)
2 − 1︸ ︷︷ ︸

T1

+ 2C̃ log2 Λ
ρ
−(d(ν1,ρ)+2)h(Λ)
2 − ρ−(d(ν1,ρ)+2)(hconst+2)

2

ρ
−(d(ν1,ρ)+2)
2 − 1︸ ︷︷ ︸
T2

want
> Λ− 2λ(h(Λ))

Now, observe that when hconst = h(Λ), then T2 = 0, and we need that, solving for hconst,

h(Λ) >
1

d(ν1, ρ)
log 1

ρ2

(
ρ−d2 − 1

2C(ν1, ρ)λconst
(Λ− 2λconst) + 1

)
and thus, h(Λ) = hconst scales as O(log 1

ρ2

Λ) w.h.p.

When Λ is sufficiently large so that h(Λ) > hconst and hconst can be taken as a constant, we need
that, for a sufficiently large constant Ĉ,

Ĉ log2 Λ
ρ
−(d(ν1,ρ)+2)h(Λ)
2 − ρ−(d(ν1,ρ)+2)(hconst+2)

2

ρ
−(d(ν1,ρ)+2)
2 − 1

want
> Λ− 2

C log2 Λ

ν1ρ
2h(Λ)
2

Solving for h(Λ), we find that, for some large enough constant ˆ̂
C, we must have that

h(Λ) >
1

d(ν1, ρ) + 2

(
log 1

ρ2

Λ

ˆ̂
C log2 Λ

)
and thus, in this case, h(Λ) scales as O

(
log 1

ρ2

Λ
log2 Λ

)
w.h.p.

In the context of Theorem 6, this scaling shows that the simple regret of our algorithm, R(Λ), scales
roughly as Õ

(
1

Λc

)
for some constant c. Thus, in certain small validation set regimes as discussed in

Remark 5, Mix&Match gives an exponential improvement in simple regret compared to an algorithm
which trains only on the validation dataset.
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Algorithm 2 Mix&Match: Tree-Search over the mixtures of training datasets

Input: Real numbers ν1 > 0, ρ2 ∈ (0, 1), and hierarchical partition P of 4 as specified in Corollary 2,
ν =
√
ν1

(
L+ β

2

√
ν1

)
, total SGD budget for entire tree search procedure Λ > 0, initial modelw0 ∈ W ,

SGD height-dependent budget function λ(h) as determined by Theorem 5 and Corollary 3.
1: Initialize search tree T0 = {(0, 1)} with initial model ŵ(α0,1) trained using SGD (from Theorem 5) on

training mixture distribution α0,1 ∈ P0,1 to optimization error 2ν1ρ
0.

2: Cost (Number of SGD steps used): C = λ(0)
3: while C ≤ Λ do
4: Select the leaf (h, j) ∈ Leaves(Tt) with minimum bh,j := F (te)(ŵ(αh,j))− 2νρh2 .
5: Add to Tt the 2 children of (h, j) (as determined by P) by querying them using Algorithm 3.
6: C = C + 2λ(h+ 1).
7: end while
8: Let h(Λ) be the height of Tt
9: Let i∗ := arg mini F

(te)(ŵ(αh(Λ),i)).
10: Return αh(Λ),i∗ and ŵ(αh(Λ),i∗).

Algorithm 3 ExpandNode: Optimize over the current mixture and evaluate

Input: Parent node (h, i) with model ŵ(αh,i), ν > 0, ρ2 ∈ (0, 1)
1: // Iterate over new child node indices
2: for (h′, i′) ∈ {(h+ 1, 2i− 1), (h+ 1, 2i)} do
3: Let α := αh′,i′ ∈ Ph′,i′ andw0 := ŵ(αh,i).
4: for t = 1, ..., T := λ(h+ 1) (see Corollary 3) do
5: wt = wt−1 − ηt∇f(wt−1; zt) for zt ∼ p(α).
6: end for
7: Obtain test error F (te)(wT )

8: Set node estimate: bh′,i′ = F (te)(wT )− 2νρh
′

2 .
9: Set final model: ŵ(αh′,i′) = wT .

10: end for

Remark 5 (Small validation dataset regime). Under no assumptions on the usage of the (size n)
validation set, only k = O(n2) queries can be made while maintaining nontrivial generalization
guarantees [4, 23]. When tracking only the best model, as in [6, 16], k can be roughly exponential
in the size of the validation set. While our setting is more similar to this latter setting, a precise
characterization of the sample complexity, and thus of the precise bounds on the size of the validation
set, is important. Here we focus on the computational aspects, and leave the formalization of
generalization guarantees in our setting to future work.

G Detailed Mix&Match Algorithm

In this section, we present the full version of Algorithm 1 as Algorithm 2, with the constants now
specified.

H Additional Experimental Details

The code used to create the testing infrastructure can be found at https://github.com/
matthewfaw/mixnmatch-infrastructure. The code used to run the experiments can be found
at https://github.com/matthewfaw/mixnmatch.

H.1 Details about the experimental setup

All experiments were run in python:3.7.3 Docker containers (see https://hub.docker.com/
_/python) managed by Google Kubernetes Engine running on Google Cloud Platform on n1-
standard-4 instances. Hyperparameter tuning was performed primarily using the Katib framework
(https://github.com/kubeflow/katib) using the validation error as the objective, with some
additional fine-tuning performed through local tests, with performance measured through validation
AUC. Since all algorithms we compare against use SGD, we use the same hyperparameters (SGD
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step size, neural network architecture, etc.) across all algorithms for each dataset/plot (however, they
are different across plots/datasets).

All experiments reported below are the results of an average of 10 runs, and error bars correspond to
1 standard deviation. The x axis of each plot corresponds to the intermediate amount of SGD budget
used at that measured value, and the corresponding y axis is the average performance of the classifier
after the indicated number of SGD iterations. That is, for each algorithm, we specify a total SGD
budget (e.g., 60k for the Allstate experiment, and 200k for the MNIST experiment), and report the
test AUC measured at intermediate intervals throughout each experiment’s duration

H.2 Details about the multiclass AUC metric

We briefly discuss the AUC metric used throughout our experiments. We evaluate each of our
classification tasks using the multi-class generalization of area under the ROC curve (AUROC)
proposed by [15]. This metric considers each pair of classes (i,j), and for each pair, computes
an estimate for the probability that a random sample from class j has lower probability of being
labeled as class i than a random sample from class j. The metric reported is the average of each of
these pairwise estimates. This AUC genenralization is implemented in a recent scikit-learn release
https://github.com/scikit-learn/scikit-learn/pull/12789. In our experiments, we
use this scikit-learn implementation.

H.3 Description of algorithms used

In the sections that follow, we will reference the following algorithms considered in our experiments.
We note that the algorithms discussed in this section are a superset of those discussed in Section 6.

H.4 Allstate Purchase Prediction Challenge – Correcting for shifted mixtures

Here, we provide more details about the experiment on the Allstate dataset [1] discussed in Section 6.
Recall that in this experiment, we consider the mixture space over which Mix&Match searches to be
the set of mixtures of data from Florida (FL), Connecticut (CT), and Ohio (OH). We take α∗ to be
the proportion of each state in the test set. The breakdown of the training/validation/test split for the
Allstate experiment is shown in Table 2.

Here, each Mix&Match algorithm allocates a height-independent 5000 samples for each tree search
node on which SGD is run. Each algorithm uses a batch size of 100 to compute stochastic gradients.

H.4.1 Dataset transformations performed

We note that in the dataset provided by Kaggle, the data for a single customer is spread across multiple
rows of the dataset, since for each customer there some number (different for various customers)
of intermediate transactions, followed by a row corresponding to the insurance plan the customer
ultimately selected. We collapse the dataset so that each row corresponds to the information of
a distinct customer. To do this, for each customer, we preserve the final insurance plan selected,
the penultimate insurance plan selected in their history, the final and penultimate cost of the plan.
Additionally, we create a column indicating the total number of days the customer spent before
making their final transaction, as well as a column indicating whether or not a day elapsed between
intermediate and final purchase, a column indicating whether the cost of the insurance plan changed,
and a column containing the price amount the insurance plan changed between the penultimate and
final purchase. For every other feature, we preserve only the value in the row corresponding to the
purchase. We additionally one-hot encode the car_value feature. Additionally, we note that we predict
only one part of the insurance plan (the G category, which takes 4 possible values). We keep all other
parts of the insurance plan as features.

H.4.2 Experimental results

Figure 2 shows the results of the same experiment as discussed in Section 6. We note that there are
now several variants of the Mix&Match algorithm, whose implementations are described in Table 1.
We observe that, in this experiment, when running Mix&Match for the entire experiment budget,
the two simplex partitioning schemes result in algorithms that all have similar performance on the
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Table 1: Description of the algorithms used in the experiments

Algorithm ID Description
Mix&MatchCH The Mix&Match algorithm, where the simplex is partitioned using

a random coordinate halving scheme
Mix&MatchDP The Mix&Match algoirhtm, where the simplex is partitioned using

the Delaunay partitioning scheme
Mix&MatchCH+0.1Step Runs the Mix&MatchCH algorithm for the first half of the SGD

budget, and runs SGD sampling according to the mixture returned
by Mix&Match for the second half of the SGD budget, using a
step size 0.1 times the size used by Mix&Match

Mix&MatchDP+0.1Step Runs the Mix&MatchDP algorithm for the first half of the SGD
budget, and runs SGD sampling according to the mixture returned
by Mix&Match for the second half of the SGD budget, using a
step size 0.1 times the size used by Mix&Match

Genie Runs SGD, sampling from the training set according to the test
set mixture

Validation Runs SGD, sampling only from the validation set according to the
test set mixture

Uniform Runs SGD, sampling uniformly from the training set
OnlyX Runs SGD, sampling only from dataset X
IW-Uniform Splits training and validation data in half. Using the first half of

the data, trains a logistic regression to predict if a given sample is
in the training or validation distribution. Then, using this model,
assigns importance weights to each of the training samples from
the second split as the odds ratio of the model. Finally, runs the
Uniform algorithm, minimizing training loss weighted by the
importance weights.

IW-ERM Performs the same procedure as in IW-Uniform to compute im-
portance weights. Instead of sampling uniformly from each train-
ing distribution, we concatenate all training datasets, and run SGD
to minimize loss on this combined dataset. Note that, since the
sizes of the different datasets are different, this results in a slightly
different algorithm than IW-Uniform.

MMD Builds a training dataset from the K data sources intended to be
a summary of the validation dataset by greedily maximizing the
(non-private) MMD objective as described in [33]. We then run
SGD to minimize loss on this summary dataset.

Table 2: The proportions of data from each state used in training, validation, and testing for Figure 1a
and Figure 2

State Total Size % Train % Validate % Test % Discarded
FL 14605 49.34 0.16 0.5 50
CT 2836 50 7.5 42.5 0
OH 6664 2.25 0.75 2.25 94.75

test set. However, in the Mix&Match instances that commit to a single mixture after half of its
budget (Mix&MatchCH+0.1Step and Mix&MatchDP+0.1Step), the partitioning strategy has a more
substantial impact on performance. This is not surprising, as the Delaunay partitioning strategy forces
Mix&Match to create 3 children instead of 2 as in the coordinate halving strategy. Thus, the DP
strategy forces more exploration, and so, for a fixed budget split, it is natural to expect the coordinate
halving strategy to have better performance.

Beyond these observations, we finally note that the best Mix&Match instance achieves a performance
nearly identical to the Genie algorithm which knows the correct mixture to sample a priori (as well
as the OnlyCT algorithm, which has performance similar to Genie since the mixture distributions

37



are similar, as shown in Table 2). Additionally, this Mix&Match instance out-performs all other
baselines.
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Figure 2: Test One vs One AUROC for Mixture of FL, CT, and OH

H.5 Wine Ratings

We consider the effectiveness of using Algorithm 1 to make predictions on a new region by training
on data from other, different regions. For this experiment, we use another Kaggle dataset [3], in
which we are provided binary labels indicating the presence of particular tasting notes of the wine, as
well as a point score of the wine and the price quartile of the wine, for a number of wine-producing
countries. We will consider several different experiments on this dataset.

We will consider again algorithms discussed in Table 1. Throughout these experiments, we will
consider searching over the mixture space of proportions of datasets of wine from countries US, Italy,
France, and Spain. Note that the Genie experiment is not run since there is no natural choice for α∗,
as we are aiming to predict on a new country.

H.5.1 Dataset transformations performed

The dataset provided through Kaggle consists of binary features describing the country of origin
of each wine, as well as tasting notes, and additionally a numerical score for the wine, and the
price. We split the dataset based on country of origin (and drop the country during training), and
add as an additional target variable the price quartile. We keep all other features in the dataset. In
the experiment predicting wine prices, we drop the price quartile column, and in the experiment
predicting wine price quartiles, we drop the price column.

H.5.2 Predict wine prices

In this section, we consider the task of predicting wine prices in Chile and Australia by using training
data from US, Italy, France, and Spain. The train/validation/test set breakdown is described in Table 3.
We use each considered algorithm to train a fully connected neural network with two hidden layers
and sigmoid activations, similarly as considered in [42]. We plot the test mean absolute error of each
considered algorithm.

Here, each Mix&Match algorithm allocates a height-independent 500 samples for each tree search
node on which SGD is run. Each algorithm uses a batch size of 25 to compute stochastic gradients.

Table 3: The proportions of data from each country used in training, validation, and testing for
Figure 3

Country Total Size % Train % Validate % Test % Discarded
US 54265 100 0 0 0

France 17776 100 0 0 0
Italy 16914 100 0 0 0
Spain 6573 100 0 0 0
Chile 4416 0 5 95 0

Australia 2294 0 5 95 0
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The results of this experiment are shown in Figure 3. There are several interesting takeaways
from this experiment. First is the sensitivity of Mix&Match to choice of partitioning scheme.
While Mix&MatchCH outperforms the Uniform algorithm and each OnlyX algorithm, Mix&MatchDP
performs poorly. Note that each node in the search tree under Delaunay partitioning can have K
(= 4 in this experiment) children, each node in the coordinate halving scheme only has two children.
Thus, it seems that perhaps the Dealunay partitioning scheme is overly wasteful in its allocation of
SGD budget. However, when considering the split budget Mix&Match algorithms which search for
mixtures only for half of their SGD budget, and commit to a mixture for the remaining half, the
performance gap between the two partitioning schemes is less noticeable.

The second interesting takeaway from this experiment is that, in contrast to the other experiments
considered in this paper, in this experiment, it seems that although Mix&Match outperforms both the
Uniform algorithm and OnlyX algorithm, it only matches the performance of the algorithm which
trains only on the validation dataset. This highlights an important point of the applicability of the
Mix&Match algorithm. Running Mix&Match makes sense only when there is insufficient validation
data to train a good model.
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Figure 3: Test Mean Absolute Error for Mixture of US, France, Italy, and Spain data, Predict in Chile
and Australia

H.5.3 Predict wine price quartiles

In this experiment, we consider a classification version of the regression problem considered in
the last experiment. In particular, we have access to training wine data from US, Italy, Spain, and
France, and wish to predict the quartile of the wine price for wines from Chile. The train/validate/test
breakdown in given in Table 4. We use each algorithm to train a fully connected neural network
with 3 hidden layers and ReLU activations, and evaluate based on the One vs One AUROC metric
described in [15]. The experimental results are shown in Figure 4.

Here, each Mix&Match algorithm allocates a height-independent 1000 samples for each tree search
node on which SGD is run. Each algorithm uses a batch size of 25 to compute stochastic gradients.

Table 4: The proportions of data from each country used in training, validation, and testing for
Figure 4

Country Total Size % Train % Validate % Test % Discarded
US 54265 15 0 0 85

France 17776 100 0 0 0
Italy 16914 100 0 0 0
Spain 6573 100 0 0 0
Chile 4416 0 5 95 0

We observe that each instance of Mix&Match outperforms both Uniform and Validation (which
has quite poor performance in this experiment), and has competitive performance with the best OnlyX
algorithm. Additionally, Mix&Match outperforms the importance-weighted baselines, and either
outperform or match the performance of the MMD algorithm.
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Figure 4: Test One vs One AUROC for Mixture of US, France, Italy, and Spain data, Predict in Chile

H.6 Colored MNIST

Here, we consider a setup similar to the Colored MNIST experiment from [2]. In particular, we
consider the following classification problem: we wish to train a classifier for MNIST handwritten
digits to detect whether the digit is smaller than 5 or larger than 5. We flip the label of each image
independently with probability 0.25. We then color each image one of two colors, determined by
the image’s label. Finally, we flip the color of each image with probability e ∈ (0, 1), where e is a
parameter that is different for each environment.

Under this setup, a classifier which ignores the color of the image should have accuracy roughly 0.75
(since we flip the label of the image with probability 0.25). Depending on the choice of parameter e,
classifiers can potentially achieve a higher accuracy by exploiting the color correlation from their
own environment. However, by exploiting these spurious correlations, the classifier performance will
suffer in other environments, where the color correlation can be potentially flipped.

In this setting, we cannot hope that, in general, Mix&Match will find an invariant predictor, as, by
construction, any model output by Mix&Match will be a model trained on some mixture distribution
over the training sets. If every training environment provided to Mix&Match exploits the same color
correlation, then so will the model output by Mix&Match.

Hence, in this setup, we will consider training environments that are sufficiently diverse – that is, there
are training environments which are both negatively and positively correlated with color. However, in
each of the following experiments, there are more environments which have positive color correlation
than negative. Hence, in this setting, mixture search guided by validation loss results in increased
performance over simply sampling uniformly over training datasets.

H.6.1 Dataset transformations performed

The MNIST dataset was obtained using the built-in MNIST dataset wrapper. For each image, we
undersample the pixels by 4x for computational convenience. We then construct the label for each
image by thresholding the original 0 − 9 label by checking if the label is smaller than or larger
than 5, and discard the original label. We then flip each label independently with probability 0.25.
We then each assign each image a color (0 or 1) according to the image’s label. Depending on the
environment, we flip this color with probability e for environment e. We emulate coloring the image
by, for each image, doubling the number of features by creating duplicate columns of each original
feature. Images colored 1 have all entries in the duplicated columns set to 0. For images colored 0,
all duplicated columns are kept unchanged.

H.6.2 Model setup

As in [2], we use a neural network with 1 hidden layer with 390 hidden neurons, and ReLU activations.
The loss function used is the binary cross-entropy loss, with a logit applied to the output of the
network.
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Table 5: The proportions of data from each color environment used in training, validation, and testing
for Figure 5

Environment Total Size % Train % Validate % Test % Discarded
0.1 20000 100 0 0 0
0.2 20000 100 0 0 0
0.7 20000 100 0 0 0
0.9 10000 0 10 90 0
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Figure 5: AUROC for predicting Colored MNIST digit < 5 where color in validation and test
environment flipped with probability 0.9

H.6.3 Both validation and test color strongly negatively correlated with label

In this experiment, we have 3 training environments, where the probability of flipping the color is
{0.1, 0.2, 0.7}. In the validation and testing environments, the probability of flipping the color is 0.9.
The data configurations are described in Table 5.

Each Mix&Match algorithm is implemented to have a height-independent SGD budget of 5000
iterations/samples. Each gradient step is computed using a minibatch of 100 samples. The results of
these experiments are reported in Figure 5.

Since Mix&Match does not have access to a training environment with e = 0.9, the output classifier
cannot exploit the color correlation as effectively as the Validation classifier. However, we observe
that Mix&Match is able to recover similar performance to the classifier trained only in environment
e = 0.7, and outperform the other baselines.

H.6.4 Validation color strongly negatively correlated with label, test color uncorrelated

As in the previous experiment, we have the same 3 training environments, where the probability of
flipping the color is {0.1, 0.2, 0.7}. In the validation and testing environments, however, are now
different, with the probability of flipping the color is 0.9 in validation, but 0.5 in test. The data
configurations are described in Table 6.
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Table 6: The proportions of data from each color environment used in training, validation, and testing
for Figure 6

Environment Total Size % Train % Validate % Test % Discarded
0.1 20000 100 0 0 0
0.2 20000 100 0 0 0
0.5 9000 0 0 100 0
0.7 20000 100 0 0 0
0.9 1000 0 100 0 0
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Figure 6: AUROC for predicting Colored MNIST digit < 5 where color in validation is flipped with
probability 0.9, but color in test environment is flipped with probability 0.5

Each Mix&Match algorithm is implemented to have a height-independent SGD budget of 5000
iterations/samples. Each gradient step is computed using a minibatch of 100 samples. The results of
these experiments are reported in Figure 6.

Here, we observe that, by training on several different environments instead of only an environment
with a single strong correlation, Mix&Match is able to perform well in both validation and test
environments, where the probabilities of flipping color are quite different. The other classifiers, by
contrast, exhibit more drastic performance differences.

H.6.5 Both validation and test colors weakly negatively correlated with label

Table 7: The proportions of data from each color environment used in training, validation, and testing
for Figure 1b and Figure 7

Environment Total Size % Train % Validate % Test % Discarded
0.1 20000 100 0 0 0
0.2 20000 100 0 0 0
0.6 10000 0 10 90 0
0.7 20000 100 0 0 0
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Figure 7: AUROC for predicting Colored MNIST digit < 5 where color in validation and test
environment flipped with probability 0.6

Again, we consider the same 3 training environments, where the probability of flipping the color
is {0.1, 0.2, 0.7}. In the validation and testing environments here are the same, with probability of
flipping color 0.6. The data configurations are described in Table 7.

Each Mix&Match algorithm is implemented to have a height-independent SGD budget of 5000
iterations/samples. Each gradient step is computed using a minibatch of 100 samples. The results of
these experiments are reported in Figure 7.

In this setting, the color correlation with the label is weaker than in the prior setup. Thus, we observe
that, by searching over mixture distributions, Mix&Match is able to outperform all other baselines,
and obtain performance competitive with the classifier trained only on the environment with the same
color correlation as the validation/test sets.
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