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1 Additional block diagrams
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Figure 1: The systematic self- and semi-supervised learning frameworks in VIME. Self-supervised
learning trains an encoder to extract informative representations on the unlabeled data. Semi-
supervised learning uses the trained encoder in learning a predictive model on both labeled and
unlabeled data.
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Figure 2: The proposed self- and semi-supervised learning frameworks on exemplary tabular data.
(a) In self-supervised learning, the mask and feature vector estimators try to recover the original
unlabeled feature [1, 7, 4, 3, 5, 1] and the mask vector [0, 0, 1, 0, 1, 0] from its masked and corrupted
variant [1, 7, 6, 3, 2, 1]. (b) In semi-supervised learning, the encoder transforms some masked and
corrupted variants into some augmented representations for training a consistent predictive model.
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Figure 3: The proposed data corruption procedure. Original feature matrix (X) consists of four
samples xi, i = 1..., 4, where each row/column represents a sample/feature, and the features in
each sample are represented by the same color. (1) We randomly shuffle the original data within
each feature to construct randomly shuffled feature matrix (X̄) (i.e. column-wise shuffling). (2) We
randomly sample the mask matrix (M) from a Bernoulli distribution and compute its counterpart
(1 − M). (3) We construct the corrupted feature matrix (X̃) by the following equation: X̃ =
M � X̄ + (1 −M) � X where each row of X̃ is given as x̃i = mi � x̄i + (1 −mi) � xi, and � is
element-wise multiplication.
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2 Detailed data descriptions

In the experiment section of the main manuscript, we evaluate VIME and its benchmarks on 11
datasets (6 genomics, 2 clinical, and 3 public datasets). Here, we provide the basic data statistics for
the 11 used datasets in Table 1.

Table 1: Basic data statistics (the number of samples and dimensions) for 11 tabular datasets (6
genomics, 2 clinical, and 3 public datasets). Dims represents dimensions.

Genomics Clinical Public

Labels No Dims Locations No Dims Datasets No Dims

MRV 3932,45 682 UK 10,086 28 Income 48,842 108
MPV 391,598 691 US 240,486 27 MNIST 70,000 784
MCH 406,517 700 Blog 60,021 280
RET 396,720 604
PCT 390,803 743

MONO 403,994 681

2.1 Genomics data

The UK Biobank genomic datasets consist of around 500,000 individuals’ genomic information along
with 6 different blood cell traits:

• Mean Reticulocyte Volume (MRV),
• Mean Platelet Volume (MPV),
• Mean Cell Hemoglobin (MCH),
• Reticulocyte Fraction of Red Cells (RET),
• Plateletcrit (PCT),
• Monocyte Percentage of White Cells (MONO).

To select the significantly associated variants (SNPs) for each blood cell trait among the entire genetic
variants, we take the lead SNPs (i.e. minimum p-value SNP) from each independent locus that is
discovered at genome-wide significance (i.e. which has at least one SNP with p-values < 8.31e-9).
The selected SNPs and the corresponding blood cell trait together form an independent labeled
dataset. We note that the selected SNPs vary over the blood cell traits since each trait is associated
with different genetic variants. For each genomic dataset, we use 10% of the samples as the testing
data on the downstream task. Among the remaining 90% of samples, we use the given number of
samples (from 1,000 to 100,000) as the labeled dataset and the remaining samples as the unlabeled
data (more than 300,000 samples).

2.2 Public data

The details of three public datasets can be found in the following hyperlinks: (1) UCI Income, (2)
MNIST, (3) UCI Blog. All three datasets are given as with separate training and testing sets. We use
10% of the training set as the labeled data and the remaining data as the unlabeled data. The testing
set is used to evaluate the trained models in the downstream tasks.

2.3 Clinical data

In this paper, we use two clinical datasets from two different countries: (1) United Kingdom (UK),
(2) United States (US). UK dataset comes from Prostate Cancer UK data and the US dataset comes
from SEER data (details can be found in the hyperlink). In the UK prostate cancer dataset, we have
28 features, including age, Prostate-Specific Antigen (PSA), clinical stages, primary and secondary
Gleason scores, grade, and treatment information (radical and hormone therapy). For the US prostate
cancer dataset, we extract all the features that exist in the UK dataset except for the treatment
information (not exist in US prostate cancer dataset). The treatment information becomes the label
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for the predictive model. We use 50% of the UK prostate cancer dataset as the testing data for the
downstream task (two treatment estimations), and the remaining 50% of the UK prostate cancer data
as the labeled data. The entire US prostate cancer dataset is used as the unlabeled data. Table 2
describes the feature distributions of UK and US prostate cancer datasets. We can easily identify the
distribution mismatch between UK and US datasets.

Table 2: Basic data statistics of two clinical datasets: (1) UK prostate cancer data, (2) US prostate
cancer data. For continuous variables, we report the median value with 25% and 75% percentiles.
For categorical variables, we report the number of patients and its ratio.

Variables UK data US data
Age 70 (64 - 76) 66 (60 - 73)
PSA 12 (8 - 21) 7 (5 - 11)

1 5419 (53.7%) 3900 (1.6%)
Clinical 2 3212 (31.8%) 198245 (82.4%)
Stage 3 1378 (13.7%) 18834 (7.8%)

4 77 (0.8%) 19507 (8.1%)

1 41 (0.4%) 1729 (0.7%)
Primary 2 340 (3.4%) 8361 (3.5%)
Gleason 3 6116 (60.6%) 167269 (69.6%)

4 3076 (30.5%) 55604 (23.1%)
5 513 (5.1%) 7523 (3.1%)

1 43 (0.4%) 546 (0.2%)
Secondary 2 321 (3.2%) 9158 (3.8%)
Gleason 3 4562 (45.2%) 129417 (53.8%)

4 4097 (40.6%) 84791 (35.3%)
5 1063 (10.5%) 16574 (6.9%)

≤ 5 474 (4.7%) 12389 (5.2%)
6 2915 (28.9%) 99100 (41.2%)

Total 7 4470 (44.3%) 90397 (37.6%)
Gleason 8 1004 (10.0%) 20142 (8.4%)

Score 9 1107 (11.0%) 16144 (6.7%)
10 116 (12%) 2344 (1.0%)

1 3362 (33.3%) 13808 (5.7%)
2 2983 (29.6%) 99622 (41.4%)

Grade 3 1513 (15.0%) 126505 (52.6%)
4 1005 (10.0%) 551 (0.2%)
5 1223 (12.1%) 0 (0.0%)

Hormone 3176 (31.5%) N/A
Therapy Radical 4914 (48.8%) N/A

Others 1996 (19.8%) N/A
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3 Additional experiments

3.1 Performances on 6 genomics datasets with different numbers of labeled samples (from
1,000 to 100,000)

Figure 4: MSE performances on 6 different blood cell traits across different sizes of the labeled
genomics datasets (lower the better). The range of the x-axis is given as [1,000, 100,000] in the log
scale.

3.2 Performances on MNIST dataset with different numbers of labeled samples (from 100
to 5,000)

Figure 5: Accuracy performances on MNIST dataset across different sizes of the labeled samples
(higher the better). The range of the x-axis is given as [100, 1,000] (left) and [1,000, 5,000] (right) in
the log scale.
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3.3 Qualitative performance analyses of pretext models on UCI Income and MNIST
datasets

Original 
data

Corrupted 
data

Mask 
vector

Recovered 
data

Estimated 
mask vector

Original data Corrupted data Mask vector Recovered data Estimated mask vector

Figure 6: Qualitative pretext model performances in the pretext tasks, feature and mask vector
estimations, on the UCI Income dataset. (first column: original data, second column: corrupted data,
third column: mask vector, fourth column: recovered data, fifth column: estimated mask vector).
Both the feature and mask vectors are recovered well. 108 feature vectors are visualized as 12 × 9
matrices.

Proposed model (VIME) Semi-SL Only (without encoder)

Figure 7: t-SNE analyses on the augmented samples in VIME (left) and Semi-SL Only variant (right)
on MNIST dataset. The t-SNE embeddings in VIME are much more separable than the ones in
Semi-SL Only variant which qualitatively demonstrates the necessity of Self-SL in VIME.
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3.4 Performances of pretext tasks

In this paper, we introduce two pretext tasks in the proposed self-supervised learning framework: (1)
feature vector estimation, and (2) mask vector estimation. In this subsection, we quantitatively and
qualitatively assess the performances of the pretext models (encoder, feature and mask estimators) in
the pretext tasks. We use UCI Income dataset as an example. In the pretext distribution, we introduce
20% masking and corruptions (pm = 0.2) to the original data.

Original 
data

Corrupted 
data

Mask 
vector

Recovered 
data

Estimated 
mask vector

Original data matrix Corrupted data matrix Mask matrix Recovered data matrix Estimated mask matrix

Figure 8: Qualitative analysis on the pretext tasks, feature and mask vector estimations, on UCI
Income dataset. (first column: original data matrix, second column: corrupted and masked data
matrix, third column: mask matrix, fourth column: recovered data matrix, fifth column: estimated
mask matrix). Each row/column represents the sample/feature.

As can be seen in Figure 8, the recovered data matrix (fourth column) is quite similar to the original
data matrix (first column). And the estimated mask matrix (fifth column) is also reasonably similar to
the original mask matrix (third column). Table 3 reconfirms quantitatively that the pretext models
recover the feature and mask vectors successfully in 4 different datasets.

Table 3: Performances of the pretext tasks, feature and mask vector estimation, for 4 tabular datasets.
AUROC (higher the better) / MSE (lower the better) is used as a metric for mask/feature estimation
pretext task.

Pretext tasks Mask estimation Feature estimation
(Metrics) (AUROC) (MSE)

Income .9639 ± .0009 .0093 ± .0008
MNIST .9208 ± .0006 .0082 ± .0006

Blog .9354 ± .0002 .0087 ± .0003

Clinical .9485 ± .0025 .0156 ± .0004

Since the pretext models solve the two challenging pretext tasks, feature and mask vector estimations,
the learned representations in VIME are more informative than the ones in the self-supervised learning
benchmarks. As a comparison, Context Encoder, taking the mask vector as an input, can easily
identify the corrupted features. Also, in the case of Context Encoder, only the reconstruction error for
the corrupted components is used to train the networks, and the resulting representations may fail to
preserve the information in the non-corrupted features. In DAE, the Gaussian noise is easy to identify
when it is added to the categorical features often found in tabular data.

4 The limitations of MixUp

MixUp [1] is a data augmentation method where an augmented sample is generated by taking a
convex combination of two original samples. MixUp may work well if the original data manifold is
convex. However, if the original data manifold is non-convex, it is highly likely that the augmented
data generated by MixUp is out of the support of the original data distribution (see Fig. 9 (a)). The
manifold of the original tabular data is often non-convex (due to the categorical variables); thus,
MixUp is not an effective data augmentation method for tabular data.

Medical Example: MixUp can generate the augmented samples which lie outside the support of the
original tabular data distribution. Let us assume that we have two variables: (1) age (continuous), (2)
prostate cancer (binary). Also, let us assume that the senior citizens above 70 years old are the only
population group that has prostate cancer. As can be seen in Fig. 9 (b), in this case, the augmented
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Figure 9: The failure scenarios of MixUp as a data augmentation method for tabular data: (a) Non-
convex data manifold, (b) Mixed-type variables. Note that the augmented data points (×) are located
out of the original data manifold in both cases.

data points generated by MixUp (using convex combinations) are prostate cancer patients below 70
years old.

5 Implementation details

VIME consists of 4 separate networks: (1) encoder, (2) mask vector estimator, (3) feature vector
estimator, (4) predictive model. We use a multi-layer perceptron (MLP) as the baseline architecture
for all the networks. The number of hidden units, the number of layers and hyperparameters in VIME
and benchmark methods (including standard supervised models such as XGBoost and ElasticNet) are
optimized by cross-validation, and we choose the ones with the best downstream task performance
on validation data (10% of the training data). The number of hidden units is selected among
{d/3, d/2, d, 2d, 3d}, and the number of layers is selected among {1, 2, 3, 4, 5}. We use ReLU as
the activation function at each hidden layer. Also, we select K, the number of augmented samples,
among {2, 3, 5, 10, 15, 20}. The selection of the four hyperparameters (pm, α, β,K) in VIME are
discussed in a separate section (Section 6).

VIME uses 4 different losses to train the networks: (1) mask vector estimation loss lm, (2) reconstruc-
tion loss lr, (3) supervised loss ls, and (4) unsupervised loss lu. For lm and lr, we use binary-cross
entropy and mean squared errors as the loss function respectively, regardless of the problems (whether
it is a classification or regression problem). For ls, we use cross-entropy and mean squared errors for
classification and regression problems, respectively. For lu, we use the mean squared errors on the
output predictions for regression and logits for classification problems.

6 Hyperparameter analyses

VIME has four important hyperparameters: (1) pm - adjusts the proportion of masked and corrupted
features, (2) α - adjusts the trade-off between mask estimation loss and reconstruction loss, (3) β -
adjusts the trade-off between supervised loss and unsupervised (consistency) loss, (4) K - adjusts the
number of augmented samples. In Fig. 10, we vary four hyperparameters (pm, α, β,K) and report
the sensitivity analyses on MNIST dataset. We vary pm ∈ [0.1, 0.9], α ∈ [0.1, 10], β ∈ [0.1, 10], and
K ∈ {2, 3, 5, 10, 15, 20}.
As can be seen in Fig. 10, with a large pm, the combinations of the encoder, mask vector estimator,
and feature vector estimator may fail to solve the pretext tasks. On the other hand, if pm is too small,
the three networks can solve the pretext easily, and the resulting representations may not be that
informative. α adjusts the balance between two pretext tasks. With an inappropriate α, the proposed
self-supervised learning model only focuses on mask vector estimation or feature vector estimation;
thus, the synergy of those two pretext tasks may decrease. β adjusts the balance between self- and
semi-supervised losses. With too large or too small β, the proposed semi-supervised learning model
only focuses on the loss on the labeled or unlabeled data; thus, the synergy of those two datasets may
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Figure 10: Accuracy performances on MNIST dataset across different values of the hyperparameters
(a) pm, (b) α, (c) β, (d) K. The ranges of the x-axis for α and β are given as [0.1, 10] in the log scale.

drop. K adjusts the number of augmented unlabeled samples. With too large K, the computational
complexity would significantly increase. On the other hand, with too small K, the unsupervised loss
(lu) would be noisy. In our experiments, we choose pm ∈ [0.1, 0.9], α ∈ [0.1, 10], β ∈ [0.1, 10], and
K ∈ {2, 3, 5, 10, 15, 20} using cross-validation.

7 Additional discussions

7.1 Why is the proposed model (VIME) better?

In this section, we further analyze why our VIME is superior to the various benchmarks. First,
compared with supervised learning, VIME benefits from its representation learning by training a
model on not only a small labeled dataset but also a large unlabeled dataset.

In self-supervised learning, the learned representations in VIME are more informative than the
benchmarks, since the encoder solves more challenging pretext tasks, feature and mask vector
estimations. As a comparison, Context Encoder [2], taking the mask vector an input, can easily
identify those corrupted features. In Denoising auto-encoder [3], the Gaussian noise is easy to identify
when it is added to tabular data with some categorical features.

In semi-supervised learning, the data augmentation scheme in VIME generates augmented samples
on the manifold of the original tabular data even if the manifold is non-convex. In contrast, the
augmented samples in MixUp [1], generated by taking a convex combination of two original samples,
may lie outside a non-convex data manifold.

7.2 Why the encoder is needed?

The importance of the encoder is demonstrated by comparing the performances of VIME and Semi-
SL only, the variant of VIME without the encoder. Using t-SNE analyses [4] on the UCI Income
dataset, we visually compare the distribution of augmented samples with and without the encoder.
We introduce 20% corruption (pm = 0.2) to the original data via the pretext generator (gm) for data
augmentation.
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Proposed model (VIME) Semi-SL Only (without encoder)

Figure 11: t-SNE analyses on the augmented samples by VIME (left) and Semi-SL Only variant
(right).

As can be seen in Figure 11, the augmented samples from the encoder in VIME are much more
separable and representative of the labels than the ones in the Semi-SL Only variant. This is due
to the way e is trained, the representations, z, generated by e contain discriminative information
about the mask vector and information about how to impute the masked and corrupted features. A
predictive model built on z has a more informative input and hence requires a less complex model to
minimize the given losses in our semi-supervised learning framework.

8 Additional ablation study

To further highlight the utility of the novel mask prediction task, we demonstrate the additional abla-
tion study. As can be seen in Table 4, without mask vector estimation, the performance improvements
by self-supervised learning degraded 21.4%, 60.4%, 14.8% for Income, MNIST, and Blog datasets,
respectively.

Table 4: Additional ablation study on UCI Income, MNIST and UCI Blog datasets. (Mean ± Std are
computed over 10 runs)

Models Income MNIST Blog

Supervised only .8520±.0023 .9387±.0014 .7972±.0058

Self-SL only .8599±.0026 .9406±.0019 .8147±.0037
Self-SL only w/o Mask estimates .8582±.0031 .9394±.0018 .8121±.0040

Self-SL only w/o Feature estimates .8433±.0033 .9301±.0022 .7919±.0067

Semi-SL only .8771±.0031 .9548±.0023 .8361±.0041

VIME with Gaussian noise augmentation .8627±.0035 .9481±.0041 .8253±.0044

VIME .8804±.0030 .9577±.0022 .8389±.0044

Directly estimating the values of the corrupted samples would be a reasonable but hard pretext
task (imputation problem). On the other hand, finding where the missing data is (binary prediction
problem) would be an easier pretext task that can help learning better representations jointly with the
harder (but relevant) pretext task (imputation). With the collaborations of easy and hard pretext tasks,
the self-supervised learning framework can learn better representations.

Also, We perform an additional experiment in which we add Gaussian noise to the original data
and treat this as the augmented samples (VIME with Gaussian noise augmentation). As can be
seen in Table 4, performances with Gaussian noise augmentations are consistently worse than the
performance of the original VIME.
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9 Additional baselines

In this section, we includes four additional self-supervised learning baselines (Split-brain [5], SimCLR
[6], TabNet [7] and TaBERT [8]) that can be extended to tabular domain. As can be seen in Table
5, the performance of split-brain on MNIST data is 0.9411 which is worse than DAE (0.9431) and
Context Encoder (0.9455). Also, the performance of SimCLR on Blog data is 0.8044 which is worse
than the performance of the VIME variant Self-SL Only (0.8147).

We acknowledge that self/semi-supervised learning is well-studied in the image and language domains.
However, as can be seen in Table 5, the state-of-the-art self/semi-supervised learning models for
image and language domains underperform VIME in the tabular setting. This demonstrates that new
self/semi-supervised learning models are necessary for tabular domain.

Table 5: Prediction accuracy of the methods on UCI Income, MNIST and UCI Blog datasets with
additional baselines. (Mean ± Std are computed over 10 runs)

Type Models Income MNIST Blog

Self-supervised models

DAE .8578±.0028 .9431±.0032 .8001±.0039
Context Encoder .8611±.0027 .9455±.0048 .8033±.0051
Split-Brain [5] .8591±.0032 .9411±.0039 .8037±.0048
SimCLR [6] .8637±.0025 .9437±.0041 .8044±.0043
TabNet [7] .8637±.0033 .9487±.0039 .8114±.0044

TaBERT [8] .8653±.0037 .9463±.0051 .8127±.0041

Variants of VIME Self-SL only .8599±.0026 .9406±.0019 .8147±.0037

VIME .8804±.0030 .9577±.0022 .8389±.0044
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