
We thank all referees for their interest in our work and their comments that will help to clarify our paper.1

R1 - “There is no uni�ed framework for the analysis of weak and strong thresholds.” We respectfully2

disagree: αFR,IT is in general not well-de�ned for an arbitrary channel, which motivates our restriction to the3

noiseless case. Our analysis is valid for any right-orthogonally invariant data matrix Φ with well-de�ned asymptotic4

density, and a Gaussian prior (which is limiting, although we believe it can be relaxed and we will work towards this).5

Concerning αWR,Algo, eq. (11) holds in full generality, i.e. for any data matrix Φ as above, and any phase-retrieval6

probabilistic channel. Eqs.(12),(13) are examples derived from this generic formula. We will clarify on the generality of7

our results in the revised version. "The rigorous analysis relies on some Gaussianity, either in the prior or in8

the data matrix". The referee classi�es this as a major weakness: while we agree this is a restrictive assumption, it is9

a fundamental limitation of the interpolation method used for the proof, which will be clari�ed. We wish to indicate10

the reviews of R2 and R4, that we thank for underlining the generality of our framework and of our rigorous analysis.11

“One weakness is that G-VAMP requires knowledge of the distribution of the true signal”. We would like12

to emphasize that the algorithm is also well-de�ned beyond this scope, e.g. it can be used to infer natural images with13

Fourier matrices. Using a Gaussian prior to infer is actually the minimal assumption on the underlying signal, as it14

amounts to simply �x its norm: we see this as a strength of our theory, which can predict the G-VAMP performance15

for any signal, structured or not. We discuss this further in the response to R4, and we will clarify this point.16

We �nally thank the referee for pointing out typos, and providing additional references that we will add to the paper.17

R2 - We thank the referee for her/his appreciation of our work.18

R3 - “The paper is not very clearly stating which results are rigorous + Confusion on the product of19

Gaussians”. Our analysis in Sections 3-4 relies on Conjecture 2.1, and is thus rigorous whenever the conditions for20

Theorem 2.2 hold. In this theorem, the matrix B can be random or deterministic, as long as it satis�es the assumptions21

of the theorem, which is the case for B=W2 i.i.d. Gaussian. We acknowledge this should be clari�ed in the text, and22

we hope this will answer the question of the referee. ‘The conjectured optimality of G-VAMP”. Indeed we refer23

to the G-VAMP threshold as “algorithmic”, even if a proof for the optimality of G-VAMP is not given. We adopted24

this notation for consistency with the previous literature on this topic, in which this conjectured optimality is often25

assumed. We will add a note on this choice on the paper. “Do the authors prove the existence of a gap ?”. We26

emphasize that we provide scalar equations (rigorous when in the setting of Theorem 2.2) that can be used to �nd27

αFR,Algo. Apart from the inevitable numerical solution, our analysis is thus well-controlled. This discussion will be28

added in the paper, and we thank the referee for helping clarify this point. “Can we analyze αWR,IT ?”. Extending29

our analysis to αWR,IT is an interesting open direction, which requires understanding the appearance of a global30

maximum in the replica-symmetric potential, but not necessarily continuously from the q=0 solution as in the case31

of αWR,Algo. At the moment we are not able to carry such an analysis, and we will discuss this more extensively in32

the revised paper. “On the all-or-nothing transition”. We have observed these transitions for orthogonal/unitary33

matrices : as stated in the paper, we expect to see this phenomenon for other real matrices. We will discuss this34

further, as well as the possible dependency on the prior, and add the references provided.35

We �nally thank the referee for the list of typos and comments, all of which will be addressed in the revised version.36

R4 - “I don’t expect these results to extend to natural images”. We thank the referee for indicating towards37

such an analysis, which would be a valuable add to our work. We conducted a simple experiment on a natural38

image, and the result is given in Fig. 1. Although we are far from a Bayes-optimal setting, the achieved MSE is very39

Original image = 2.3, MSE = 0.0 = 2.2, MSE = 0.639 = 2.1, MSE = 0.81 = 2.0, MSE = 0.999

Figure 1: Performance of the G-VAMP algorithm for noiseless phase retrieval. We wish
to recover a 77x102 image (on the left), and we use a complex Gaussian prior to infer
the signal. The data matrix Φ is a randomly subsampled DFT matrix.

close to values of Fig. 2 of40

the paper, for all values of41

α. In particular, we achieve42

perfect recovery for α ≥43

2.3, just above αFR,Algo'44

2.27 which was derived for45

random unitary matrices,46

i.i.d. data and in the Bayes-47

optimal setting. As all nor-48

malized signals are equival-49

ent under a Gaussian prior (it is a “maximum-entropy” prior), we indeed expect a structured signal to perform exactly50

as a random one as long as one also infers the signal using a Gaussian prior. This observation is coherent with Fig. 151

amd strengthens the relevance of our theoretical results for real data, and we will discuss this point further in the �nal52

version. We point out previous works that investigated the performance of AMP algorithms in phase retrieval [1, 2].53
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