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Abstract

We consider the phase retrieval problem of reconstructing a n-dimensional
real or complex signal X? from m (possibly noisy) observations Yµ =
|
∑n
i=1 ΦµiX

?
i /
√
n|, for a large class of correlated real and complex random

sensing matrices Φ, in a high-dimensional setting where m,n → ∞ while
α = m/n = Θ(1). First, we derive sharp asymptotics for the lowest possi-
ble estimation error achievable statistically and we unveil the existence of sharp
phase transitions for the weak- and full-recovery thresholds as a function of the
singular values of the matrix Φ. This is achieved by providing a rigorous proof of
a result first obtained by the replica method from statistical mechanics. In particu-
lar, the information-theoretic transition to perfect recovery for full-rank matrices
appears at α = 1 (real case) and α = 2 (complex case). Secondly, we analyze
the performance of the best-known polynomial time algorithm for this problem
— approximate message-passing— establishing the existence of a statistical-to-
algorithmic gap depending, again, on the spectral properties of Φ. Our work
provides an extensive classification of the statistical and algorithmic thresholds in
high-dimensional phase retrieval for a broad class of random matrices.

1 Introduction

Consider the reconstruction problem of a real or complex signal from m observations of its modulus

Yµ =
∣∣∣ 1√
n

n∑
i=1

ΦµiX
?
i

∣∣∣, µ = 1, · · · ,m, (1)

where the m× n sensing matrix Φ ∈ Km×n is known, with X? ∈ Kn (K∈{R,C}). More generally,
measurements can be a noisy function of the modulus, for example by an additive Gaussian noise.
This inverse problem, known in the literature under the umbrella of phase retrieval, is relevant to a
series of signal processing [1–3] and statistical estimation [4–7] tasks. It appears in setups in optics
and crystallography where detectors can often only measure information about the amplitude of
signals, thus losing the information about its phase. It is also a challenging example of a non-convex
problem and non-convex optimization with a complex loss landscape [8–10]. Here we are interested
in understanding the fundamental limitations of phase retrieval. We focus on the following questions:

i) What is the lowest possible error one can get in estimating the signal X??
ii) What is the minimal number of measurements needed to produce an estimator positively

correlated with the signal (that is with non-trivial error in the n,m→∞ limit)?
iii) How to efficiently reconstruct X∗ in practice with a polynomial time algorithm?
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We provide a sharp answer to these questions for a large set of random sensing matrices Φ that hold
with high probability in the high-dimensional limit where m,n→∞ keeping the rate α=m/n fixed.

Main contributions and related work — There has been an extensive amount of work on phase
retrieval with random matrices. The performance of the Bayes-optimal estimator has been heuristically
derived for real orthogonally invariant matrices Φ and real signals drawn from generic but separable
distributions [11, 12]. Results for the i.i.d. (real) Gaussian matrix case were rigorously proven in
[13], where the algorithmic gap is also studied. This analysis was later non-rigorously extended to
the case of non-separable prior distributions [14]. The weak-recovery transition discussed here was
studied in detail in [15, 16] for i.i.d. Gaussian matrices, while the case of unitary-column matrices
was discussed in [17–19]. Our analysis extends these results by considering arbitrary matrices with
orthogonal or unitary invariance properties, encapsulating all the cases described above. Message
passing algorithms, in particular the generalized vector-approximate message-passing (G-VAMP),
have been studied in [20, 21]. In the present setting these algorithms are conjectured to be optimal
among all polynomial-time ones. To test the performance of the G-VAMP algorithm, we used the
TrAMP library [22] that provides an open-source implementation. In the present work we derive
sharp asymptotics for the lowest possible estimation error achievable statistically and algorithmically,
locate the phase transitions for weak- and full-recovery as a function of the singular values of the
matrix Φ and also discuss the existence of a statistical-to-algorithmic gap. Our main contributions
are:

• We extend the results of [12] to the complex case, by using the heuristic replica method from
statistical physics to derive a unified single-letter formula for the performance of the Bayes-optimal
estimator under a separable signal distribution P0, and for Φ taken from a right-orthogonally
(unitarily in the complex case) invariant ensemble with arbitrary spectrum.
• We rigorously prove the aforementioned formula in two particular cases. First, when the distribution
P0 is Gaussian (real or complex) and Φ = WB is the product of a Gaussian matrix W with an
arbitrary matrix B. Second, for a Gaussian matrix Φ (real or complex) with any separable
distribution P0. These are non-trivial extensions of the the proofs of [13, 23–25].

• In the n,m→∞ limit, with α = m/n = Θ(1), we identify (as a function of the singular values
distribution of Φ) the algorithmic weak-recovery threshold αWR,Algo above which better-than-
random inference reconstruction of X? is possible in polynomial time.

• We establish the information-theoretic full recovery threshold αFR,IT above which full recon-
struction of X? (meaning that the recovery is perfect up to the possible rank deficiency of Φ) is
statistically possible, as a function of the singular values distribution of Φ.

• We provide a measure of the intrinsic algorithmic hardness of phase retrieval by studying
the performance of the G-VAMP algorithm, which can be rigorously tracked for orthogo-
nally (unitarily) invariant Φ [20, 21]. We use this rigorous analysis to numerically establish
the existence or absence of a statistical-to-algorithmic gap for reconstruction in the follow-
ing cases Φ ∈ {real/complex Gaussian, orthogonal/unitary, product of complex Gaussians}, for
which such an analysis was, to the best of our knowledge, lacking.

Our findings for the statistical and algorithmic thresholds are summarized in Table 1, for different
real and complex ensembles of Φ. Entries in bold emphasize new results obtained in this manuscript,
filling a gap between the different previous works in the phase retrieval literature.

Throughout the manuscript we adopt the following notation. Let β ∈ {1, 2}. We denote K = R if
β = 1 and K = C if β = 2. Uβ(n) denotes the orthogonal (respectively unitary) group. For m ≥ n,
a matrix A ∈ Km×n is said to be column-orthogonal (unitary) if A†A = 1n. For x, y ∈ K, we define
a ‘dot product’ as x · y ≡ xy if K = R and x · y ≡ Re[xy] if K = C. In particular x · x = |x|2.
The Gaussian measure Nβ(0, 1) is defined as Dβz ≡ (2π/β)−β/2 exp(−β|z|2/2) dz and DKL is
the Kullback–Leibler divergence. ν will denote the asymptotic spectral density of Φ†Φ/n and we
designate 〈f(λ)〉ν ≡

∫
ν(dλ)f(λ) the linear statistics of ν.

Some consequences of our results — We list here some interesting (and often surprising) con-
sequences of our analysis. Since our rigorous results concern a subclass of orthogonally invariant
matrices, proving and/or interpreting these statements more generally is an interesting future direction.

• One sees from eq. (11) that maximizing αWR,Algo implies maximizing 〈λ〉2ν/〈λ2〉ν . The highest
ratio is reached when ν is a delta distribution: for any symmetric channel and prior (see (10))
the ensemble that maximizes αWR,Algo is thus the one of uniformly-sampled column-orthogonal
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Matrix ensemble and value of β αWR,Algo αFR,IT αFR,Algo

Real Gaussian Φ (β = 1) 0.5 [15, 16] 1 [26] ' 1.12 [13]
Complex Gaussian Φ (β = 2) 1 [15, 16] 2 ' 2.027

Real column-orthogonal Φ (β = 1) 1.5 1 [26] ' 1.584
Complex column-unitary Φ (β = 2) 2 [17, 18] 2 ' 2.265
Φ = W1W2 (β = 1, aspect ratio γ) γ/(2(1 + γ)) [14] min(1, γ) [26] Thm. 2.2 [14]
Φ = W1W2 (β = 2, aspect ratio γ) γ/(1 + γ) min(2,2γ) Thm. 2.2

Φ, β ∈ {1, 2}, rk[Φ†Φ]/n = r Eq. (13) βr Conj. 2.1
Gauss. Φ, β ∈ {1, 2}, symm. P0, Pout Eq. (12) [15, 16] Thm. 2.2 Thm. 2.2

Φ, β ∈ {1, 2}, symm. P0, Pout Eq. (11) Conj. 2.1 Conj. 2.1

Table 1: Values of the algorithmic weak recovery, information-theoretic full recovery, and algo-
rithmic full recovery thresholds for several random matrix ensembles. When the ensemble of Φ is
not specified, we consider any right-orthogonally (unitarily) invariant ensemble with well-defined
asymptotic spectral density. The last two lines are given for any symmetric (cf eq. (10)) prior P0 and
channel Pout, while all other results are for Gaussian P0 and a noiseless phase retrieval channel. We
reference results of this manuscript when the value is not given by a closed-form expression, but can
be computed from the formulas herein. In some particular ensembles, we have numerically analyzed
these equations in Section 4. The new results obtained in our work are written in bold style, and we
give references to papers in which the previously known thresholds were computed.

(β=1) or column-unitary (β=2) matrices. Conversely, αWR,Algo can be made arbitrarily small
using a product of many Gaussian matrices, both in the real and complex cases.

• In complex noiseless phase retrieval the information-theoretic weak-recovery threshold for column-
unitary matrices is located at αWR,IT = 2 [18]. Our results (Table 1) imply that this corresponds to
an “all-or-nothing” transition located precisely at α=2. Moreover, the derivations of αWR,Algo and
αFR,IT in Sections 3,4 show that for any complex matrix αWR,Algo = 2〈λ〉2ν/〈λ2〉ν ≤αFR,IT =
2(1− ν({0})), with the equality only being attained for ν a delta distribution. Uniformly sampled
column-unitary matrices are thus the only right-unitarily invariant complex matrices which present
an "all-or-nothing" transition in complex noiseless phase retrieval (for a Gaussian prior). To the
best of our knowledge, this is a first establishment of such a transition in a “dense” problem (as
opposed to a sparse setting [27, 28]). Investigating further the existence of these transitions, e.g. as
a function of the prior, is left for future work.

• Consider again noiseless phase retrieval with Gaussian prior. For real orthogonal matrices, one has
αWR,Algo−αFR,IT =0.5>0. Since αWR,Algo is a smooth function of the eigenvalue density ν, we
expect that the inequality holds for many real random matrix ensembles. However, in the complex
case, by our previous point, αWR,Algo≤αFR,IT. The gap thus only occurs in the real setting.

2 Analysis of information-theoretically optimal estimation

The phase reconstruction task introduced in eq. (1) belongs to the large class of generalized linear
estimation problems. In this section, we provide a Bayesian analysis of the statistically optimal
estimator X̂opt ∈ Kn for this general class of problems. In the sections that follow, we draw the
consequences for the case of the phase reconstruction problem we are interested in in this manuscript.
In the generalized linear model, the goal is to reconstruct a signal X? ∈ Kn, with components drawn
i.i.d. from a fixed prior distribution P0 over K, from the observations Y ∈ Rm generated as:

Yµ = ϕout

( 1√
n

n∑
i=1

ΦµiX
?
i , Aµ

)
, 1 ≤ µ ≤ m, (2)

where (Aµ)mµ=1 ∈ Km are i.i.d. random variables with (known) distribution PA accounting for
a possible noise, ϕout is the observation channel and Φ is a random matrix with elements in
K. We let Pout(·|z) denote the probability density function associated to the stochastic function
ϕout(z,A). Further, we assume that P0 has a second moment given by ρ ≡ E[|x|2] > 0. Note
that the phase reconstruction problem introduced in eq. (1) corresponds to a likelihood Pout(y|z)
that only depends on z through |z|2. For instance, for Gaussian additive noise it is explicitly
given by Pout(y|z) = N1(y; |z|2,∆), while the noiseless case corresponds to the limit ∆ ↓ 0 :
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Pout(y|z) = δ(y − |z|2). In this work, we consider a large class of random matrices Φ distributed as
Φ

d
= USV†, with arbitrary U ∈ Uβ(m), V drawn uniformly from Uβ(n), and S the pseudo-diagonal

of singular values of Φ. We assume that the spectral measure of SᵀS/n almost surely converges
(in the weak sense) 1 to a probability measure ν with compact support supp(ν) ⊂ R+. Crucially,
we assume that the statistician knows how the observations were generated - i.e. she has access
to P0, Pout and the distribution of Φ, therefore reducing the problem to the reconstruction of the
specific realization of X?. In this setting, commonly known as Bayes-optimal, the statistically optimal
estimator X̂ minimizing the mean-squared error mse(X̂) ≡ ||X̂ − X?||22 is simply given by the
posterior mean X̂opt = E[x|Y], where the posterior distribution is explicitly given by:

P (dx|Y) ≡ 1

Zn(Y)

n∏
i=1

P0(dxi)

m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

n∑
i=1

Φµixi

)
. (3)

Exact sampling from the posterior is intractable for large values of n,m ∈ N?. However, certain
information theoretical quantities are accessible analytically precisely in this limit. Indeed, our first set
of results concerns a rigorous evaluation of the mutual information I(X?; Y) ≡ DKL(PX,Y |P0⊗PY )
between the signal X? and the observations Y for the generalized linear model in the high-dimensional
limit of n,m → ∞ with m/n → α > 0 fixed. This quantity fully characterizes the asymptotic
performance of the Bayes-optimal estimator X̂opt in high dimensions via the I-MMSE theorem [29].

Asymptotic mutual information and minimum mean-squared error— The mutual information
between the observations and the hidden variables can be decomposed into two terms:

I(X?; Y|Φ) = H(Y|Φ)−H(Y|X?,Φ). (4)

The entropy H(Y|X?,Φ) = E lnP (Y|X?,Φ) = −mE lnPout(Y1|(ΦX?)1/
√
n) is easily computed

in the high-dimensional limit for a given channel Pout:

lim
n→∞

− 1

n
H(Y|X?,Φ) = α

∫
R

dy

∫
K
Dβξ Pout(y|

√
Qzξ) lnPout(y|

√
Qzξ), (5)

with Qz ≡ ρ〈λ〉ν/α. Indeed, as n → ∞, the law of (ΦX?)1/
√
n asymptotically approaches

Nβ(0, Qz) by the central limit theorem. The challenge in computing the mutual information therefore
reduces to the evaluation of the free entropy H(Y|Φ) = E lnZn(Y), related to the log-normalization
of the posterior. Our first result is a single-letter formula for the asymptotic free entropy density of
right-orthogonally (unitarily) invariant sensing matrices:
Conjecture 2.1. Under the assumptions above, the asymptotic free entropy density for the posterior
distribution defined in eq. (3) with right-orthogonally (unitarily) invariant sensing matrix Φ is:

lim
n→∞

1

n
EY,Φ lnZn(Y) = sup

qx∈[0,ρ]
sup

qz∈[0,Qz ]
[I0(qx) + αIout(qz) + Iint(qx, qz)], (6)

where I0(qx) ≡ inf
q̂x≥0

[
− βq̂xqx

2
+ EξZ0(

√
q̂xξ, q̂x) logZ0(

√
q̂xξ, q̂x)

]
,

Iout(qz) ≡ inf
q̂z≥0

[
− βq̂zqz

2
− β

2
ln(Q̂z + q̂z) +

βq̂z

2Q̂z

+Eξ
∫
R

dy Zout

(
y;

√
q̂z

Q̂z(Q̂z + q̂z)
ξ,

1

Q̂z + q̂z

)
logZout

(
y;

√
q̂z

Q̂z(Q̂z + q̂z)
ξ,

1

Q̂z + q̂z

)]
,

Iint(qx, qz) ≡ inf
γx,γz≥0

[β
2

(ρ− qx)γx +
αβ

2
(Qz − qz)γz −

β

2
〈ln(ρ−1 + γx + λγz)〉ν

]
− β

2
ln(ρ− qx)− βqx

2ρ
− αβ

2
ln(Qz − qz)−

αβqz
2Qz

.

1We actually assume the following, which is (slightly) stronger: the convergence should happen at a rate at
least n1+ε for an ε > 0. This condition was not precised in the replica calculation of [12] for real matrices. In
practice, in classical orthogonally (unitarily)-invariant random matrix ensembles, we often have ε = 1.
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We defined Qz ≡ ρ〈λ〉ν/α and Q̂z ≡ 1/Qz , ξ ∼ Nβ(0, 1) and the following auxiliary functions:

Z0(b, a) ≡ Ez
[
P0(z)e−

β
2 a|z|

2+βb·z], Zout(y;ω, v) ≡ Ez
[
Pout(y

∣∣∣√vz + ω)
]
, (7)

with z ∼ Nβ(0, 1). Moreover, the asymptotic minimum mean squared error, achieved by the Bayes-
optimal estimator, is equal to ρ− q?x, with q?x the solution of the above extremization problem;

lim
n→∞

MMSE = lim
n→∞

1

n
E‖X? − X̂opt‖2 = ρ− q?x. (8)

This formula, derived in Appendix A using the heuristic (hence the conjecture) replica method from
statistical physics [30], holds for any separable signal distribution P0 and for any choice of likelihood
Pout. It extends the formula from [12] to complex signals X? and sensing matrices Φ. In particular,
it also holds in the case of complex matrices Φ and real signal X?, by adding a constraint on the
imaginary part of X? in P0. It also encompasses the case of sparse signals, which is of wide interest
in the compressive sensing literature [31–35]. Proving Conjecture 2.1 is a challenging open problem.
We provide a significant step by proving Conjecture 2.1 for a broad class of likelihoods Pout and in
two settings: a restricted signal distribution P0 and a broad class of real and complex likelihoods and
sensing matrices Φ, or a broad class of prior distribution P0 and (real or complex) Gaussian Φ.
Theorem 2.2. Let us denote

(H0) ϕout : K2 → R is C2, and (z, a) 7→ (ϕout(z, a), ∂zϕout(z, a), ∂2zϕout(z, a)) is bounded.
(h1) P0 is a centered Gaussian distribution, without loss of generality P0 = Nβ(0, 1).

(h2) Φ is distributed as Φ
d
= WB/√p, with W ∈ Km×p an i.i.d. standard Gaussian matrix, and

B ∈ Kp×n an arbitrary matrix (random or deterministic), independent of W. Moreover, as
n→∞, p/n→ δ > 0.

(h3) The empirical spectral distribution of B†B/n weakly converges (a.s.) to a compactly-supported
measure νB 6= δ0. Moreover, there is λmax ≥ 0 such that a.s. λmax(B†B/n)→n→∞ λmax.

(h′1) P0 has a finite second moment, and Φµi
i.i.d∼ Nβ(0, 1).

Assume that all (H0),(h1),(h2),(h3) or that all (H0),(h′1) stand. Then Conjecture 2.1 holds with ν
the asymptotic eigenvalue distribution of Φ†Φ/n1.

The proof is based on the adaptive interpolation method2 [25], and is provided in Appendix D. In
particular, Theorem 2.2 allows to rigorously compute the asymptotic minimum mean-squared error
(MMSE) achieved by the Bayes-optimal estimator. Theorem 2.2 extends the rigorous results of
[13] to a larger class of sensing matrices and to the complex case, including both real orthogonally
invariant matrices and the products of i.i.d. Gaussian matrices, heuristically studied respectively in
[12] and [14].
Remark 2.3. Following the arguments of [13, 24], hypothesis (H0) can be relaxed to continuity a.e.
and the existence of moments of ϕout, so that our theorem also covers noiseless phase retrieval.

This single-letter formula reduces the high-dimensional computation of the MMSE to a simple
low-dimensional extremization problem. The MMSE as a function of the sample complexity α can be
readily computed from eqs. (6) and (8) for a given signal distribution P0 (determining I0), likelihood
Pout (determining Iout) and spectral density ν (determining Iint).

Statistical vs algorithmic performance — Conjecture 2.1 and Theorem 2.2 show that the global
maximum of the potential in eq. (6) describes the performance of the statistically optimal estimator
X̂opt for generalized linear estimation. Interestingly, eq. (6) also contains rich information about the
algorithmic aspects of this problem. Indeed, it has been shown that the performance of the G-VAMP
algorithm, the best-known polynomial time algorithm for this problem, corresponds precisely to the
MSE achieved by running gradient descent on the potential in eq. (6) from the trivial initial condition
qx = qz = 0 [20, 21]. In the sections that follow, we exploit this result to derive the thresholds

1The rigorous statement on the limit of the MMSE requires adding a side information channel with arbitrarily
small signal, cf Appendix D.5.

2In Theorem 2.2, we rely on some Gaussianity, either in the prior or in the data matrix. This is a not specific
to our setting, but rather a fundamental limitation of the adaptive interpolation method used for the proof.
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characterizing the statistical and algorithmic limitations of signal estimation. We adopt the subscript
IT for the thresholds related to the Bayes-optimal estimator and Algo for the G-VAMP ones1.

3 Weak-recovery transition

A natural question to ask is: what is the minimum sample complexity αWR,Algo ≥ 0 such that for
all α ≥ αWR,Algo we can algorithmically reconstruct X? better than a trivial random draw from the
known signal distribution P0? Also known as the algorithmic weak-recovery threshold, αWR,Algo

can also be characterized in terms of the MSE achieved by G-VAMP:

αWR,Algo ≡ argmin
α≥0

{MSEGVAMP(α) < ρ}.

In this section, we establish sufficient conditions for the existence of the algorithmic weak-recovery
threshold αWR,Algo ≥ 0, and we derive an analytical expression for this threshold.

G-VAMP State Evolution — Recalling that qx ∈ [0, ρ], from eq. (8) it is easy to see that the weak-
recovery threshold is the smallest sample complexity α such that the potential of eq. (6) has no longer
a local maximum in qx = 0. In opposition, the region for which the MSE is maximal (MSE = ρ)
corresponds to the existence of a trivial maximum in eq. (6) with qx = qz = 0. The extrema of
the potential in eq. (6) can be characterized by the solutions of the following State Evolution (SE)
equations, obtained by looking at the zero-gradient points:

qx = EξZ0|f0|2, qz = 1
Q̂z+q̂z

[
q̂z
Q̂z

+ Eξ
∫

dy Zout|fout|2
]
, (9a)

q̂x =
qx

ρ(ρ− qx)
− γx, q̂z = qz

Qz(Qz−qz) − γz , (9b)

ρ− qx =
〈 1

ρ−1 + γx + λγz

〉
ν
, α(Qz − qz) =

〈
λ

ρ−1+γx+λγz

〉
ν
. (9c)

where f0(b, a) = ∂b logZ0(b, a) and fout(y;ω, v) = ∂ω logZout(y;ω, v) are evaluated at (b, a) =

(
√
q̂xξ, q̂x) and (ω, v) =

(√
q̂z

Q̂z(Q̂z+q̂z)
ξ, 1
Q̂z+q̂z

)
respectively. Note in particular that eq. (9c) has to

be solved over (γx, γz) in order to be iterated. Since the algorithmic performance is characterized by
precisely maximizing eq. (6) starting from the trivial point, the algorithmic weak-recovery threshold
αWR,Algo can be analytically computed from a local stability analysis of this point. Note that in
general αWR,IT 6= αWR,Algo since qx = qz = 0 can be just a local maximum of eq. (6).

Existence and location of the weak-recovery threshold — It is easy to verify that the state
evolution equations (9) admit a trivial fixed point in which qx = qz = q̂x = q̂z = γx = γz = 0 when
P0 and Pout are symmetric, that is when for any y ∈ R and x1, x2, z1, z2 ∈ K:

|x1| = |x2| ⇒ P0(x1) = P0(x2) and |z1| = |z2| ⇒ Pout(y|z1) = Pout(y|z2). (10)

In particular, this symmetry condition holds for the phase retrieval likelihood and for Gaussian signals
considered here. When it exists, the trivial extremizer qx = qz = 0 can be a (local) maximum or a
minimum, corresponding to whether the trivial fixed point of the state evolution equations is stable
or unstable. The weak-recovery threshold can therefore be determined by looking at the Jacobian
around the trivial fixed point. The details of the stability analysis are given in Appendix B. The result
is that a linear instability of the trivial fixed point appears at α = αWR,Algo satisfying the equation:

αWR,Algo =
〈λ〉2ν
〈λ2〉ν

(
1 +

[ ∫
R

dy

∣∣∣ ∫KDβz (|z|2 − 1) Pout

(
y
∣∣√ ρ〈λ〉ν

αWR,Algo
z
)∣∣∣2∫

KDβz Pout

(
y
∣∣√ ρ〈λ〉ν

αWR,Algo
z
) ]−1)

. (11)

Note that the integrand and the averages 〈·〉ν depend on αWR,Algo, so that this is an implicit equation
on αWR,Algo. Eq. (11) is the most generic formula for the weak recovery threshold for any data
matrix Φ and phase retrieval channel Pout. As emphasized in the following examples, it generalizes
in particular several previously known formulas for different channels and random matrix ensembles.

1Even though we do not provide a proof for the optimality of-GVAMP, we chose such notation in accordance
with the previous literature on this topic, in which this optimality is often assumed.
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Figure 1: Comparison of MSE achieved by the Bayes-optimal estimator and the G-VAMP algorithm,
for an i.i.d. real Gaussian (left) and a column-orthogonal (right) sensing matrix Φ (i.e. ΦᵀΦ/n = 1n),
with a real Gaussian prior. Dots correspond to finite size simulations of G-VAMP (the mean and std
are taken over 5 instances, with n = 8000 in the Gaussian case andm = 8192 in the orthogonal case),
while full lines are obtained from the state evolution equations. The vertical grey dashed lines denote
the algorithmic weak recovery threshold αWR,Algo. Note the presence of a statistical-to-algorithmic
gap in both ensembles, and that for column-orthogonal matrices αWR,Algo > αFR,IT.

Gaussian sensing matrix — For Gaussian i.i.d. matrices, 〈λ〉ν = α and 〈λ2〉ν = α2 + α, so that

αWR,Algo =
[ ∫

R
dy
|
∫
KDβz (|z|2 − 1) Pout(y|

√
ρz)|2∫

KDβz Pout(y|
√
ρz)

]−1
, (12)

a result which was previously derived in [15] in the real and complex cases.

Noiseless phase retrieval — In the noiseless phase retrieval problem, one has Pout(y|z) =
δ(y − |z|2). In particular, one can easily check that this implies:

αWR,Algo =
(

1 +
β

2

) 〈λ〉2ν
〈λ2〉ν

. (13)

This last formula allows to retrieve and generalize many results previously derived in the literature.
For instance, for a Gaussian i.i.d. matrix, we find αWR,Algo = β/2 , which was derived in [15, 16].
For an orthogonal or unitary column matrix, αWR,Algo = 1 + (β/2), which was already known for
β = 2 [15] (but not for β = 1). For the product of p i.i.d. Gaussian matrices with sizes k0, · · · , kp,
with k0 = m and kp = n, and γl ≡ n/kl for 0 ≤ l < p, we have αWR,Algo = (β/2)[1+

∑p
l=1 γl]

−1,
which generalizes the previously-known real case [14]. We emphasize that eq. (13) encapsulates all
these results and goes beyond by considering an arbitrary spectrum for the sensing matrix, while
eq. (11) also considers arbitrary channels Pout.

The weak-recovery IT transition — So far, we only considered the algorithmic weak-recovery
threshold. Extending our analysis to the information-theoretic treshold αWR,IT is an interesting open
direction, which requires understanding the appearance of a global maximum in the replica-symmetric
potential of eq. (6), but not necessarily continuously from the qx= qz=0 solution. At the moment,
we are not able to carry such an analysis, which is left for future work.

4 Statistical and algorithmic analysis of noiseless phase retrieval

While our results hold for any generalized estimation problem of the type introduced in Section 2
we now focus especially on noiseless phase retrieval. We fix Pout(y|z) = δ(y − |z|2) and take
P0 =Nβ(0, 1). We can indeed consider ρ=1, as the scaling is irrelevant under a noiseless channel.

Full-recovery threshold for Gaussian signals — We now turn our attention to the information-
theoretical full-recovery threshold αFR,IT. For high number of samples α � 1, we expect the
MMSE to plateau at a minimum achievable reconstruction error MMSE0 ≡ infα MMSE(α), which
is a function of the statistics of Φ. In this case, we define the information-theoretical full-recovery
threshold αFR,IT as the smallest sample complexity such that MMSE0 is attained. In Appendix C
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we show that the full-recovery can be perfect (MMSE0 = 0) or partial (MMSE0 > 0) depending on
the rank of Φ. Indeed, we show that:

αFR,IT ≡ β(1− ν({0})). (14)

Informally, ν({0}), the fraction of zeros in the spectrum of Φ†Φ/n, is the fraction of the signal
“lost” by the sensing matrix. The stationary point of eq. (6) that corresponds to full recovery satisfies
MMSE0 = ν({0}), while the reconstruction of the vector Φx is perfect. The effect of rank deficiency
is illustrated in Fig. 3-left, with the case of Φ given by a product of two Gaussian matrices. We
emphasize that αFR,IT is in general not well-defined for an arbitrary channel, which is why we only
derived eq. (14) in the noiseless case.

Evaluation of the thresholds and comparison to simulations — Algorithmic weak-recovery and
information-theoretical full-recovery thresholds can be readily obtained from eqs. (13),(14). Below,
we solve the state evolution equations (9) for different real and complex ensembles of sensing matrix
Φ, and compare it to numerical simulations of G-VAMP.

Real case — The case of a real signal X? ∈ Rn has been previously studied in the literature for
particular ensembles of real-valued sensing matrix Φ. A formula analogous to eq. (6) has been
heuristically derived for real orthogonally invariant matrices Φ and real signals drawn from generic
but separable P0 [12], and the specific i.i.d. Gaussian matrix case was rigorously proven in [13]. The
heuristic analysis was later extended to non-separable signal distributions P0 [14]. In Fig. 1, we
illustrate the case of real Gaussian and real column-orthogonal sensing matrix Φ, the latter not having
been investigated previously in the literature. We compute the MMSE by solving the State Evolution
equations starting from an informed solution (close to full recovery). The minimal mean-squared
error achievable with the G-VAMP algorithm is computed using the State Evolution equations starting
from the uninformed qz = 0 solution. We compare these predictions with numerical simulations of
the G-VAMP algorithm on Gaussian matrices and uniformly sampled orthogonal matrices, as well
as randomly subsampled Hadamard matrices. The simulations are in very good agreement with the
prediction, and our results on Hadamard matrices suggest that the curves of Fig. 1-right are valid for
more general ensembles than uniformly sampled orthogonal matrices, and that one can allow some
controlled structure in the matrix without harming the performance of the algorithm.

Complex case — Previous works on complex signals X? ∈ Cn have (to the best of our knowledge)
focused solely on the study of the weak recovery threshold αWR (statistical or algorithmic), which
was located for i.i.d. complex Gaussian matrices [15, 16] and uniformly sampled column-unitary
matrices [17, 19]. We begin by extending the aforementioned results by identifying the full recovery
threshold αFR,IT in these cases, and comparing the performance of the G-VAMP algorithm to the SE
solution. Fig. 2 illustrates our results for these two ensembles. The algorithmic full-recovery threshold
αFR,Algo is found numerically from the state evolution equations and is in good agreement with
finite size simulations. The existence of a statistical-to-algorithmic gap ∆ = αFR,Algo − αFR,IT ≥ 0
reflects the intrinsic hardness of phase retrieval in the real and complex case. However, it is interesting
to note that even though full-recovery in the complex case requires more data than in the real case,
the size of the statistical-to-algorithmic gap in the complex ensembles is smaller than in their real
counterparts. In Fig. 3 we analyze the case of a product of two i.i.d. standard Gaussian matrices
Φ = W1W2, with W1 ∈ Cm×p and W2 ∈ Cp×n for different aspect ratios γ ≡ p/n. We can identify
the presence of a threshold αWR,Algo = γ/(1+γ) (computed in Section 3) that delimits the possibility
of weak recovery both information-theoretically and in polynomial time. The information-theoretic
full-recovery is achieved at αFR,IT = min(2, 2γ), in agreement with eq. (14). Consistently with
the real case results of [14], the full recovery algorithmic threshold is very close to the information-
theoretic one, and precisely equal for γ = 1, although the gap is too small to be visible in the left and
right parts of Fig. 3. Therefore, the performance of G-VAMP is exactly given by the Bayes-optimal
estimator, apart for γ 6= 1 in a very small range (αFR,IT, αFR,Algo), whose size is of order 10−3 for
γ ∈ {0.5, 1.5}. As γ → ∞, one recovers the statistical-to-algorithmic gap present in the complex
Gaussian case, which is again very small (around 0.027, cf Table 1). Although this hard phase is very
small, we therefore postulate its existence for all γ 6= 1, generalizing the real case results of [14].

Application to images — Importantly, while the knowledge of the distribution of the true signal is
required for our theoretical analysis, the G-VAMP algorithm is also well-defined beyond this scope,
e.g. it can be used to infer natural images with Fourier matrices. Using a Gaussian prior to infer the
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Figure 2: Comparison of MSE achieved by the Bayes-optimal estimator and G-VAMP algorithm
for phase retrieval, for the case of an i.i.d. complex Gaussian (left) and a column-unitary (right)
sensing matrix Φ (i.e. Φ†Φ/n = 1n), with a complex Gaussian prior. Dots correspond to finite
size simulations of G-VAMP (with n = 5000, the mean and std are taken over 5 independent
instances), while full lines are obtained from the state evolution equations. Note the presence of a
statistical-to-algorithmic gap in both ensembles.
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Figure 3: Mean squared error as a function of the measurement rate α, for a sensing matrix Φ =
W1W2 a product of two complex i.i.d. standard Gaussian matrices W1 ∈ Cm×p, W2 ∈ Cp×n with
aspect ratios γ = p/n ∈ {0.5, 1.0, 1.5}. Red curves denote the recovery on ΦX?/

√
n and blue

curves on X?. Cyan dashed lines denote the full reconstruction threshold αFR,IT. The G-VAMP
experiments were performed with n = 5000, and the mean and std are taken over 5 instances.

image can then actually be seen as the minimal assumption on the underlying signal, as it amounts
to simply fix its norm: our theory can thus predict the performance of this G-VAMP algorithm for
any signal, structured or not. We conducted a simple experiment on a natural image with a randomly
subsampled DFT matrix Φ, described in Fig. 4. Although we are far from a Bayes-optimal setting,
the achieved MSE is very close to values of Fig. 2 of the paper, for all values of α. In particular,
we achieve perfect recovery for α≥2.3, just above αFR,Algo'2.27 which was derived for random
unitary matrices, i.i.d. data and in the Bayes-optimal setting.

Original image = 2.3, MSE = 0.0 = 2.2, MSE = 0.639 = 2.1, MSE = 0.81 = 2.0, MSE = 0.999

Figure 4: Performance of the G-VAMP algorithm for noiseless phase retrieval. We wish to recover a
77x102 image (on the left), and we use a complex Gaussian prior to infer the signal. The data matrix
Φ is a randomly subsampled DFT matrix.
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