
Phase retrieval in high dimensions:1

Statistical and computational phase transitions2

SUPPLEMENTARY MATERIAL3

Many notations and definitions used throughout this supplementary material are given in Sec-4

tions F.1,F.2. The Python code that produced the numerical data used in Figures 1,2,3, as well as5

the data itself, are given alongside this material, and is dependent on the open-source TrAMP library6

[1]. We provide in particular an “example” notebook which contains a detailed presentation of7

the functions necessary to generate both the state evolution and the G-VAMP data for the complex8

Gaussian matrix case.9

A The replica computation of the free entropy10

In this section, which has a more pedagogical purpose, we perform the replica calculation that gives11

Conjecture 2.1. This calculation for real matrices was already performed in [2], and as we will12

see it generalizes to complex valued signal and matrices. Note that we restricted ourselves to a13

Bayes-optimal inference problem, while the setting of [2] includes possibly mismatched models1.14

A.1 Setting15

We let n,m → ∞ with m/n → α > 0. We assume that we have access to a prior distribution P016

on K and a channel distribution Pout(y|z), of “observations” y ∈ R conditioned by a latent variable17

z ∈ K. We are given data Y ∈ Rm generated as:18

Yµ ∼ Pout

(
·
∣∣∣ 1√
n

n∑
i=1

ΦµiX
?
i

)
,

in which X?
i

i.i.d.∼ P0 (with E|X?|2 = ρ > 0), and Φ ∈ Km×n is a matrix that is both left and19

right orthogonally (respectively unitarily) invariant, meaning that for all O,U ∈ Uβ(m) × Uβ(n),20

Φ
d
= OΦU. Compared to Conjecture 2.1, we added a left-invariance hypothesis. However the21

analysis of G-VAMP [3, 4] shows that this left invariance is actually not needed for the result, and22

thus we state Conjecture 2.1 for matrices that are only right-invariant, but we use the left invariance23

to simplify the following (heuristic) calculation. Moreover, we assume that the asymptotic eigenvalue24

distribution of Φ†Φ/n is well-defined and we denote it ν, and that the eigenvalue distribution of25

Φ†Φ/n has large deviations in a scale at least n1+η for an η > 0. The partition function is:26

Zn(Y) ≡
∫
Kn

n∏
i=1

P0(dxi)

m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

n∑
i=1

Φµixi

)
.

The replica trick [5] consists in computing the p-th moment of the partition function for arbitrary27

integer p, before extending this expression analytically to any p > 0 and using the formula:28

lim
n→∞

1

n
EΦ,Y lnZn(Y) = lim

p↓0
lim
n→∞

1

np
lnEΦ,Y[Zn(Y)p].

This method is obviously non-rigorous given the inversion of limits p ↓ 0 and n→∞, as well as the29

analytic continuation to arbitrary p > 0 of the p-th moment. However, it has achieved tremendous30

success in the study of spin glasses and inference problems, see e.g. [6].31

A.2 Computing the p-th moment of the partition function32

Thanks to Bayes-optimality, we can easily write the average of Zn(Y)p as an average over p + 133

replicas of the system, by considering X? as the replica of index 0. We obtain for any p ≥ 1:34

E[Zn(Y)p] = EΦ

∫
Rm

dY
p∏
a=0

{[∫
K

n∏
i=1

P0(dxai )

∫
K

m∏
µ=1

dzaµPout(Yµ|zaµ)
]
δ
(

za − Φxa√
n

)}
. (1)

1For a mismatched model, the replica symmetry assumption, discussed below, is generically not valid.
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The first step is to decompose eq. (1) into three terms, corresponding to the prior P0, the channel35

Pout, and the “delta” term. Note that the matrix Φ only appears in the last “delta” term. By left and36

right orthogonal (resp. unitary) invariance of Φ, the quantity37

EΦ

[ p∏
a=0

δ
(

za − 1√
n
Φxa

)]
is determined by the value of the overlaps Qz ≡ {(za)†zb/m}pa,b=0 and Qx ≡ {(xa)†xb/n}pa,b=0,38

which are positive symmetric (Hermitian in the complex case) matrices. As is standard in such replica39

calculations, we will constraint the terms in eq. (1) by the value of these overlaps, before performing40

a Laplace method on the resulting function of the overlaps. By An ' Bn, we will mean equivalence41

at leading exponential order, that is (lnAn)/n = (lnBn)/n + On(1). We introduce in eq. (1) the42

term:43

1 '
∫ ∏

0≤a≤b≤p

dQxab dQzab

[∏
a≤b

δ(nQxab − (xa)†xb)
][∏

a≤b

δ(mQzab − (za)†zb)
]
.

We can use a Fourier transformation of the delta terms, which allows in the end to transform eq.(1)44

into the product of three independent terms. Performing the saddle-point on Qx,Qz , we obtain the45

corresponding result:46

lim
n→∞

1

n
lnEY,Φ[Zn(Y)p] = sup

Qx,Qz
[I0(p,Qx) + αIout(p,Qz) + Iint(p,Qx,Qz)],

in which the supremum is made over positive symmetric (Hermitian) matrices, and I0, Iout and Iint47

are functions whose calculation will be detailed below.48

A.2.1 The prior term I0(p,Qx)49

We have by the Laplace method after Fourier transformation of the delta terms:50

I0(p,Qx) ' 1

n
ln

∫ ∏
0≤a≤b≤p

dQ̂xab

∫
K

p∏
a=0

n∏
i=1

P0(dxai )e−
β
2

∑p
a,b=0 Q̂

x
ab(

∑
i x
a
i x
b
i−nQ

x
ab),

' inf
Q̂x

[β
2

∑
a,b

QxabQ̂
x
ab + ln

∫
K

p∏
a=0

P0(dxa)e−
β
2

∑
a,b Q̂

x
abx

axb
]
.

The infimum is again over positive symmetric (Hermitian) matrices. We also made use of the fact that51

the prior P0 is i.i.d. over the elements of x. A very important assumption of our calculation is replica52

symmetry. It amounts to assume that all the (p+ 1) replicas are equivalent, and that this symmetry53

is not broken by the system at the solution of the Laplace method. Replica symmetry and replica54

symmetry breaking are a very rich field of study in statistical physics [5]. It has been argued that for55

an inference problem in the Bayes-optimal setting (as is the present case), replica symmetry is never56

broken [6]. We can therefore assume a replica symmetric form of Qx, Q̂
x

at the point at which the57

saddle point is reached, that we write as:58

Qx =


Qx qx · · · qx
qx Qx · · · qx
...

...
. . .

...
qx qx · · · Qx

 , Q̂
x

=


Q̂x −q̂x · · · −q̂x
−q̂x Q̂x · · · −q̂x

...
...

. . .
...

−q̂x −q̂x · · · Q̂x

 . (2)

Note that for β ∈ {1, 2}, we have Qx, qx, Q̂x, q̂x ∈ R. After a simple Gaussian transformation of the59

squared term using the general identity for x ∈ K:60

exp
(β

2
|x|2
)

=

∫
K
Dβξ exp(βx · ξ),

we reach the final expression:61

I0(p,Qx, qx) = (3)

inf
Q̂x,q̂x

{β(p+ 1)

2
QxQ̂x −

βp(p+ 1)

2
qxq̂x + ln

∫
K
Dβξ

[ ∫
K
P0(dx)e−

β(Q̂x+q̂x)
2 |x|2+β

√
q̂xx·ξ

]p+1}
.
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A.2.2 The channel term Iout(p,Qz)62

This term is very similar to the prior term detailed in the previous section. We use completely similar63

replica symmetric assumptions for the overlaps Qz to the ones on Qx described in eq. (2). We reach:64

Iout(p,Qz, qz) = inf
Q̂z,q̂z

{β(p+ 1)

2
QzQ̂z −

βp(p+ 1)

2
qz q̂z +

β(p+ 1)

2
ln(2π/(βQ̂z)) (4)

+ ln

∫
R

dy

∫
K
Dβξ

[ ∫
K

dz
( 2π

βQ̂z

)−β/2
Pout(y|z) e−β

Q̂z+q̂z
2 |z|2+β

√
q̂zz·ξ

]p+1}
.

We normalized the integrals so that in the limit p→ 0, the term inside the logarithm goes to 1, which65

will be a useful remark.66

A.2.3 The delta term Iint(p,Qx,Qz)67

We now turn to the computation of the delta term:68

Iint(p,Qx,Qz) ≡ lim
n→∞

1

n
lnEΦ

[ p∏
a=0

δ
(

za − 1√
n
Φxa

)]
, (5)

assuming that Qx,Qz are known. Computing this term is central in this replica calculation. We use,69

as is done in [2], the identity:70

1

n
lnEΦ

[ p∏
a=0

δ
(

za − 1√
n
Φxa

)]
= lim

ε↓0

1

n
lnEΦ

[exp
{
− β

2ε

∑
a

∥∥za − 1√
n
Φxa

∥∥2}
(2πε/β)

βm(p+1)
2

]
, (6)

and we invert the n→∞ and the ε→ 0 limit. Let us rewrite the right-hand-side of eq. (6). Since Φ71

is orthogonally (resp. unitarily) invariant, we can write this term as:72

E
[exp

{
− β

2ε

∑
a

∥∥za − 1√
n
Φxa

∥∥2}
(2πε/β)

βm(p+1)
2

]
= E

[exp
{
− β

2ε

∑
a

∥∥Oza − 1√
n
ΦUxa

∥∥2
}

(2πε/β)
βm(p+1)

2

]
, (7)

in which the average on the right hand side is made over (Φ,O,U), with (O,U) uniformly sampled73

over the orthogonal groups Uβ(m),Uβ(n). Note that since the overlap matrices Qz,Qx are fixed, one74

can show that when U is uniformly distributed over Uβ(n), the set of vectors {Uxa}pa=0 is uniformly75

distributed over the set of (p + 1) vectors in Kn with overlap matrix Qx. There is a completely76

similar result for z as well. The consequence is that we can replace in eq. (7) the average over O,U77

by an average over the vectors satisfying this constraint:78

Iint(p,Qx,Qz) (8)

' 1

n
lnEΦ

∫
K
∏
a dxa dza

[∏
a≤b δ(nQ

x
ab − (xa)†xb)δ(mQzab − (za)†zb)

]
e
− β

2ε

∑
a‖za− 1√

n
Φxa‖2

(2πε/β)βm(p+1)/2∫
K
∏
a dxa dza

[∏
a≤b δ(nQ

x
ab − (xa)†xb)δ(mQzab − (za)†zb)

] .

The numerator and the denominator correspond to two terms, that we denote Iint(p,Qx,Qz) =79

I
(n)
c (p,Qx,Qz)− I(d)

c (p,Qx,Qz). We can introduce the Fourier-transform of the delta distribution80

to compute both terms, as in the previous sections. Let us start with the denominator. It reduces after81

Fourier-transformation to a Gaussian integral involving a block-diagonal matrix:82

I
(d)
int (p,Qx,Qz) ' β

2
inf

Γx,Γz

[
Tr[QxΓx] + αTr[QzΓz] + (α+ 1)(p+ 1) ln

2π

β

− ln detΓx − α ln detΓz
]
,

with symmetric (Hermitian) positive matrices Γx,Γz of size (p+ 1). The infimum is readily solved83

by Γx = (Qx)−1 and Γz = (Qz)−1, which yields:84

I
(d)
int (p,Qx,Qz) ' β(α+ 1)(p+ 1)

2
(1 + ln

2π

β
) +

β

2
ln det Qx +

αβ

2
ln det Qz. (9)
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Let us now compute the numerator with the same technique. We obtain:85

I
(n)
int (p,Qx,Qz) ' β(p+ 1)

2
ln

2π

βεα
+
β

2
inf

Γx,Γz

[
Tr[QxΓx] + αTr[QzΓz]− 1

n
ln det Mn

]
, (10)

with a Hermitian matrix Mn having a block structure, that we write here in the tensor product form:86

Mn ≡

(
(Γz + 1

ε1p+1)⊗ 1m 1
ε1p+1 ⊗ Φ√

n
1
ε1p+1 ⊗ Φ†√

n
Γx ⊗ 1n + 1

ε1p+1 ⊗ Φ†Φ
n

)
. (11)

Using the block-matrix determinant calculation:87

det

(
A B
C D

)
= detA× det(D − CA−1B),

we reach:88

1

n
ln det Mn = α ln det

(
Γz +

1

ε
1p+1

)
+

1

n
ln det

(
Γx ⊗ 1n +

1

ε
1p+1 ⊗

Φ†Φ

n
− 1

ε2

(
Γz +

1

ε
1p+1

)−1

⊗ Φ†Φ

n

)
,

= (α− 1) ln det
(
Γz +

1

ε
1p+1

)
+

1

n
ln det

(
ΓxΓz ⊗ 1n +

1

ε
Γx ⊗ 1n +

1

ε
Γz ⊗ Φ†Φ

n

)
,

= (α− 1) ln det
(
Γz +

1

ε
1p+1

)
+
〈

ln det
(
ΓxΓz +

1

ε
(Γx + λΓz)

)〉
ν
,

with λ distributed according to ν, the asymptotic eigenvalue distribution of Φ†Φ/n. This allows to89

write I(n)
int from eq. (10) and to take the ε ↓ 0 limit, keeping the terms that do not vanish:90

I
(n)
int (p,Qx,Qz) ' β

2
inf

Γx,Γz
[Tr[QxΓx] + αTr[QzΓz]− 〈ln det(Γx + λΓz)〉ν ]. (12)

Finally, we again consider a replica-symmetric assumption for Γx,Γz , in the form:91

Γx =


Γx −γx · · · −γx
−γx Γx · · · −γx

...
...

. . .
...

−γx −γx · · · Γx

 , Γz =


Γz −γz · · · −γz
−γz Γz · · · −γz

...
...

. . .
...

−γz −γz · · · Γz

 . (13)

As for the overlap matrices, we have γx, γz ∈ R. Combining eqs. (9) and (12) and using the replica92

symmetric assumption, we obtain:93

2

β
Iint(p,Qx,Qz) = inf

Γx,γx,Γz,γz
[(p+ 1)QxΓx − p(p+ 1)qxγx + α(p+ 1)QzΓz − αp(p+ 1)qzγz

− p〈ln(Γx + γx + λΓz + λγz)〉ν − 〈ln[Γx − pγx + λ(Γz − pγz)]〉ν ]− (α+ 1)(p+ 1) ln 2πe/β

+ (p+ 1) ln
2π

β
− p ln(Qx − qx)− ln(Qx + pqx)− αp ln(Qz − qz)− α ln(Qz + pqz). (14)

A note on quenched and annealed averages Note that here we did not consider the average over94

Φ to compute Iint. Indeed, the result only depends on the eigenvalue distribution of Φ†Φ/n, which95

(by hypothesis) has large deviations in a scale at least n1+η with η > 0. Since we are looking at a96

scale exponential in n, we can thus consider that this eigenvalue distribution is equal to its limit value97

ν. However, one must be careful that this argument breaks down if our result starts to be sensitive98

to the extremal eigenvalues of Φ†Φ/n. Since these variables typically have large deviations in the99

scale n (for instance for Wigner or Wishart matrices [7]), this could invalidate our calculation. This100

phenomenon is well-known in the study of so-called “HCIZ” spherical integrals, cf [8] for an example101

of a rigorous analysis. We argue in Section A.4 that this possible issue, not discussed in [2], never102

arises for physical values of the overlaps.103
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A.2.4 Expressing the p-th moment104

Combining the results of the three previous sections, we finally obtain the asymptotics of the p-th105

moment of the partition function as:106

lim
n→∞

1

n
lnEZn(Y)p = sup

Qx,qx
Qz,qz

[I0(p,Qx, qx) + αIout(p,Qz, qz) + Iint(p,Qx, qx, Qz, qz)], (15)

in which the three terms are given by eqs. (3),(4),(14).107

A.3 The p ↓ 0 limit108

One can easily see that the function described in eq. (15) is analytic in p. The next step of the replica109

method is to analytically extend this expression to arbitrary p > 0, before considering the limit p ↓ 0.110

A.3.1 Consistency of the limit111

One must be careful that, when extending our expression to arbitrarily small p > 0, we satisfy the112

trivial condition limp↓0 lnEZp = 0. As we will see, this condition will yield constraints on the113

diagonals of the overlap matrices. Taking the limit p = 0 in the three terms of eq. (15) yields:114

I0(0, Qx, qx) = inf
Q̂x

{β
2
QxQ̂x + ln

∫
K
P0(dx)e−

βQ̂x
2 |x|

2
}
, (16)

Iout(0, Qz, qz) = inf
Q̂z

{β
2
QzQ̂z +

β

2
ln
( 2π

βQ̂z

)}
, (17)

Iint(0, Qx, qx, Qz, qz) = inf
Γx,Γz

[β
2
QxΓx +

αβ

2
QzΓz −

β

2
〈ln[Γx + λΓz]〉ν

]
(18)

− β(α+ 1)

2
(1 + ln

2π

β
) +

β

2
ln

2π

β
− β

2
lnQx −

αβ

2
lnQz.

One can easily solve the saddle point equations on Qz, Q̂z , they give Γz = 0 and Q̂z = 1/Qz . One
can then find all the remaining variables easily: Qx = ρ, Q̂x = 0, Γx = ρ−1, Qz = ρ〈λ〉ν/α,
Q̂z = 1/Qz , Γz = 0. Plugging these parameters yields (we drop the vacuous dependency on qx, qz):

I0(0, Qx = ρ) = 0, (19a)

Iout

(
0, Qz =

ρ〈λ〉ν
α

)
=
β

2
+
β

2
ln
(2πρ〈λ〉ν

βα

)
, (19b)

Iint

(
0, Qx = ρ,Qz =

ρ〈λ〉ν
α

)
= −βα

2

(
1 + ln

2π

β

)
− αβ

2
ln
ρ〈λ〉ν
α

. (19c)

Recall that we have115

lim
p↓0

lim
n→∞

1

n
lnEZn(Y)p = I0 + αIout + Iint,

so that we obtain from eq. (19) that indeed the limit is consistent.116

A.3.2 The replica symmetric result117

Using eq. (15) for the p-th moment and the consistency conditions we just derived, we obtain after118

using the replica trick:119

lim
n→∞

1

n
E lnZn(Y) = sup

qx,qz

[I0(qx) + αIout(qz) + Iint(qx, qz)], (20)
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with the auxiliary functions:120

I0(qx) = inf
q̂x≥0

[
− βq̂xqx

2
+

∫
K
DβξP0(dx)e−

βq̂x
2 |x|

2+β
√
q̂xx·ξ ln

∫
K
P0(dx)e−

βq̂x
2 |x|

2+β
√
q̂xx·ξ

]
,

Iout(qz) = inf
q̂z≥0

{
− βq̂zqz

2
− β

2
ln(Q̂z + q̂z) +

βq̂z

2Q̂z
+

∫
dyDβξ J(q̂z, y, ξ) lnJ(q̂z, y, ξ)

}
,

Iint(qx, qz) = inf
γx,γz≥0

[β
2

(ρ− qx)γx +
αβ

2
(Qz − qz)γz −

β

2
〈ln(ρ−1 + γx + λγz)〉ν

]
− β

2
ln(ρ− qx)− βqx

2ρ
− αβ

2
ln(Qz − qz)−

αβqz
2Qz

,

with Qz = ρ〈λ〉ν/α and Q̂z = 1/Qz . Moreover, the domain of the supremum is qx ∈ [0, ρ] and121

qz ∈ [0, Qz]. The function J(q̂z, y, ξ) appearing in the expression of Iout is defined as:122

J(q̂z, y, ξ) ≡
∫
K
DβzPout

(
y
∣∣∣ z√

Q̂z + q̂z

+

√
q̂z

Q̂z(Q̂z + q̂z)
ξ
)
.

Note that compared to the calculation presented in the previous sections, we moved a term (βα/2)(1+123

ln 2π/β) between Iout and Iint, and we also made a few straightforward change of variables in the124

expression of Iout. This is exactly the result given in Conjecture 2.1, which ends our replica125

calculation.126

A.4 Concentration of the spectrum of Φ†Φ/n and the absence of saturation127

As emphasized in the end of Section A.2.3, our calculation assumed that the extremization equations128

on (γx, γz) always admitted a solution. Moreover, we assumed that this solution is not sensitive to the129

extremal eigenvalues of Φ†Φ/n. If this assumption is indeed true, the concentration of the spectrum130

of Φ†Φ/n was assumed to be fast enough to justify our calculation. This important condition can be131

phrased by saying that for all physical values of (qx, qz), we must not touch the edge of the spectrum:132

1

ρ
+ γx + γzλmin(ν) > 0. (21)

We justify here eq. (21) for all physical values of (qx, qz). We will combine three arguments:133

(i) Note that in the replica calculation, cf Section A.2.3, the matrix Γz is assumed to be134

Hermitian positive in the p ↓ 0 limit. Since Γz = 0, this implies that we must have λz ≥ 0.135

(ii) The saddle point equation on qx yields1:136

q̂x =
qx

ρ(ρ− qx)
− γx. (22)

(iii) Finally, we will derive a lower bound on qx. Note that, as one can see in I0 from Sec-137

tion A.3.2, qx is the optimal overlap achievable in the following scalar inference problem138

[9]:139

Y0 =
√
q̂xX

? + Z, (23)

in which one observes Y0 and is given P0 the prior distribution on X?, and the noise Z140

is distributed according to Nβ(0, 1). It is known that the optimal estimator is given by141

the average of E[x|Y ] under the posterior distribution, whose density is proportional to142

P0(x)e−
β
2 |y−

√
q̂xx|2 . If this is untractable for generic P0, we can consider a suboptimal143

estimation by using a Gaussian prior with variance ρ in the estimation procedure (so that the144

problem is mismatched). This yields the bound:145

qx ≥
∫
Dβξ

[ ∫
K P0(dx) x e−

βq̂x
2 |x|

2+β
√
q̂xx·ξ

]
·
[ ∫

K dx x e−
β|x|2

2ρ e−
βq̂x

2 |x|
2+β
√
q̂xx·ξ

]
∫
K dx e−

β|x|2
2ρ e−

βq̂x
2 |x|2+β

√
q̂xx·ξ

.

(24)

1This relation is valid even if λx would “saturate” to a constant value that does not depend on (qx, qz).
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This can easily be simplified by performing the Gaussian integral, and yields the bound:146

qx ≥
ρ2q̂x

1 + ρq̂x
. (25)

Combining (ii) and (iii) gives:147

qx ≥ ρ−
ρ− qx

1− γx(ρ− qx)
. (26)

Since qx ∈ [0, ρ], this implies in particular that γx ≥ 0. Using this along with (i), this implies:148

1

ρ
+ γx + γzλmin(ν) ≥ 1

ρ
> 0, (27)

which is what we wanted to show.149

B Derivation of the weak-recovery threshold150

We detail here the derivation of the algorithmic weak-recovery threshold αWR,Algo. As discussed
in Section 3, the weak-recovery threshold can be identified as the sample complexity for which the
trivial fixed point qx = qz = q̂x = q̂z = γx = γz = 0 of the state evolution equations becomes
linearly unstable (when it no longer is a local maximum of the free entropy potential). Consider
therefore the state evolution equations, which we repeat here for convenience in a detailed form:

qx =

∫
K
Dβξ

∣∣ ∫
K P0(dx) x e−

β
2 q̂x|x|

2+β
√
q̂xx·ξ

∣∣2∫
K P0(dx) e−

β
2 q̂x|x|2+β

√
q̂xx·ξ

, (28a)

qz =
1

Q̂z + q̂z

[ q̂z
Q̂z

+

∫
dy Dβξ

∣∣∣ ∫ Dβz z Pout

(
y
∣∣∣ z√

Q̂z+q̂z
+
√

q̂z
Q̂z(Q̂z+q̂z)

ξ
)∣∣∣2∫

DβzPout

(
y
∣∣∣ z√

Q̂z+q̂z
+
√

q̂z
Q̂z(Q̂z+q̂z)

ξ
) ]

, (28b)

q̂x =
qx

ρ(ρ− qx)
− γx, (28c)

q̂z =
qz

Qz(Qz − qz)
− γz, (28d)

ρ− qx =
〈 1

ρ−1 + γx + λγz

〉
ν
, (28e)

α(Qz − qz) =
〈 λ

ρ−1 + γx + λγz

〉
ν
. (28f)

Letting qx = qz = q̂x = q̂z = γx = γz = 0, it is clear that the equations are satisfied if the signal151

distribution P0 and the likelihood Pout satisfy the following symmetry conditions:152

|x1| = |x2| ⇒ P0(x1) = P0(x2) and |z1| = |z2| ⇒ Pout(y|z1) = Pout(y|z2).

Assuming these conditions hold, we are interested in studying the linear stability of this local153

maximum. Recalling that Qz = ρ〈λ〉ν/α, the first, third and fourth equations of eq. (28) can be154

linearized:155

δqx = ρ2δq̂x, δq̂x =
δqx
ρ2
− δγx, δq̂z =

α2δqz
ρ2〈λ〉2ν

− δγz. (29)

Now focusing on the second state evolution equation (28), it can be linearized to give:156

δqz =
ρ2〈λ〉2ν
α2

δq̂z

(
1 +

∫
R

dy

∣∣∣ ∫KDβz (|z|2 − 1) Pout

(
y
∣∣√ρ〈λ〉ν

α z
)∣∣∣2∫

KDβz Pout

(
y
∣∣√ρ〈λ〉ν

α z
) )

. (30)

Finally, it remains to compute the infinitesimal variation for δγx, δγz:
δγx =

〈λ2〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqx −
α〈λ〉ν

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqz, (31a)

δγz = − 〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqx +
α

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqz. (31b)
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Combining eqs. (29),(30),(31), we can simplify the system to a closed set equations with only
(δqx, δq̂x, δqz, δq̂z). Given the usual heuristics of the replica method and its link with the state
evolution equations of message-passing algorithms [2, 6, 10], one can conjecture that the simplest
iteration scheme corresponds to the state evolution of the G-VAMP message passing algorithm:

δqt+1
x = ρ2δq̂tx, (32a)

δqt+1
z =

ρ2〈λ〉2ν
α2

δq̂tz

(
1 +

∫
R

dy

∣∣∣ ∫KDβz (|z|2 − 1) Pout

(
y
∣∣√ρ〈λ〉ν

α z
)∣∣∣2∫

KDβz Pout

(
y
∣∣√ρ〈λ〉ν

α z
) )

, (32b)

δq̂x
t = − 〈λ〉2ν

ρ2[〈λ2〉ν − 〈λ〉2ν ]
δqtx +

α〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqtz, (32c)

δq̂z
t =

〈λ〉ν
ρ2[〈λ2〉ν − 〈λ〉2ν ]

δqtx + [
α2

ρ2〈λ〉2ν
− α

ρ2[〈λ2〉ν − 〈λ〉2ν ]
]δqtz. (32d)

From these equations, one can easily see that a linear instability of the trivial fixed points appears at157

α = αWR,Algo satisfying the equation:158

αWR,Algo =
〈λ〉2ν
〈λ2〉ν

(
1 +

[ ∫
R

dy

∣∣∣ ∫KDβz (|z|2 − 1) Pout

(
y
∣∣√ ρ〈λ〉ν

αWR,Algo
z
)∣∣∣2∫

KDβz Pout

(
y
∣∣√ ρ〈λ〉ν

αWR,Algo
z
) ]−1)

. (33)

Indeed at α = αWR,Algo, the modulus of all the eigenvalues of the size-4 matrix of the linear159

system (32) cross 1.160

C The full recovery transition161

In this section, we assume a Gaussian standard prior P0 = Nβ(0, 1) and a noiseless phase retrieval162

channel, and we show that information-theoretic full recovery is achieved exactly at α = αFR,IT ≡163

β(1− ν({0})). We can assume without loss of generality that 〈λ〉ν = α, as this amounts to a simple164

rescaling of Φ, irrelevant under the noiseless channel. This implies in particular that Qz = Q̂z = 1.165

C.1 The state evolution equations166

Since we assumed a Gaussian prior, we have, with Pout(y|z) = δ(y − |z|2):

qz =
1

1 + q̂z

[
q̂z +

∫
dy

∫
K
Dβξ

∣∣∣ ∫KDβz z Pout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
)∣∣∣2∫

KDβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
) ]

, (34a)

q̂x =
qx

1− qx
, (34b)

q̂z =
qz

1− qz
− γz, (34c)

qx = αγz(1− qz), (34d)

α(1− qz) =
〈 λ

1 + λγz

〉
ν
. (34e)

Comparing these equations to Conjecture 2.1, one can see that we imposed γx = 0, a straightforward167

consequence of the Gaussian prior (see Section E where this calculation is detailed for a different168

purpose).169

C.2 Noisy phase retrieval with small variance170

We wish to show that the free entropy of the full recovery solution is the global maximum of the171

free entropy potential for α > αIT, while it is never the case for α < αIT. However, under a172
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noiseless channel, the free entropy potential might diverge in this point, which indicates towards a173

regularization procedure. Therefore we consider a noisy Gaussian channel with noise ∆ > 0:174

Pout(y|z) =
1√

2π∆
exp

{
− 1

2∆
(y − |z|2)2

}
. (35)

We will compute the limit, as ∆ ↓ 0, of the free entropy of the “almost perfect” recovery fixed point.
We look for a solution close to the point which corresponds to the best possible recovery:{

qx = 1− ν({0}), (36a)
qz = 1. (36b)

Indeed it is easy to see that qx ≤ 1− ν({0}) since rk[Φ†Φ] ∼ n(1− ν({0})). We are thus looking
for a fixed point of the state evolution equations (34) that satisfies:

qx = 1− ν({0}) + O∆(1), (37a)
qz = 1 + O∆(1), (37b)

q̂−1
x = ν({0})/(1− ν({0})) + O∆(1), (37c)

q̂−1
z = O∆(1). (37d)

Let us now precise the asymptotics of these quantities as ∆ ↓ 0. By eq. (34d), we find easily:175

γz ∼
1− ν({0})
α(1− qz)

. (38)

Then from eq. (34c), we also have:176

q̂z ∼
α− 1 + ν({0})
α(1− qz)

. (39)

Note that if α ≤ 1, then necessarily ν({0}) ≥ 1− α, so that the quantity in the numerator is always177

positive. We now turn to eq. (34a). We assume the scaling q̂−1
z = c∆+O∆(∆). We have by Gaussian178

integration by parts and using the specific form of Pout:179

∫
dyDβξ

∣∣∣ ∫ Dβz z Pout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
)∣∣∣2∫

DβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
)

=
1

(1 + q̂z)

∫
dyDβξ

∣∣∣ ∫ Dβz P ′out

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
)∣∣∣2∫

DβzPout

(
y
∣∣∣ z√

1+q̂z
+
√

q̂z
1+q̂z

ξ
) ∼ 4

∆(1 + q̂z)
∼ 4c.

Gaussian integration by parts and our conventions for derivatives of real functions of complex180

variables are summarized in Section F.2. This yields that 1− qz = ∆c(1− 4c) + O∆(1). Combining181

this result with eq. (39), we have182

c(1− 4c) = c
[α− 1 + ν({0})

α

]
.

This implies c = (1−ν({0}))/(4α), and we finally obtain the leading order asymptotics of qz, q̂z, γz
as ∆→ 0: 

q̂z =
4α

(1− ν({0}))∆
+ O∆

(
∆−1

)
, (40a)

1− qz =
(1− ν({0})(α− 1 + ν({0}))

4α2
∆ + O∆(∆), (40b)

γz =
4α

∆(α− 1 + ν({0}))
+ O∆(∆−1). (40c)
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Let us now compute the asymptotics of the three auxiliary functions I0, Iout and Iint of Conjecture 2.1:183

I0(qx) =
β

2
[qx + ln(1− qx)],

Iout(qz) = −βq̂zqz
2
− β

2
ln(1 + q̂z) +

βq̂z
2

+

∫
dyDξ J(q̂z, y, ξ) lnJ(q̂z, y, ξ),

J(q̂z, y, ξ) ≡
∫
DzPout

(
y
∣∣∣ z√

1 + q̂z
+

√
q̂z

1 + q̂z
ξ
)
,

Iint(qx, qz) =
β

2
[α(1− qz)γz − 〈ln(1 + λγz)〉ν − ln(1− qx)− qx − α ln(1− qz)− αqz].

Using eq. (40) and the specific form of the channel, we reach:184

I0(qx) + Iint(qx, qz) ∼ −
β(α− 1 + ν({0}))

2
ln ∆,

Iout(qz) ∼
(β − 1)

2
ln ∆.

Therefore when considering the total free entropy we have185

I0(qx) + Iint(qx, qz) + αIout(qz) ∼
α(β − 1)− β(α− 1 + ν({0}))

2
ln ∆,

∼ β(1− ν({0}))− α
2

ln ∆.

This implies that the full recovery point has a free entropy of −∞ for α < αFR,IT ≡ β(1− ν({0})),186

and +∞ for α > αFR,IT. Thus this point is always the global maximum of the free entropy for187

α > αFR,IT, while it is never the case for α < αFR,IT, which ends our argument.188

D Proof of Theorem 2.2189

In all this section, we provide the proof of Theorem 2.2 under (H0),(h1),(h2),(h3), and we will190

work under these hypotheses. In Section D.6, we show how the proof can be extended to hypothe-191

ses (H0),(h′1).192

First, we simplify the conjectured expression of the free entropy of Conjecture 2.1 using the particular193

form of the prior P0 and of the sensing matrix Φ. Finally, using (h1),(h2),(h3) and a proof similar to194

the one of [9, 11], we give a rigorous derivation of this simplified expression. Note that with respect195

to the analysis of [9, 11], there are two main novelties in our setting:196

(i) The sensing matrix Φ is not i.i.d. but has a well-controlled structure, see (h2).197

(ii) The variables can be complex numbers. We will argue that the arguments generalize to198

this case. The physical reason of this generalization is that even in the complex setting, the199

overlap will concentrate on a real positive number, as a consequence of Bayes-optimality.200

First, we note that we can simplify the replica conjecture under the considered hypotheses:201

Proposition D.1. Under (H0),(h1),(h2),(h3), the replica conjecture 2.1 for the free entropy fn ≡202
1
nE lnZn(Y) is equivalent to:203

lim
n→∞

fn = sup
q̂≥0

inf
q∈[0,Qz ]

[βq̂
2

(EνB [X]− δq)− β

2
EνB ln(1 + q̂X) + αΨout(q)

]
, (41)

with Qz = EνB [X]/δ and Ψout defined in terms of the auxiliary functions introduced in eq. (7):204

Ψout(q) ≡ Eξ
∫
R

dy Zout(y;
√
qξ,Qz − q) lnZout(y;

√
qξ,Qz − q).

Proposition D.1 is proven in Section E. To prove the free entropy statement of Theorem 2.2, we205

therefore just need to show:206
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Lemma D.2. Under the assumptions of Proposition D.1, the limit of the free entropy fn ≡207
1
nE lnZn(Y) is given by eq. (41).208

The following of this section is dedicated to the proof of Lemma D.2. We will conclude the proof209

of Theorem 2.2 in Section D.5 and Section D.6, dedicated respectively to the proof of the MMSE210

statement and the extension of the proof to hypotheses (H0),(h′1).211

The main idea of our proof is to reduce the problem of Lemma D.2 to a Generalized Linear Model212

with a Gaussian sensing matrix, but a non-i.i.d. prior. We make use of the “SVD” decomposition of213

B/
√
n = USV†, with U ∈ Uβ(p), V ∈ Uβ(n), and S ∈ Rp×n a pseudo-diagonal matrix with positive214

elements. Leveraging on the fact that the prior P0 is Gaussian, and that W is an i.i.d. Gaussian215

matrix independent of B, one can see that our estimation problem is formally equivalent to an usual216

Generalized Linear Model with m measurements, a signal of dimension p, and a Gaussian i.i.d.217

sensing matrix. This is very close to the setup of [9], a key difference being that here the prior218

distribution on the data Z? ∈ Kp is defined as219

• If δ ≤ 1, for every k ∈ {1, · · · , p}, Z?k is distributed as SkX?
k with X?

k
i.i.d.∼ P0.220

• If δ ≥ 1, for every k ∈ {1, · · · , n}, Z?k is distributed as SkX?
k with X?

k
i.i.d.∼ P0, while for221

every k ∈ {n+ 1, · · · , p}, Z?k is almost surely 0.222

More precisely, we can define rigorously the prior P (S)
0 described above by its linear statistics. For223

any continuous bounded function g : Kp → R, one has:224 ∫
Kp
P

(S)
0 (dz)g(z) ≡

∫
Kn

{ n∏
i=1

P0(dxi)
}
g({1[k ≤ n]Skxk}pk=1). (42)

Hypothesis (h1) implies that we will consider P0 = Nβ(0, 1). In the following of the section, we225

give the detailed sketch of the proof of Lemma D.2. Some facts and lemmas will be a generalization226

or a consequence of the works of [9] and [11], and we will refer to them when necessary.227

D.1 Interpolating estimation problem228

Recall that Qz ≡ ρ〈λ〉ν/α = EνB [X]/δ, and the definition of Ψout in Proposition D.1. We define as229

well:230

rmax ≡ sup
q∈[0,Qz ]

Ψout(q), (43)

Ψ
(ν)
0 (r) ≡ β

2

[
rEνB [X]− EνB ln(1 + rX)

]
, 0 ≤ r ≤ rmax. (44)

Since νB 6= δ0 by hypothesis, we can easily check that Ψ
(ν)
0 is strictly convex, C2 and non-decreasing231

on [0, rmax] . By Proposition 18 of [9], which directly generalizes to the complex case, we know as232

well that Ψout is convex, C2, and non-decreasing on [0, Qz], and thus rmax = Ψout(Qz). Let us fix233

an arbitrary sequence sn > 0 that goes to 0 as n goes to infinity. We fix ε2 ∈ [sn, 2sn], and ε1 ∈ Dβn,234

with235

Dβn ≡ {λ ∈ Sβ(R) : ∀l ∈ {1, β}, λll ∈ (2βsn, (2β + 1)sn), ∀l 6= l′ ∈ {1, β}, λll′ ∈ (sn, 2sn)}.

Dβn is composed of strictly diagonally dominant matrices with positive entries, which implies that236

Dn ⊂ S+
β (R). Let qε : [0, 1] → [0, Qz], rε : [0, 1] → [0, rmax] be two continuous “interpolation”237

functions. For all ε ∈ Dβn × [sn, 2sn], and all t ∈ [0, 1] we define:238

S+
β (R) 3 R1(t, ε) ≡ ε1 +

(∫ t

0

rε(v)dv
)
1β , R+ 3 R2(t, ε) ≡ ε2 +

∫ t

0

qε(v)dv. (45)

We consider the following decoupled observation channels:
{
Yt,µ ∼ Pout

(
·
∣∣∣√1− t

p
[WZ?]µ +

√
R2(t, ε)Vµ +

√
Qzt−R2(t, ε) + 2snA

?
µ

)}m
µ=1

(46a)

Ỹt = (R1(t, ε))1/2 ? Z? + ζ, (46b)
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where Vµ, A?µ
i.i.d.∼ Nβ(0, 1), and ζ ∼ Nβ(0,1p). The prior distribution on Z? is given by P (S)

0 in239

eq. (42). We assume that {Vµ}mµ=1 is known, and the inference problem is to recover both A? ∈ Km240

and Z? ∈ Kp from the observations (Ỹt, {Yt,µ}mµ=1). Note that R1 ∈ S+
β (R), so its (matrix) square241

root is always uniquely defined. Recall finally the definition of the ? product in Section F.1. In the242

following we will study the system of eq. (46). In order to state our results fully rigorously, we need243

to add an hypothesis that can easily be relaxed:244

(h1?) The prior P0 has bounded support.245

Under this hypothesis, P (S)
0 is still defined by eq. (42), and we can study the system of eq. (46).246

Nonetheless, this assumption a priori rules out a Gaussian prior for P0, and thus the correspondence247

between the system of eq. (46) and our original model. However, following the arguments of [9],248

hypothesis (h1?) can very easily be relaxed to the existence of the second moment of P0, which is then249

consistent with a Gaussian prior. In the following, we will thus work under hypothesis (h1), but we will250

sometimes as well use hypothesis (h1?) without loss of generality. We define uy(z) ≡ lnPout(y|z),251

and252

St,µ ≡
√

1− t
n

[WZ?]µ +
√
R2(t, ε)Vµ +

√
Qzt−R2(t, ε) + 2snA

?
µ, (47)

st,µ ≡
√

1− t
n

[Wz]µ +
√
R2(t, ε)Vµ +

√
Qzt−R2(t, ε) + 2snaµ. (48)

The posterior distribution in this model can then be written as:253

Pn,t,ε
(

z, a
∣∣∣Yt, Ỹt)dz da ≡ 1

Zn,t,ε(Yt, Ỹt)
P

(S)
0 (dz)Dβa e−Ht,ε(z,a;Yt,Ỹt,W,V). (49)

To keep the notations lighter we omitted the conditioning on the variables V,W which are assumed254

to be known. We defined the Hamiltonian:255

Ht,ε(z, a; Yt, Ỹt,W,V) ≡ −
m∑
µ=1

uYt,µ(st,µ) +
β

2

p∑
k=1

∣∣∣Ỹt,k − (R1(t, ε))1/2 ? zk

∣∣∣2. (50)

For any t ∈ (0, 1), we define the free entropy (the expectation is over all “quenched” variables,256

including S if it is random):257

fn,ε(t) ≡
1

n
E lnZn,t,ε(Yt, Ỹt).

The following lemma gives the t = 0 and t = 1 limits of the free entropy:258

Lemma D.3. fn,ε(t) admits the following limit values for t ∈ {0, 1}:
fn,ε(0) = fn −

βδ

2
+ On(1),

fn,ε(1) = Ψ
(ν)
0

(∫ 1

0

rε(t)dt
)
− β

2

[
δ + EνB [X]

∫ 1

0

rε(t)dt
]

+ αΨout

(∫ 1

0

qε(t)dt
)

+ On(1).

Proof of Lemma D.3. Using Lemma 5.1 of [11], there exists a constant C > 0 such that for all259

ε ∈ Dβn × [sn, 2sn], one has |fn,ε(0)− fn,(0,0)(0)| ≤ Csn. The proof of the value of fn,ε(0) is then260

straightforwardly done by plugging t = 0 into the definition of fn,ε. At t = 1, the interpolation261

channels of eq. (46) decouple, and we have:262

fn,ε(1) =
1

n
E ln

∫
Kp
P

(S)
0 (dz) exp

{
− β

2

p∑
k=1

∣∣∣Ỹ1,k −
(
ε1 +

∫ 1

0

rε(t)1βdt
)1/2

? zk

∣∣∣2}
+
m

n
EY1,V lnPout

(
Y1

∣∣∣(ε2 +

∫ 1

0

qε(t)dt
)1/2

V +
(
Qz + 2sn − ε2 −

∫ 1

0

qε(t)dt
)1/2

a
)
,

=
1

n

min(n,p)∑
i=1

∫
K

dYDβX
e−

β
2 |Y−Si(R1(1,ε))1/2?X|2

(2π/β)β/2
ln
{∫
Dβx e−

β
2 |Y−Si(R1(1,ε))1/2?x|2

}
+

1

n

p∑
i=min(n,p)+1

∫
K

dY
e−

β
2 |Y |

2

(2π/β)β/2
ln
{
e−

β
2 |Y |

2
})

+ αΨout

(∫ 1

0

qε(t)dt
)

+ On(1).
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Recall that R1(1, ε) = (
∫ 1

0
rε(t)dt)1β + On(1), so that up to On(1) terms the Gaussian integration263

on X,x can be performed, which yields a Gaussian integration on Y , and we reach in the end:264

fn,ε(1) = −βp
2n
− β

2n

min(n,p)∑
i=1

ln
(

1 + S2
i

∫ 1

0

rε(t)dt
)

+ αΨout

(∫ 1

0

qε(t)dt
)

+ On(1).

Recall that νB is defined as the asymptotic eigenvalue distribution of SᵀS. By (h3) we have:265

fn,ε(1) = Ψ
(ν)
0

(∫ 1

0

rε(t)dt
)
− β

2

[
δ + EνB [X]

∫ 1

0

rε(t)dt
]

+ αΨout

(∫ 1

0

qε(t)dt
)

+ On(1).

which is what we wanted to show.266

D.2 Free entropy variation267

Lemma D.3 gives a way to compute the free entropy fn by the fundamental theorem of analysis:268

fn = fn,ε(0) +
βδ

2
+ On(1) =

βδ

2
+ fn,ε(1)−

∫ 1

0

f ′n,ε(t)dt. (52)

We define the overlap Q and the overlap matrix Q(M) as
Q ≡ 1

p
(Z?)ᵀz, Q(M) ≡ Q if β = 1, (53a)

Q ≡ 1

p
(Z?)†z, Q(M) ≡ 1

p

(
Re[Z?]ᵀRe[z] Re[Z?]ᵀIm[z]
Im[Z?]ᵀRe[z] Im[Z?]ᵀIm[z]

)
if β = 2. (53b)

Note that Q ∈ K, Q(M) ∈ Sβ(R) for β = 1, 2, and that Re[Q] = Trβ [Q(M)]. Finally, the Gibbs269

bracket 〈·〉n,t,ε is defined as the average over the posterior distribution of eq. (49). Recall that270

uy(z) ≡ lnPout(y|z). We can now state our identity for f ′n,ε(t), a counterpart to Proposition 3 of [9]271

and Proposition 5.2 of [11]:272

Lemma D.4 (Free entropy variation). For all t ∈ (0, 1) and ε ∈ Dβn × [sn, 2sn]:273

f ′n,ε(t) = − 1

2β
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δrε(t)
)
·
(
Q− qε(t)

)〉
n,t,ε

+
βδrε(t)

2
(qε(t)−Qz) + On(1),

in which On(1) is uniform in t, ε, qε, rε.274

Proof of Lemma D.4. The proof is done in two steps. First, we show the following:275

f ′n,ε(t) = −βδrε(t)
2

(Qz − qε(t)]) +
1

2nβ

m∑
µ=1

E
[(
Qz −

‖Z?‖2

p

)∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZ

]
(54)

+
1

2β
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δrε(t)
)
·
(
qε(t)−Q

)〉
n,t,ε

.

We will then build on this result by using the concentration of the free entropy of the interpolated276

model, cf. Theorem D.5 (which is independent of Lemma D.4). From the definition of fn,ε(t), we277

have (denoting Z ≡ Zn,t,ε(Yt, Ỹt) to lighten the notations):278

f ′n,ε(t) = − 1

n
E[∂tHt,ε(Z?,A?; Yt, Ỹt,W,V) lnZ]− 1

n
E〈∂tHt,ε(z, a; Yt, Ỹt,W,V)〉n,t,ε. (55)

The definition ofH in eq. (50) gives, up to On(1) terms1:279

∂tHt,ε(Z?,A?; Yt, Ỹt,W,V) = − βrε(t)

2
√∫ t

0
rε(u)du

p∑
k=1

Z?k · ζk +

m∑
µ=1

∂tSt,µ · u′Yt,µ(St,µ). (56)

1Our conventions for derivatives of real functions of complex variables are reminded in Section F.2.
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By Proposition F.1 (the Nishimori identity), we have:280

E〈∂tHt,ε(z, a; Yt, Ỹt,W,V)〉n,t,ε = E[∂tHt,ε(Z?,A?; Yt, Ỹt,W,V)],

= E
[ m∑
µ=1

∂tSt,µ ·
P ′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

]
+ On(1) = On(1),

as can be seen from eq. (56). The first term of eq. (55) can be written (up to On(1) terms) as the sum281

of four contributions that we will compute successively, using Stein’s lemma (see eqs. (87),(88)). We282

start with the first one:283

βrε(t)

2n
√∫ t

0
rε(u)du

p∑
k=1

E[Z?k · ζk lnZ] =
rε(t)

2n
√∫ t

0
rε(u)du

p∑
k=1

E
[
Z?k ·

d

dζk
lnZ

]
,

=
−βrε(t)

2n
√∫ t

0
rε(u)du

p∑
k=1

E[Z?k · 〈R1(t, ε)1/2 ? (Z?k − zk) + ζk〉n,t,ε],

=
−βrε(t)

2n

p∑
k=1

E[|Z?k |2 − Z?k · 〈zk〉n,t,ε] + On(1)

=
−βδrε(t)

2
(Qz − E[〈Q〉n,t,ε]) + On(1). (57)

We used the Nishimori identity Proposition F.1 in the last equation. We now turn to the second term,284

and in a similar way we reach, by integration by parts with respect to W (recall the definition of the285

Laplace operator in eq. (85)):286

1√
p(1− t)

m∑
µ=1

E
[
[WZ?]µ · u′Yt,µ(St,µ) lnZ

]
=

1

β

m∑
µ=1

E
[‖Z?‖2

p
(∆uYt,µ(St,µ) + |u′Yt,µ(St,µ)|2) lnZ

+
〈[

(u′Yt,µ(St,µ))†u′Yt,µ(st,µ)
]
·
[ (Z?)†z

p

]〉
n,t,ε

]
,

=
1

β

m∑
µ=1

E
[‖Z?‖2

p

∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZ +

〈[
(u′Yt,µ(St,µ))†u′Yt,µ(st,µ)

]
·
[ (Z?)†z

p

]〉
n,t,ε

]
.

We used in the last equation that ∆uy(x) + |u′y(x)|2 = ∆Pout(y|x)/Pout(y|x). Integrating by parts287

with respect to Vµ, A?µ, we obtain in a similar way:288

E
m∑
µ=1

[ qε(t)Vµ√
R2(t, ε)

+
(Qz − qε(t))A?µ√
Qzt−R2(t, ε) + 2sn

]
· u′Yt,µ(St,µ) lnZ

=
1

β

m∑
µ=1

E
[
Qz

∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZ + qε(t)〈u′Yt,µ(St,µ) · u′Yt,µ(st,µ)〉n,t,ε

]
.

By using the Nishimori identity, we obtain after summing all the previous terms the sought eq. (54):289

f ′n,ε(t) = −βδrε(t)
2

(Qz − qε(t)) +
1

2nβ

m∑
µ=1

E
[(
Qz −

‖Z?‖2

p

)∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZ

]
+

1

2β
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δrε(t)
)
· (qε(t)−Q)

〉
n,t,ε

.

To finish the proof, we must therefore just show that limn→∞Bn = 0 uniformly in t, ε, qε, rε, with290

Bn ≡
1

n

m∑
µ=1

E
[(
Qz −

‖Z?‖2

p

)∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZ

]
.
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First, note that291

E
[(
Qz −

‖Z?‖2

p

)∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

]
= E

[(
Qz −

‖Z?‖2

p

)
E
[∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

∣∣∣Z?,St]] = 0,

since
∫

dY∇Pout(Y |S) = 0. Using this, we can write292

Bn =
1

n

m∑
µ=1

E
[(
Qz −

‖Z?‖2

p

)∆Pout(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
(lnZ − fn,ε(t))

]
. (58)

We then follow exactly the lines of Appendix A.5.2 of [9], let us recall its main steps. Starting from293

eq. (58), one uses the Cauchy-Schwarz inequality alongside Theorem D.5 (which is independent of294

Lemma D.4), that gives E[(lnZ/n− fn,ε(t))2]→ 0 uniformly in t. The expectation of the square of295

the other terms in eq. (58) can easily be bounded using hypotheses (H0),(h1?),(h3), uniformly in t.296

Combining these bounds then shows that Bn → 0 uniformly in t, which finishes the proof.297

D.3 Concentration of the free entropy and the overlap298

We denote the mean over ε as:299

Eε[·] ≡
1

snVol(Dβn)

∫
Dβn

dε1

∫ 1

0

dε2[·].

In [9, 11, 12], the authors give a quite technical proof of the concentration of the free entropy and the300

overlap of an interpolated system close to the one described in Section D.1. We present here two301

results of this type. The first one concerns the concentration of the free entropy of the interpolated302

system1. It is very similar to Theorem 6 of [9].303

Theorem D.5 (Free entropy concentration). Under the assumptions of Theorem 2.2, there exists a304

constant C > 0 that does not depend on n, t, ε and such that for all n, t, ε, qε, rε:305

E
[( 1

n
lnZn,t,ε(Yt, Ỹt)−

1

n
E lnZn,t,ε(Yt, Ỹt)

)2]
≤ C

n
.

Our second theorem concerns the concentration of the overlap. It will follow as an almost immediate306

consequence of a result of [12]. Before stating it, we introduce a regularity notion for our interpolation307

functions of eq. (45):308

Definition D.6 (Regularity). The families of functions (qε), (rε) for ε ∈ Dβn× [sn, 2sn] are said to be309

regular if there exists γ > 0 such that for all t ∈ [0, 1] the mapping ε 7→ R(t, ε) ≡ (R1(t, ε), R2(t, ε))310

is a C1 diffeomorphism whose Jacobian Jn,ε(t) satisfies Jn,ε(t) ≥ γ for all t ∈ [0, 1] and all ε.311

We can now state our theorem on the concentration of the overlap Q:312

Theorem D.7 (Overlap concentration). Under (H0),(h1?),(h2),(h3), and if the functions (qε, rε) are313

regular (cf. Definition D.6), then there exists a sequence sn going to 0 (arbitrarily slowly) such that314

Eε
∫ 1

0

dt E〈|Q− E〈Q〉n,t,ε|2〉n,t,ε = On(1),

with On(1) uniform in the choice of rε, qε.315

The rest of this section is dedicated to the proofs of Theorem D.5 and Theorem D.7.316

D.3.1 Proof of Theorem D.5317

The proof described in Section E.1 of [9] can be adapted verbatim in this setting. It relies on two318

concentration inequalities [13], that we recall here in the complex and real settings.319

Proposition D.8 (Gaussian Poincaré inequality). Let U ∈ Kn be distributed according toNβ(0,1n),320

and g : Kn → R a C1 function. Recall our conventions for derivatives, see Section F.2. Then321

E[g(U)2]− E[g(U)]2 ≤ 1

β
E[‖∇g(U)‖2].

1Recall the definition of Zn,t,ε in eq. (49).
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Proposition D.9 (Bounded differences inequality). Let B ⊂ K, and g : Bn → R a function such322

that there exists c1, · · · , cn ≥ 0 that satisfy for all i ∈ {1, · · · , n}:323

sup
u1,··· ,un∈Bn

u′i∈B

|g(u1, · · · , ui, · · · , un)− g(u1, · · · , ui−1, u
′
i, ui+1, · · · , un)| ≤ ci.

Then if U ∈ Kn is a random vector of independent random variables with value in B, we have:324

E[g(U)2]− E[g(U)]2 ≤ β

4

n∑
i=1

c2i .

Proposition D.8 is used to show the concentration of (lnZn,t,ε)/n with respect to the Gaussian325

variables ζ, W, A?, V, while Proposition D.9 is used to show the concentration with respect to Z?.326

Using this strategy, the proof of [9] is directly transposed here, and we do not repeat it.327

D.3.2 Proof of Theorem D.7328

We start with a lemma on the average value of Q(M) under E〈·〉, in the complex case.329

Lemma D.10. Assume β = 2. Then{
E〈Q(M)

12 〉n,t,ε = E〈Q(M)
21 〉n,t,ε = On(1),

E〈Q(M)
11 〉n,t,ε − E〈Q(M)

22 〉n,t,ε = On(1),

in which On(1) is uniform in t, ε, qε, rε.330

Proof of Lemma D.10. By the classical theorems of continuity and derivability under the integral
sign, it is easy to see that E〈Q(M)〉n,t,ε is a continuous function of (R1, R2), and moreover that
it admits a Lipschitz constant K > 0, independent of t, ε, qε, rε. Indeed, thanks to hypothe-
ses (H0),(h1?),(h2),(h3), the domination hypotheses of these theorems are satisfied, and one can
easily bound the differential of E〈Q〉 to obtain the existence of the Lipschitz constant K > 0.
Moreover, for ε1 = 0, ε2 = 0, it is easy to check by the Nishimori identity Proposition F.1 that we
have: {

E〈Q(M)
12 〉n,t,ε = E〈Q(M)

21 〉n,t,ε = 0,

E〈Q(M)
11 〉n,t,ε = E〈Q(M)

22 〉n,t,ε.
Using the Lipschitz constant K > 0 (which does not depend on the parameters t, ε, qε, rε) and the331

fact that ε1, ε2 = O(sn) = On(1), this ends the proof.332

Moreover, once averaged over ε2 ∈ [sn, 2sn] and t ∈ (0, 1), and using the concentration of the free333

entropy (Theorem D.5), the results of [12] imply the thermal and total concentration of the overlap334

matrix Q(M) defined in eq. (53):335

Lemma D.11. Assuming that (qε, rε) are regular, there exists a sequence sn → 0 (slowly enough)
and η, C > 0 such that (with ‖·‖F the Frobenius norm):

Eε
∫ 1

0

dt E〈‖Q(M) − 〈Q(M)〉n,t,ε‖2F 〉n,t,ε ≤
C

nη
,

Eε
∫ 1

0

dt E〈‖Q(M) − E〈Q(M)〉n,t,ε‖2F 〉n,t,ε ≤
C

nη
.

Proof of Lemma D.11. We can use the results of [12], under two conditions: (i) the concentration336

of the free entropy, which is given here by Theorem D.5, and (ii) the regularity of (qε, rε). Indeed,337

the results of [9] give the concentration results as integrated over the matrix R1(t, ε). Using the338

regularity assumption, we can lower bound these integrals by integrals over the perturbation matrix339

ε1 (up to a multiplicative constant, which is uniform in all the relevant parameters), which then yields340

Lemma D.11. This argument was also made in a very close setting in [9, 11].341

Using Lemma D.10 (if β = 1 this lemma is not needed) alongside Lemma D.11 yields Theorem D.7,342

since Q = Trβ [Q(M)].343
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D.4 Upper and lower bounds344

Proposition D.12 (Fundamental sum rule). Assume that (qε, rε) are regular (cf Definition D.6), and345

that for all ε ∈ Dβn × [sn, 2sn] and t ∈ (0, 1) we have qε(t) = Trβ [E〈Q(M)〉n,t,ε]. Then:346

fn = Eε
[
Ψ

(ν)
0

(∫ 1

0

rε(t)dt
)

+ αΨout

(∫ 1

0

qε(t)dt
)
− βδ

2

∫ 1

0

qε(t)rε(t)dt
]

+ On(1),

in which On(1) is uniform in the choice of qε, rε.347

Proof of Proposition D.12. The proof is based on Lemma D.3 and Lemma D.4. Replacing their348

results into eq (52), in order to finish the proof, we only need to show that limn→∞ Γn = 0349

(uniformly in rε, qε), with350

Γn ≡
(
Eε
∫ 1

0

dt E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δrε(t)
)
·
(
qε(t)−Q

)〉
n,t,ε

)2

.

By the Cauchy-Schwarz inequality, we can bound:351

Γn ≤ Eε
∫ 1

0

dt E
〈∣∣∣ 1
n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δrε(t)
∣∣∣2〉

n,t,ε

× Eε
∫ 1

0

dt E〈|Q− qε(t)|2〉n,t,ε.

The first term is bounded by a constant C > 0 by Lemma F.2 (recall that rε(t) is bounded as well352

by rmax). By Theorem D.7, the second term is On(1), uniformly in qε, rε, since we assumed that353

qε(t) = Trβ [E〈Q〉]. As the vanishing terms are uniform in qε, rε, this shows that limn→∞ Γn = 0,354

which ends the proof.355

Before obtaining the two bounds from the fundamental sum rule, we need a final preparatory lemma,356

that will imply the regularity of the functions (qε, rε) that we will chose to derive the bounds.357

Lemma D.13 (Regularity). We define Fn(t, R(t, ε)) = (F
(1)
n (t, R(t, ε)), F

(2)
n (t, R(t, ε))), with: F (1)

n (t, R(t, ε)) ≡
(2α

βδ
Ψ′out(Trβ [E〈Q(M)〉n,t,ε])

)
1β ,

F (2)
n (t, R(t, ε)) ≡ Trβ [E〈Q(M)〉n,t,ε].

Then Fn is a continuous function from its domain to R2. Moreover, it admits partial derivatives
with respect to both R1 and R2 on the interior of its domain. We have, uniformly over the choice of
(qε, rε): 

lim inf
n→∞

inf
t∈(0,1)

inf
ε1∈Dn

ε2∈[sn,2sn]

β∑
l=1

∂(F
(1)
n )ll

∂(R1)ll
(t, R(t, ε)) ≥ 0,

∂F
(2)
n

∂R2
(t, R(t, ε)) ≥ 0.

Proof of Lemma D.13. The proof is very close to the arguments of Lemma 5.5 of [11]. The continuity358

and derivability follow from standard theorems of continuity and derivation under the integral sign,359

thanks to hypotheses (H0),(h1?),(h3). Indeed, under these boundedness assumptions, the domination360

hypotheses of these theorems are straightforwardly satisfied. Let us start with the first inequality. We361

can easily write:362

β∑
l=1

∂(F
(1)
n )ll

∂(R1)ll
=

2α

βδ
Ψ′′out(Trβ [E〈Q(M)〉])

β∑
l=1

∂TrβE〈Q(M)〉
∂(R1)ll

.
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The convexity of Ψout was already derived so that Ψ′′out ≥ 0. Moreover, since R1 is the SNR matrix363

of a linear channel, we know that the matrix ∇R1E〈Q(M)〉 is positive [11]. In particular, its trace is364

always positive, and by Lemma D.10:365

β∑
l=1

∂TrβE〈Q(M)〉
∂(R1)ll

= Trβ [∇R1
E〈Q(M)〉]︸ ︷︷ ︸
≥0

+On(1),

with a On(1) uniform in t, ε, rε, qε. This shows the first inequality. Let us sketch the argument for the366

second inequality. The trace of Q(M) is directly related to the MMSE on the complex vector Z? by:367

1

p
MMSE(Z?|Yt, Ỹt,V,W) =

1

p
E[‖Z? − 〈z〉‖2] = Qz − Trβ [E〈Q(M)〉].

The fact that the MMSE should decrease as the SNR R2 increases, for a channel of the type of368

eq. (46a), is very natural, and it was proven in Proposition 6 of [9], which applies here. This369

proposition yields that Trβ [E〈Q(M)〉] is a nondecreasing function of R2, which ends the proof.370

Finally, we define the replica-symmetric potential, that appears in Proposition D.1:371

fRS(q, r) ≡ −βδrq
2

+ Ψ
(ν)
0 (r) + αΨout(q).

D.4.1 Lower bound372

Proposition D.14 (Lower bound). Under the assumptions of Theorem 2.2, the free entropy fn373

satisfies:374

lim inf
n→∞

fn ≥ sup
r≥0

inf
q∈[0,Qz ]

fRS(q, r).

Proof of Proposition D.14. We fix r ≥ 0 and R1(t) = ε1 + rt1β . We then choose R2(t) as the375

unique solution to the ordinary differential equation:376

R′2(t) = Trβ [E〈Q(M)〉n,t,ε], (64)

with boundary condition R2(0) = ε2. We denote this unique solution as R2(t) = ε2 +
∫ t

0
qε(r; v)dv.377

The ODE of eq. (64) can easily be seen to satisfy the hypotheses of the parametric Cauchy-Lipschitz378

theorem (as a function of the initial condition ε2), and by the Liouville formula (cf Lemma A.3 of379

[11]), the Jacobian Jn,ε(t) of ε 7→ R(t, ε) ≡ (R1(t, ε), R2(t, ε)) verifies:380

Jn,ε(t) = exp
(∫ t

0

∂Trβ [E〈Q〉n,u,ε]
∂R2

(u,R(u, ε))du
)
≥ 1,

in which the inequality is a consequence of Lemma D.13. The functions are thus regular in the381

sens of Definition D.6, and moreover the local inversion theorem implies that ε 7→ R(t, ε) is a382

C1 diffeomorphism. We can therefore use the fundamental sum rule Proposition D.12 as all its383

hypotheses are verified. We reach:384

fn = Eε
[
Ψ

(ν)
0 (r) + αΨout

(∫ 1

0

qε(r; t)dt
)
− βδr

2

∫ 1

0

qε(r; t)dt
]

+ On(1),

= Eε
[
fRS

(∫ 1

0

qε(r; t)dt, r
)]

+ On(1),

≥ inf
q∈[0,Qz ]

fRS(q, r) + On(1).

Since this is true for all r ≥ 0 we easily obtain the sought lower bound.385
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D.4.2 Upper bound386

We now prove the final upper bound, which will end the proof of Lemma D.2.387

Proposition D.15 (Upper bound). Under the assumptions of Theorem 2.2, the free entropy fn388

satisfies:389

lim sup
n→∞

fn ≤ sup
r≥0

inf
q∈[0,Qz ]

fRS(q, r).

Proof of Proposition D.15. We will choose R(t, ε) = (R1(t, ε), R2(t, ε)) as the solution to the390

ordinary differential equation:391

∂tR1(t, ε) =
2α

βδ
Ψout

[
Trβ [E〈Q(M)〉n,t,ε]

]
1β , ∂tR2(t, ε) = Trβ [E〈Q(M)〉n,t,ε], (65)

with initial conditions R(0, ε) = (ε1, ε2). Let us denote this equation as ∂tR(t) =392

(Fn,1(t, R(t)), Fn,2(t, R(t))). As in Section D.4.1, the parametric Cauchy-Lipschitz theorem implies393

the existence, unicity and C1 regularity of R(t, ε) as a function of (t, ε). We denote this unique394

solution1 as R1(t, ε) = ε1 + (
∫ t

0
rε(v)dv)1β , R2(t, ε) = ε2 +

∫ t
0
qε(v)dv. Again, the Liouville395

formula yields that the Jacobian Jn,ε(t) of the map ε 7→ R(t, ε) is given by:396

Jn,ε(t) = exp
(∫ t

0

{ β∑
l=1

∂(Fn,1)ll
∂(R1)ll

(s,R(s, ε)) +
∂Fn,2
∂R2

(s,R(s, ε))
}

ds
)
. (66)

Then, by Lemma D.13, we have that lim infn→∞ inft infε Jn,ε(t) ≥ 1. In particular, this implies that397

(qε, rε) are regular in the sense of Definition D.6. We have all that is needed to apply Proposition D.12398

and we reach:399

fn = Eε
[
Ψ

(ν)
0

(∫ 1

0

rε(t)dt
)

+ αΨout

(∫ 1

0

qε(t)dt
)
− βδ

2

∫ 1

0

qε(t)rε(t)dt
]

+ On(1).

Since Ψout and Ψ
(ν)
0 are convex, Jensen’s inequality implies:400

fn ≤ Eε
∫ 1

0

dt
[
Ψ

(ν)
0 (rε(t)) + αΨout(qε(t))−

βδ

2
qε(t)rε(t)

]
+ On(1),

≤ Eε
∫ 1

0

dtfRS(qε(t), rε(t)) + On(1)

Note that we have401

fRS(qε(t), rε(t)) = inf
q∈[0,Qz ]

fRS(q, rε(t)).

Indeed, the function q 7→ fRS(q, rε(t)) is convex, and its derivative is zero for q = qε(t) by definition402

of (rε, qε), cf eq. (65). Therefore, we have:403

fn ≤ Eε
∫ 1

0

dt inf
q∈[0,Qz ]

fRS(q, rε(t)) + On(1),

≤ sup
r≥0

inf
q∈[0,Qz ]

fRS(q, rε(t)) + On(1),

which ends the proof.404

D.5 Proof of the MMSE limit405

As mentioned in the main part of this work, the MMSE statement in Conjecture 2.1 is stated informally.
The main reason is that obtaining the MMSE limit generically requires many technicalities, to account
for the possible symmetries of the system, see e.g. Theorem 2 of [9] which performs such an analysis.

1Notice in particular that the first equation of eq. (65) implies that the derivative ∂tR1(t, ε) is always a
diagonal matrix in Sβ(R).
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To simplify the analysis, we “break” this symmetry by adding a side channel with an arbitrarily small
signal-to-noise ratio. Formally, we consider the following inference problem made of two channels: Yt,µ ∼ Pout

(
·
∣∣∣ 1√
n

n∑
i=1

ΦµiX
?
i

)
µ = 1, · · · ,m (67a)

Ỹt =
√

ΛX? + Z′, Z′ ∼ Nβ(0,1n), (67b)

with Λ > 0 (arbitrarily small). We can now state our precise statement on the MMSE:406

Proposition D.16. Consider the inference problem of eq. (67), under (H0),(h1),(h2),(h3). We denote407

〈·〉 the average with respect to the posterior distribution of x under the problem of eq. (67). The408

minimum mean squared error is achieved by the Bayes-optimal estimator X̂opt = 〈x〉, and it satisfies409

as n→∞:410

lim
n→∞

MMSE = lim
n→∞

1

n
E‖X? − 〈x〉‖2 = 1− q?x, (68)

with q?x the solution of the extremization problem in eq. (6), taking into account the additional side411

information of eq. (67b).412

Proof of Proposition D.16. With the side channel added, this proposition will follow from an appli-413

cation of the classical I-MMSE theorem [14]. We denote 〈·〉 the mean under the posterior distribution414

of x under the channels of eq. (67), and E the average with respect to the “quenched” variables415

Φ,Z′,X?. The free entropy fn(Λ) is defined as the average of the log-normalization of the posterior416

distribution:417

fn(Λ) ≡ 1

n
E ln

∫
Kn
P0(dx)

[ m∏
µ=1

Pout

(
Yt,µ

∣∣∣ 1√
n

n∑
i=1

Φµixi

)]e− β2 ∑n
i=1

∣∣Ỹt,i−√Λxi

∣∣2
(2π/β)nβ/2

.

We can easily replicate the adaptive interpolation analysis of Theorem 2.2 (see Section D) to this418

case, and we reach the following result for the asymptotic free entropy f(Λ) of eq. (67):419

Lemma D.17. For all Λ > 0, we have limn→∞ fn(Λ) = f(Λ), given by:420

f(Λ) = sup
qx∈[0,1]

sup
qz∈[0,Qz ]

[I0(qx,Λ) + αIout(qz) + Iint(qx, qz)], (69)

with Iout, Iint given in Conjecture 2.1, and:421

I0(qx,Λ) ≡ inf
q̂x≥0

[
− βq̂xqx

2
+

∫
K2

Dβξ dỹ

∫
P0(dx)

e−
βq̂x

2 |x|
2+β
√
q̂xx·ξ− β2 |ỹ−

√
Λx|2

(2π/β)β/2

ln

∫
P0(dx)

e−
βq̂x

2 |x|
2+β
√
q̂xx·ξ− β2 |ỹ−

√
Λx|2

(2π/β)β/2

]
.

Proof of Lemma D.17. By Proposition D.1, one can simply replicate the adaptive interpolation422

analysis of Section D to this model, and this will prove the required formula. The precise form of423

I0(qx) is very easy to compute.424

We can then use the I-MMSE formula [14], that yields that for any Λ,425

lim
n→∞

MMSE = − 2

β
∂Λf(Λ). (70)

Moreover, by Lemma D.17, q?x, q̂
?
x is a solution of the equation:426

q?x =
1

(2π/β)β/2

∫
Dβξdỹ

∣∣∣ ∫ P0(dx) x e−
βq̂?x

2 |x|
2+β
√
q̂?xx·ξ−

β
2 |ỹ−

√
Λx|2

∣∣∣2∫
P0(dx)e−

βq̂?x
2 |x|2+β

√
q̂?xx·ξ−

β
2 |ỹ−

√
Λx|2

. (71)

From the expression of I0 in Lemma D.17 and eq. (71), it is then a straightforward calculation to see427

that −(2/β)∂Λf(Λ) = 1− q?x, which ends the proof.428
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D.6 Proof of Theorem 2.2: the Gaussian matrix case429

In this subsection, we place ourselves under (H0),(h′1) and sketch how the proof performed in the430

previous sections directly extends under these hypotheses. Note that here 〈λ〉ν = α, soQz = Qx = ρ.431

First, we can state a very similar result to Proposition D.1, simplifying Conjecture 2.1 in this setting:432

Proposition D.18. Under (H0),(h′1), the replica conjecture 2.1 reduces to:433

lim
n→∞

1

n
E lnZn(Y) = sup

q̂≥0
inf

q∈[0,ρ]

[
− βqq̂

2
+ ΨP0

(q̂) + αΨout(q)
]
.

with qz,Ψout defined in Proposition D.1, and ΨP0
(q̂) defined for q̂ ≥ 0 by:434

ΨP0
(q̂) ≡ EξZ0(

√
q̂ξ, q̂) lnZ0(

√
q̂ξ, q̂),

with Z0 defined in eq. (7).435

Proof of Proposition D.18. The proof follows similar lines to the proof of Proposition D.1, see436

Section E. Let us briefly sketch the main steps. Since Φ is Gaussian, ν is the Marchenko-Pastur437

distribution [15], and one can easily simplify Iint(qx, qz) as:438

Iint(qx, qz) = −αβ
2

[ qx(ρ− qz)
2ρ(ρ− qx)

+ ln(ρ− qx)
]
.

Using then the exact same sup-inf inversion arguments as in Section E, the supremum and infimum
over qz and q̂z are solved by:

qz = qx +
2

β
(ρ− qx)2Ψ′out(qx), (72a)

q̂z =
qx

ρ(ρ− qx)
. (72b)

And finally, we reach that (with the notations of Conjecture 2.1)αIout(qz)+Iint(qx, qz) = αΨout(qx).439

Posing q = qx, q̂ = q̂x finishes the proof.440

We turn now to proving the formula of Proposition D.18. The proof goes exactly as in the previous
sections of Section D, by considering instead of eq. (46) the interpolation problem:

{
Yt,µ ∼ Pout

(
·
∣∣∣√1− t

p
[ΦX?]µ +

√
R2(t, ε)Vµ +

√
ρt−R2(t, ε) + 2snA

?
µ

)}m
µ=1

(73a)

Ỹt = (R1(t, ε))1/2 ? X? + ζ, (73b)

where Vµ, A?µ
i.i.d.∼ Nβ(0, 1), and ζ ∼ Nβ(0,1n). The prior distribution on X? is P0. The rest of the441

proof is then a trivial verbatim of Sections D.1 to D.5.442

E Proof of Proposition D.1443

In this section, we prove Proposition D.1: we start from Conjecture 2.1 and derive eq. (41). Note that444

by (h2) we have 〈λ〉ν = αEνB [X]/δ. We begin by recalling some sup-inf formulas, before turning445

to the actual proof.446

E.1 Some sup-inf formulas447

We recall Corollary 8 of [9], stated here as a lemma:448

Lemma E.1 ([9]). Let f : R+ → R be a C1 convex, non-decreasing, Lipschitz function. Define449

ρ ≡ ||f ′||∞. Let g : [0, ρ] → R be a convex, non-decreasing, Lipschitz function. For (q1, q2) ∈450

R+ × [0, ρ] we define ψ(q1, q2) ≡ f(q1) + g(q2)− q1q2. Then:451

sup
q1≥0

inf
q2∈[0,ρ]

ψ(q1, q2) = sup
q2∈[0,ρ]

inf
q1≥0

ψ(q1, q2).

We can state a corollary for functions of two variables.452
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Corollary E.2. Let f : R2
+ → R be a C1 convex, Lipschitz function which is nondecreasing in each453

of its variables. Define ρ1 ≡ ||∂1f ||∞, ρ2 ≡ ||∂2f ||∞. Let g : [0, ρ1]→ R, g2 : [0, ρ2]→ R be two454

convex, non-decreasing, Lipschitz functions. For (x1, x2, y1, y2) ∈ R2
+ × [0, ρ1]× [0, ρ2] we define455

ψ(x1, x2, y1, y2) ≡ f(x1, x2) + g1(y1) + g2(y2)− x1y1 − x2y2. Then:456

sup
x1,x2≥0

inf
y1,y2∈[0,ρ1]×[0,ρ2]

ψ(x1, x2, y1, y2) = sup
y1,y2∈[0,ρ1]×[0,ρ2]

inf
x1,x2≥0

ψ(x1, x2, y1, y2).

Proof of Corollary E.2. The proof is a verbatim of the proof of Corollary 8 in [9], using that at fixed457

y, x 7→ f(x, y) is ρ1-Lipschitz, while at fixed x, y 7→ f(x, y) is ρ2-Lipschitz.458

E.2 Core of the proof459

We now turn to the proof of Proposition D.1. We begin by simplifying the free entropy potential460

using the Gaussian prior. We start from Conjecture 2.1. Since P0 is Gaussian by (h1), we can easily461

simplify the prior term I0 as:462

I0(qx) = inf
q̂x≥0

[βq̂x(1− qx)

2
− β

2
ln(1 + q̂x)

]
=
βqx
2

+
β

2
ln(1− qx).

We now turn to the term Iint(qx, qz). We can write it as:463

Iint(qx, qz) = inf
γx,γz≥0

[β
2

(1− qx)γx +
αβ

2
(Qz − qz)γz −

β

2
〈ln(1 + γx + λγz)〉ν

]
(74)

− β

2
ln(1− qx)− βqx

2
− αβ

2
ln(Qz − qz)−

αβqz
2Qz

.

So we have, using Corollary E.2, that if f ≡ supqx∈[0,1] supqz∈[0,Qz ][I0(qx) + αIout(qz) +464

Iint(qx, qz)] is the conjectured limit of the free entropy:465

f = sup
qx∈[0,1]

sup
qz∈[0,Qz ]

inf
γx,γz≥0

[
αIout(qz) +

β

2
(1− qx)γx +

αβ

2
(Qz − qz)γz

− β

2
〈ln(1 + γx + λγz)〉ν −

αβ

2
ln(Qz − qz)−

αβqz
2Qz

]
,

= sup
γx,γz≥0

inf
qz∈[0,Qz ]

inf
qx∈[0,1]

[
αIout(qz) +

β

2
(1− qx)γx +

αβ

2
(Qz − qz)γz (75)

− β

2
〈ln(1 + γx + λγz)〉ν −

αβ

2
ln(Qz − qz)−

αβqz
2Qz

]
.

The infimum on qx is very easily solved, as we have infqx∈[0,1][−βqxγx/2] = −βγx/2. Note that at466

fixed γz ≥ 0, the variables γx, qz are completely decoupled in eq. (75), so we have supγx infqz =467

infqz supγx . This yields:468

f = sup
γz≥0

inf
qz∈[0,Qz ]

sup
γx≥0

[
αIout(qz) +

αβ

2
(Qz − qz)γz

− β

2
〈ln(1 + γx + λγz)〉ν −

αβ

2
ln(Qz − qz)−

αβqz
2Qz

]
,

= sup
γz≥0

inf
qz∈[0,Qz ]

[β
2

[
α(Qz − qz)γz − α

qz
Qz
− 〈ln(1 + λγz)〉ν − α ln(Qz − qz)

]
+ αIout(qz)

]
.

Recall the form of Iout in Conjecture 2.1 and that Q̂z = 1/Qz . Using the form of Iout, we have with469

the notations of Proposition D.1:470

f = sup
γz≥0

inf
qz∈[0,Qz ]

inf
q̂z≥0

[β
2

[
α(Qz − qz)γz − α

qz
Qz
− 〈ln(1 + λγz)〉ν − α ln(Qz − qz)

− αqz q̂z − α ln(q̂z + 1/Qz) + αQz q̂z
]

+ αΨout(
√
Q2
z q̂z/(1 +Qz q̂z))

]
.
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Again, we use that at fixed qz , the variables q̂z, γz are decoupled. So using again Lemma E.1, we have471

schematically supγz infqz inf q̂z = supqz inf q̂z infγz = supq̂z infγz infqz . We can then explicitly472

solve the infimum on qz , which yields:473

f = sup
q̂z≥0

inf
γz≥0

[β
2

[
− 〈ln(1 + λγz)〉ν + α ln(1 + γz(Qz − q(q̂z)))

]
+ αΨout(q(q̂z))

]
,

with474

q(q̂z) ≡
Q2
z q̂z

1 +Qz q̂z
. (76)

Note that q is a strictly increasing smooth function of q̂z , with q(0) = 0 and q(+∞) = Qz . So we475

have:476

f = sup
q∈[0,Qz ]

inf
γz≥0

[β
2

[
− 〈ln(1 + λγz)〉ν + α ln(1 + γz(Qz − q))

]
+ αΨout(q)

]
, (77)

We then state a technical lemma:477

Lemma E.3. Under hypothesis (h2), one has for every q ∈ [0, Qz]:478

inf
γz≥0

[α ln(1 + γz(Qz − q))− 〈ln(1 + λγz)〉ν ] = inf
q̂≥0

[δq̂(Qz − q)− EνB ln(1 + q̂X)].

Using Lemma E.3 in eq. (77), and inverting the sup-inf by Lemma E.1 finishes the proof of Proposi-479

tion D.1. In the remaining of the section we prove Lemma E.3480

E.3 Proof of Lemma E.3481

If q = Qz , the equality is trivially satisfied, so let us assume 0 ≤ q < Qz . Let us denote h(γz) ≡482

α ln(1 + γz(Qz − q))− 〈ln(1 + λγz)〉ν . Recall that Qz = EνB [X]/δ. Since α ≥ 1− ν({0}) and483

q < Qz , one easily checks that h is lower-bounded, so the infimum is always well-defined. We484

introduce µ the asymptotic measure of ΦΦ†/n, and we denote gµ(z) ≡ 〈(λ− z)−1〉µ its Stieltjes485

transform. For every function f , one has 〈f(λ)〉ν = α〈f(λ)〉µ + (1− α)f(0). This allows to write:486

h(γz) = α ln(1 + γz(Qz − q))− α〈ln(1 + λγz)〉µ.

We will use the following equation, valid for every γz ≥ 0 and any positively supported measure µ:487

〈ln(γz + λ)〉µ = inf
γ̃z≥0

[
γz γ̃z +

∫ γ̃z

0

Rµ(−t)dt− ln γ̃z − 1
]
, (78)

in whichRµ is the so-called “R-transform” of µ, defined asRµ(−x) ≡ g−1
µ (x)+1/x. It is a classical488

result of random matrix theory [16] that if µ is positively supported, t 7→ Rµ(−t) is well-defined489

on R+. We finish the proof of Lemma E.3, before proving eq. (78). By a classical result of random490

matrix theory [15], we know the R-transform of µ as a function of νB :491

Rµ(−t) = EνB
[ X

δ + αtX

]
. (79)

Combining eq. (78) and eq. (79), we reach:492

inf
γz≥0

h(γz) = inf
γz≥0

sup
γ̃z≥0

[
α ln(1 + γz(Qz − q)) + α− αγ̃z

γz
+ α ln

γ̃z
γz
− EνB ln

(
1 +

α

δ
Xγ̃z

)]
.

Using Lemma E.1 to invert the inf-sup, we have:493

inf
γz≥0

h(γz) = inf
γ̃z≥0

sup
γz≥0

[
α ln(1 + γz(Qz − q)) + α− αγ̃z

γz
+ α ln

γ̃z
γz
− EνB ln

(
1 +

α

δ
Xγ̃z

)]
.

The supremum on γz is now completely tractable, and we have:494

inf
γz≥0

h(γz) = inf
γ̃z≥0

[
α(Qz − q)γ̃z − EνB ln

(
1 +

α

δ
Xγ̃z

)]
.
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Doing the replacement q̂ ≡ αγ̃z/δ yields Lemma E.3. We now prove eq. (78), which will finish the495

proof. It follows from a classical result used in random matrix theory, see e.g. [8] for an application of496

these calculations to spherical integrals. Recall that gµ is smooth and strictly increasing on (−∞, 0),497

as µ is positively supported. It is easy to see by differentiation that the infimum in eq. (78) is attained498

at γ̃z = gµ(−γz). We then use some manipulations:499

inf
γ̃z≥0

[
γz γ̃z +

∫ γ̃z

0

Rµ(−t)dt− ln γ̃z

]
= γzgµ(−γz) +

∫ gµ(−γz)

0

Rµ(−t)dt− ln gµ(−γz),

= γzgµ(−γz) +

∫ gµ(−γz)

ε

g−1
µ (t)dt− ln ε+

∫ ε

0

Rµ(−t)dt,

this equation being valid for all ε > 0 sufficiently small. By regularity of the R-transform around 0500

[16],
∫ ε

0
Rµ(−t)dt = Oε(1). Moreover, we can change variables in the other integral, and we reach:501

inf
γ̃z≥0

[
γz γ̃z +

∫ γ̃z

0

Rµ(−t)dt− ln γ̃z

]
= γzgµ(−γz) +

∫ γz

−g−1
µ (ε)

ugµ(−u)du− ln ε+ Oε(1),

(a)
= − ln ε− εg−1

µ (ε) +

∫ γz

−g−1
µ (ε)

gµ(−u)du+ Oε(1),

(b)
= 1 + 〈ln(λ+ γz)〉µ + Oε(1),

in which we used integration by parts in (a) and the definition of the Stieltjes transform in (b). Since502

ε was taken arbitrarily small, taking the limit ε→ 0 ends the proof.503

F Technical lemmas and definitions504

F.1 Some definitions505

Let β ∈ {1, 2}. We denote K = R if β = 1 and K = C if β = 2. Uβ(n) denotes the orthogonal (re-506

spectively unitary) group, and Sβ(R),S+
β (R) the space of real symmetric (resp. positive symmetric)507

matrices of size β. 1β is the identity matrix of size β. To improve clarity, we write Trβ when taking508

the trace of a matrix in the space Sβ(R). The standard Gaussian measure is defined on K as:509

Dβz ≡
( β

2π

)β/2
exp

(
− β

2
|z|2
)

dz. (80)

We define three different types of products in K, using the identification K ' Rβ .{
zz′ the usual product in K, (81a)
z · z′ ≡ Re[zz′] the dot product in Rβ . (81b)

For β = 1, and M, z ∈ R, we also denote M ? z ≡ Mz. For β = 2, with z = x + iy ∈ C, and510

M ∈ S2 written as:511

M ≡ a12 +

(
b c
c −b

)
, (82)

we define M ? z as the matrix-vector product in Rβ :512

M ? z ≡M
(
x
y

)
= az + (b+ ic)z. (83)

Note that in the β = 1 case, all three products are equivalent.513

F.2 Conventions for derivatives514

We often consider functions f : K→ R. The derivatives for such functions are defined in the usual515

sense if K = R, while for K = C we set it in the “function of two variables” sense (with z = x+ iy):516

f ′(z) ≡ ∂xf + i∂yf. (84)
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We will also define its Laplacian if K = C (if K = R then ∆f(x) = f ′′(x)):517

∆f(z) ≡ ∂2
xf + ∂2

yf. (85)

Importantly, this definition is different from the usual Wirtinger definition of a complex derivative,518

because we do not consider holomorphic functions here, but merely differentiable real functions of519

two variables. This definition satisfies the following chain rule formula, for h(x) ≡ f(g(x)) and520

f : K→ R, g : R→ K:521

h′(x) = g′(x) · f ′(g(x)). (86)

As a particular case, we have if f(x) = x · z that f ′(x) = z. We then have the Stein lemma (or522

Gaussian integration by parts), for any C2 function f : K→ R:523 ∫
Dβz (zf(z)) =

1

β

∫
Dβz f ′(z), (87)∫

Dβz (z · f ′(z)) =
1

β

∫
Dβz ∆f(z). (88)

F.3 Nishimori identity524

We state here the Nishimori identity, a classical consequence of Bayes optimality.525

Proposition F.1 (Nishimori identity). Let (X,Y ) be random variables on a Polish space E. Let526

k ∈ N? and (X1, · · · , Xk) i.i.d. random variables sampled from the conditional distribution P(X|Y ).527

We denote 〈·〉Y the average with respect to P(X|Y ), and E[·] the average with respect to the joint528

law of (X,Y ). Then, for all f : Ek+1 → K continuous and bounded:529

E[〈f(Y,X1, · · · , Xk)〉Y ] = E[〈(Y,X1, · · · , Xk−1, X)〉Y ]. (89)

Proof of Proposition F.1. The proposition arises as a trivial consequence of Bayes’ formula:530

E[〈f(Y,X1, · · · , Xk−1, X)〉Y ] = EY EX|Y [〈f(Y,X1, · · · , Xk−1, X)〉Y ],

= EY [〈f(Y,X1, · · · , Xk)〉Y ].

531

F.4 Boundedness of an overlap fluctuation532

Lemma F.2 (Boundedness of an overlap fluctuation). Under (H0), one can find a constant C > 0533

independent of n, t, ε such that for any r ≥ 0:534

E
〈∣∣∣ 1
n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δr
∣∣∣2〉

n,t,ε
≤ 2β4δ2r2 + C. (90)

Proof of Lemma F.2. We directly have:535

E
〈∣∣∣ 1
n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δr
∣∣∣2〉

n,t,ε

≤ 2β4δ2r2 + 2E
〈∣∣∣ 1
n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)
∣∣∣2〉

n,t,ε

We can bound |u′Yt,µ(s)| for any s ∈ K by using the formulation of the channel described in eq. (2),536

which allows to formally write:537

u′Yt,µ(s) = lim
∆↓0

∫
PA(da)∂sϕout(s, a)(Yt,µ − ϕout(s, a))e−

1
2∆ (Yt,µ−ϕout(s,a))2∫

PA(da)e−
1

2∆ (Yt,µ−ϕout(s,a))2
,

in which we used a Gaussian representation of the delta distribution. This amounts to add a small538

Gaussian noise to the model of eq. (2), and effectively write it as:539

Yµ ∼ ϕout(Sµ, Aµ) +
√

∆Z ′µ, (91)
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with Z ′µ
i.i.d.∼ N (0, 1), and then take the ∆→ 0 limit. We have |Yt,µ| ≤ ‖ϕout‖∞ +

√
∆|Z ′µ|, and540

thus taking ∆→ 0 we reach:541

|u′Yt,µ(s)| ≤ 2 ‖ϕout‖∞ ‖∂sϕout‖∞ .

The right-hand side of the last inequality is bounded by hypothesis (H0), and in the end, we have:542

E
〈∣∣∣ 1
n

m∑
µ=1

u′Yt,µ(St,µ)†u′Yt,µ(st,µ)− β2δr
∣∣∣2〉

n,t,ε
≤ 2β4δ2r2 + 25 ‖ϕout‖4∞ ‖∂sϕout‖4∞ ,

which ends the proof.543
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