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Phase retrieval in high dimensions:
Statistical and computational phase transitions

SUPPLEMENTARY MATERIAL

Many notations and definitions used throughout this supplementary material are given in Sec-
tions [FIJF.2] The Python code that produced the numerical data used in Figures[T|2]3] as well as
the data itself, are given alongside this material, and is dependent on the open-source TrAMP library
[L]. We provide in particular an “example” notebook which contains a detailed presentation of
the functions necessary to generate both the state evolution and the G-VAMP data for the complex
Gaussian matrix case.

A The replica computation of the free entropy

In this section, which has a more pedagogical purpose, we perform the replica calculation that gives
Conjecture 2.1} This calculation for real matrices was already performed in [2]], and as we will
see it generalizes to complex valued signal and matrices. Note that we restricted ourselves to a
Bayes-optimal inference problem, while the setting of [2] includes possibly mismatched modelsﬂ

A.1 Setting

We let n, m — oo with m/n — « > 0. We assume that we have access to a prior distribution P
on K and a channel distribution P, (y|z), of “observations” y € R conditioned by a latent variable
z € K. We are given data Y € R™ generated as:

1 n
Yu ~ out(' ‘%ZQMX;)’
=1

in which X* "X Py (with E|X*2 = p > 0), and & € K™*" is a matrix that is both left and
right orthogonally (respectively unitarily) invariant, meaning that for all O, U € Ug(m) x Ug(n),

® < 0dU. Compared to Conjecture [2.1, we added a left-invariance hypothesis. However the
analysis of G-VAMP [3| 4] shows that this left invariance is actually not needed for the result, and
thus we state Conjecture [2.T|for matrices that are only right-invariant, but we use the left invariance
to simplify the following (heuristic) calculation. Moreover, we assume that the asymptotic eigenvalue
distribution of ®T® /n is well-defined and we denote it v, and that the eigenvalue distribution of
&1 ® /n has large deviations in a scale at least n' " for an i > 0. The partition function is:
Z,(Y) = / 1 Potdzs) T Pout (Y#’i > @)
K™ =1 u=1 Vn i=1
The replica trick [5] consists in computing the p-th moment of the partition function for arbitrary
integer p, before extending this expression analytically to any p > 0 and using the formula:

1 1
lim —EgylnZ,(Y) =1lim lim —InEs y[Z,(Y)?].
n—oo N pl0 n—o0 NP

This method is obviously non-rigorous given the inversion of limits p | 0 and n — oo, as well as the
analytic continuation to arbitrary p > 0 of the p-th moment. However, it has achieved tremendous
success in the study of spin glasses and inference problems, see e.g. [6].

A.2 Computing the p-th moment of the partition function

Thanks to Bayes-optimality, we can easily write the average of Z,(Y)? as an average over p + 1
replicas of the system, by considering X* as the replica of index 0. We obtain for any p > 1:

E[Z,(Y)"] = Eq,/m dYﬁ {[/Kﬁpo(dzg)/K ﬁ Az Pout (Val2f) |8 (2 — ‘3’%)} (1)
a=0 i=1 pn=1

"For a mismatched model, the replica symmetry assumption, discussed below, is generically not valid.




35
36
37

38
39
40
41
42
43

44
45
46

47
48

49

50

52
53
54
55
56

57
58

59
60

61

The first step is to decompose eq. (I) into three terms, corresponding to the prior Py, the channel
P,ut, and the “delta” term. Note that the matrix ® only appears in the last “delta” term. By left and
right orthogonal (resp. unitary) invariance of ®, the quantity

ol [T - o)

is determined by the value of the overlaps Q° = {(z%)1z"/m}? ,_ and Q" = {(x*)Tx"/n}? ,_,,
which are positive symmetric (Hermitian in the complex case) matrices. As is standard in such rephca
calculations, we will constraint the terms in eq. (1)) by the value of these overlaps, before performing
a Laplace method on the resulting function of the overlaps. By A,, >~ B,,, we will mean equivalence
at leading exponential order, that is (In A4,,)/n = (In B,,)/n + 0,(1). We introduce in eq. (I the

term:
1= [ I a0 deq| [[omQs - &)x)] [ ] sm@i, - @)1
0<a<b<p a<b a<b
‘We can use a Fourier transformation of the delta terms, which allows in the end to transform eq.@)

into the product of three independent terms. Performing the saddle-point on Q*, Q*, we obtain the
corresponding result:

1 xT z xr z
Jim = In By @20 (Y)P] = qug [Lo(p, Q") + alout(p, Q%) + Iint(p, Q*, Q7))
in which the supremum is made over positive symmetric (Hermitian) matrices, and Iy, Iyt and Iip
are functions whose calculation will be detailed below.

A.2.1 The prior term Iy(p, Q")

We have by the Laplace method after Fourier transformation of the delta terms:

Io(p, Q") ~ / H dQ? /HHPodx — B o Q5 (X, BT —nQE,)

0<a<b<lp a=01i=1

mf[ ZQ bQib +1n/]K liIOPO(dxa)f% Zawb@‘;bﬁzb}.

The infimum is again over positive symmetric (Hermitian) matrices. We also made use of the fact that
the prior P is i.i.d. over the elements of x. A very important assumption of our calculation is replica
symmetry. It amounts to assume that all the (p + 1) replicas are equivalent, and that this symmetry
is not broken by the system at the solution of the Laplace method. Replica symmetry and replica
symmetry breaking are a very rich field of study in statistical physics [3S]]. It has been argued that for
an inference problem in the Bayes-optimal setting (as is the present case) rephca symmetry is never

broken [6]. We can therefore assume a replica symmetric form of Q” Q at the point at which the
saddle point is reached, that we write as:

Qz ez " (x QT *ﬁr o =y

. G Qv - o 4 O. - —da
Qe =1. - e Q = : S e 2)

qx qx T Q:L’ *(jm 7qu e QAI

Note that for 5 € {1, 2}, we have Q, ¢, Qgg, d: € R. After a simple Gaussian transformation of the
squared term using the general identity for xz € K:

g
exp (Glaf?) = | D¢ exp(fr-©),
K
we reach the final expression:
Io(pa Qﬂquf) = (3)

1 R 1 dotia) |, ~ 1P+l
Ainf {MQ‘/EQQE _ M(]mgz + hl/ DB§|:/ Po(dm)e_%”ﬁ‘ﬁ@“‘f}p }
Qu G 2 2 K K
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A.2.2  The channel term I, (p, Q%)

This term is very similar to the prior term detailed in the previous section. We use completely similar
replica symmetric assumptions for the overlaps Q to the ones on Q“ described in eq. (). We reach:

Iout(pv Q27QZ) = Ainf {ﬁ(p - 1)Q2Qz - MQZ@Z + M ln(27r/([3@z)) 4

Q== 2 2

+1n/dv/Dﬂf /d2<ﬂQ )_M Pout (y]2) e*"%'z'wmz'grﬂ}'

We normalized the integrals so that in the limit p — 0, the term inside the logarithm goes to 1, which
will be a useful remark.

A.2.3 The delta term [;,,(p, Q”, Q%)

‘We now turn to the computation of the delta term:

NG

assuming that Q”, Q* are known. Computing this term is central in this replica calculation. We use,
as is done in [2], the identity:

N e

(2e/B) Bm(p+1)

and we invert the n — oo and the € — 0 limit. Let us rewrite the right-hand-side of eq. (6). Since ®
is orthogonally (resp. unitarily) invariant, we can write this term as:

S ik A E[exp{—iZaHOZ“—}@Ux“HQ}} o
(2 /5) Bm(p-H) (2 6/6) Bm(p+1) s

in which the average on the right hand side is made over (®, O, U), with (O, U) uniformly sampled
over the orthogonal groups Ug(m),Ug(n). Note that since the overlap matrices Q, Q” are fixed, one
can show that when U is uniformly distributed over Uz (n), the set of vectors {Ux*}¥'_ is uniformly
distributed over the set of (p + 1) vectors in K™ with overlap matrix Q. There is a completely
similar result for z as well. The consequence is that we can replace in eq. (7) the average over O, U
by an average over the vectors satisfying this constraint:

Iint(pa Qx7Qz) (8)

3
5 Talle = - ex 2

1 InEq fK [, dx* dz* {Hagb d(nQg, — (Xa)fxb)f;(mQZb - (Za)sz)} 67(27re/ﬁ)5mr(pzl)/2
" Ji TT, dx? a2 | T, 6(n@Q, — (x7)1%1)3(mQ3, — (2%)12"))

The numerator and the denominator correspond to two terms, that we denote iyt (p, Q¥, Q%) =

iR (p,Q%, Q%) — 19 (p, Q%, Q%). We can introduce the Fourier-transform of the delta distribution
to compute both terms, as in the previous sections. Let us start with the denominator. It reduces after
Fourier-transformation to a Gaussian integral involving a block-diagonal matrix:

19(p,Q", Q%) ~ g inf [Tr[QxI‘r]—&—ozTr[QZI‘Z]—F(a—l—l)(p—i-l)ln

L (p,Q", Q%) = lim % InEg [aﬁoa(za - i@xa)], 5)

~

2
B
~IndetT* — alndetrﬂ,

with symmetric (Hermitian) positive matrices I'”, T'* of size (p 4+ 1). The infimum is readily solved
by I'* = (Q%)~! and I'* = (Q*)~!, which yields:

Bla+1)(p+1)
2

B af

I, Q"% Q%) ~ (1+1In 25) 7 Indet Q" + =~ Indet Q. 9)
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Let us now compute the numerator with the same technique. We obtain:

n 1 2 1
I (p,Q, Q%) ~ B(p; ) 1 5—7; 48 dnf [Tr[Q“T‘”} + aTr[QT?] — ~ Indet Mn} (10)
n
with a Hermitian matrix M,, having a block structure, that we write here in the tensor product form:
I +11,1)®1, 0%
M, = ( L ”“)q,f SR (11)
dpnn®n Tol+ el ® 55

Using the block-matrix determinant calculation:

A B -
det <C D) =det A x det(D — CA™'B),

we reach:

1 1
—IndetM,, = alndet (I‘Z + f]lp+1)
n €

1 " 1 e 1, 1 -1 ®'e
+ ~Indet (r ®1n+21p+1®7—§(r +71p+1) ®T)’
1 1 o'P
:(a—l)lndet(l"z—kf]l“l)+71ndet(l"””1“z®1l + rw®1 + rz(g@—)
€ n

— (@ — 1) Indet (rz + %1“1) + <lndet (rzrz + g(rw + AI‘Z)>> ,

v

with X distributed according to v, the asymptotic eigenvalue distribution of ®f® /n. This allows to
write [, i(nr? from eq. (I0) and to take the € | 0 limit, keeping the terms that do not vanish:

mt (p,Q , Q%) ~ é mf [Tr[Q°T*] + aTr[Q°T?] — (Indet(T™ + AT?)), . (12)

Finally, we again consider a replica-symmetric assumption for I'”, I'?, in the form:

T % - —V I, —v - —7
Yz Fa: o Ve —Vz Fz Tz

I = . . . . 5 T* = . . ) . . (13)
Yz Yz T, o e PR T,

As for the overlap matrices, we have 7,7, € R. Combining egs. (9) and (I2)) and using the replica
symmetric assumption, we obtain:

2

Elint(pa Q.. Qz) = r yinIf‘ . [(p + 1)Qxe - p(p + 1)%:%0 + O‘(p + 1)erz - ap(p + 1)‘1/}/2

—pIn(lz + 72 + AL + A2))y — (In[le — pye + AT —py2)))] — (@ + 1)(p+ 1) In2me/B

+(p+1)In %ﬂ —pIn(Qr — ¢z) —In(Qs + pgz) — apIn(Q. — ¢.) — aIn(Q. + pq.). (14)

A note on quenched and annealed averages Note that here we did not consider the average over
& to compute Ii,. Indeed, the result only depends on the eigenvalue distribution of ®1® /n, which
(by hypothesis) has large deviations in a scale at least n' ™7 with > 0. Since we are looking at a
scale exponential in n, we can thus consider that this eigenvalue distribution is equal to its limit value
v. However, one must be careful that this argument breaks down if our result starts to be sensitive
to the extremal eigenvalues of ®T® /n. Since these variables typically have large deviations in the
scale n (for instance for Wigner or Wishart matrices [[7]]), this could invalidate our calculation. This
phenomenon is well-known in the study of so-called “HCIZ” spherical integrals, cf [8] for an example
of a rigorous analysis. We argue in Section[A.4]that this possible issue, not discussed in [2]], never
arises for physical values of the overlaps.
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A.2.4 Expressing the p-th moment

Combining the results of the three previous sections, we finally obtain the asymptotics of the p-th
moment of the partition function as:

. 1
lim —1In EZn(Y)p = Sup [IO(pa Qxa qac) + aloyt (pv Qza QZ) + Iint(p» Q:ca qz, sz Qz)}v (15)

n—oo @z

z:4z

in which the three terms are given by eqs. (3)),@),(T4).

A3 The p | 0 limit

One can easily see that the function described in eq. (I3)) is analytic in p. The next step of the replica
method is to analytically extend this expression to arbitrary p > 0, before considering the limit p | 0.

A.3.1 Consistency of the limit

One must be careful that, when extending our expression to arbitrarily small p > 0, we satisfy the
trivial condition lim, o InEZ? = 0. As we will see, this condition will yield constraints on the
diagonals of the overlap matrices. Taking the limit p = 0 in the three terms of eq. yields:

0. Quuae) = it { 5Q,Q, +1n [ Piar)e 812} 16)
. B . A B 2m
Iout(O;Qz’q.z) —lng{ngQz‘Fgln(ﬁQz)}7 (17)
i 0,Qur 0, Qo) = 6 [0 + 2 Qur. — Dnfr, a0, (18)
1 2 2
_ 5(0‘2“(1+1ng)+§1n; - ganI - %ﬂsz.

One can easily solve the saddle point equations on @, Qz, they give I', = 0 and Qz =1/Q.. One
can then find all the remaining variables easily: Q, = p, Q. = 0, T, = p71, Q. = p(\),/a,
Q. =1/Q.,T, = 0. Plugging these parameters yields (we drop the vacuous dependency on ¢, ¢.):

Iy(0,Q, = p) =0, (19a)
Lot (O,Qz - %) - g n gln (%Z%) (19b)
Iint (07QLE =p, QZ = p<2>l/ - _67&(1‘1'111 2%) - %ﬁln p<2>V (190)

Recall that we have

1
lim lim — lnEZn(Y)p = IO + OéIout + Iint>

pl0 n—oo N

so that we obtain from eq. (T9) that indeed the limit is consistent.

A.3.2 The replica symmetric result

Using eq. (T5) for the p-th moment and the consistency conditions we just derived, we obtain after
using the replica trick:

. 1
lim —Eln Zn(Y) = sup [IO(Qx) + anut(Qz) + Iint(Qza QZ)]a (20)

n—oon qw,qz
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with the auxiliary functions:

Io(¢z) = inf [ ﬁqqu /Dﬁgpo (da)e~ 1=l +B\/q7z§1n/

Po(dx)e—%mz%@”&}
42>0 K ’

uﬂ%rzgﬂ—ﬁﬁ%—é Qe+ + 2+ [ DL T3, T6e0.0),
Iint(Qx7QZ) = 'ym%'IylszO {g(l) - qac)’Yw + afﬁ(@z - q,z)’Yz - §<1n(p—l + 7z + /\’Yz)>1/}
_gln(p_Q$>_ﬁ2qpx_a7ﬁ (QZ_Qz>_O;BQq:a

with Q. = p(\),/aand Q, = 1/ QZ Moreover, the domain of the supremum is ¢, € [0, p] and
€ [0, Q]. The function J(§.,y, ) appearing in the expression of I,y is defined as:

T8 = /%mm’ﬁQV@@+%

Note that compared to the calculation presented in the previous sections, we moved a term (Sa/2)(1+
In 27 /) between I, and Iy, and we also made a few straightforward change of variables in the
expression of I,,¢. This is exactly the result given in Conjecture which ends our replica
calculation.

A.4 Concentration of the spectrum of ®'® /n and the absence of saturation

As emphasized in the end of Section[A.2.3] our calculation assumed that the extremization equations
on (v, 7,) always admitted a solution. Moreover, we assumed that this solution is not sensitive to the
extremal eigenvalues of ®® /n. If this assumption is indeed true, the concentration of the spectrum
of ®® /n was assumed to be fast enough to justify our calculation. This important condition can be
phrased by saying that for all physical values of (¢, ¢. ), we must not touch the edge of the spectrum:

1
; + Y + '-Yz)\min(l/) > 0 (21)
We justify here eq. (ZI) for all physical values of (g., ¢»). We will combine three arguments:

(i) Note that in the replica calculation, cf Section [A.2.3] the matrix I'* is assumed to be
Hermitian positive in the p | 0 limit. Since I', = 0, this implies that we must have A, > 0.

(#4) The saddle point equation on g, yieldﬂ

~ dx
e = —F——~ — Ya- (22)
p(p = @)
(#4i) Finally, we will derive a lower bound on ¢,. Note that, as one can see in I from Sec-
tion[A.3.2] ¢, is the optimal overlap achievable in the following scalar inference problem

9]
Yo = Vi X* + 7, (23)

in which one observes Y| and is given Py the prior distribution on X*, and the noise Z
is distributed according to N3(0,1). It is known that the optimal estimator is given by
the average of E[z|Y] under the posterior distribution, whose density is proportional to

B = . . . . .
Py(z)e 2~ @=21* If this is untractable for generic Py, we can consider a suboptimal
estimation by using a Gaussian prior with variance p in the estimation procedure (so that the
problem is mismatched). This yields the bound:

. 212 .
Jx Po(dz) xe_%mzw\@w-f} ' [f de z e~ 50 o= 2 2P +BVTat

w> [ Da w
Jyodu e B o= B el 4BV
(24)

IThis relation is valid even if A, would “saturate” to a constant value that does not depend on (gz, gz )-
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This can easily be simplified by performing the Gaussian integral, and yields the bound:

2 A
P?Ga
2 —. 25
=T e 2
Combining (4¢) and (#4¢) gives:
P — Az
e 2 p—7———F—. (26)
1= %(p—dz)
Since ¢, € [0, p], this implies in particular that -y, > 0. Using this along with (), this implies:
1 1
; + Ve + Vz)\min(l/) > ; > 0, (27)

which is what we wanted to show.

B Derivation of the weak-recovery threshold

We detail here the derivation of the algorithmic weak-recovery threshold awr,algo. As discussed
in Section 3] the weak-recovery threshold can be identified as the sample complexity for which the
trivial fixed point ¢, = ¢, = ¢ = . = V. = 7. = 0 of the state evolution equations becomes
linearly unstable (when it no longer is a local maximum of the free entropy potential). Consider
therefore the state evolution equations, which we repeat here for convenience in a detailed form:

’ f]K Py(dz) x e_gﬁwlx\2+6@x.g‘2
qx Z/Dﬁg —5 . _ o)
K fK Py(dz) e~ 2%l NN
> 2
= q-
1 q= ’fDﬁZ 2 Pout (y’ Joe T Wg)’
RO {Q st Z q .
z z z f B OUt(y‘\/m + mg)
Go= —L -
A qz
QZ(QZ —qz)
1
R 28
P q <p_1+’)/m+)\’}/z>y ( e)
A
R 28
a(Q q=) <p—1+%+)\%>y 286)

Letting g, = q¢. = 4 = 4. = 7= = 7. = 0, it is clear that the equations are satisfied if the signal
distribution Py and the likelihood P, satisfy the following symmetry conditions:

|z1] = |22| = Po(z1) = Po(z2) and  |z1] = [22] = Poutr(y|21) = Pout(y22)-

Assuming these conditions hold, we are interested in studying the linear stability of this local
maximum. Recalling that Q, = p()\),/a, the first, third and fourth equations of eq. (28] can be
linearized:
0q. az&h
0qy = Pz&jm 0Ge = —5 — 0%z, 0G: = 575 — 072 (29)
P’ PAN?

Now focusing on the second state evolution equation (28)), it can be linearized to give:

p2<)\>35(jz(1+/dy’fKDﬁZ(ZP1) Pout(y|\/WZ)’2).
R

dq. = 25 (30)
° Jie Doz Pout (y|y/ 252 2)
Finally, it remains to compute the infinitesimal variation for d-y,, §,:

<>‘2>V O‘</\>V

571 = 5% - 5(]2’ (31a)
PLA%)y — (N3] P[(A%)y — (N3]

Ay a

0 =~ 5 0 + 55704 (31b)
D (S PRV R (PO PR VE)
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Combining egs. (29),(30),(31), we can simplify the system to a closed set equations with only
(0¢s, 04, 0q-,04,). Given the usual heuristics of the replica method and its link with the state
evolution equations of message-passing algorithms [2,16,[10], one can conjecture that the simplest
iteration scheme corresponds to the state evolution of the G-VAMP message passing algorithm:

5qitt = p*q. (32a)

2
gt = LN g (1+/c‘l:q“KDﬁZ('Z|2 1) Py 22025)| )
R Jie D Pous (3] 22022)

St <>‘>1% t Oé<)\>l, ¢

" = e, e e, - o G20
LWH o? _ o
210, — 2 =+ e~ e, —

From these equations, one can easily see that a linear instability of the trivial fixed points appears at
0 = OnWR, Algo Satisfying the equation:

= 2B (14 ]  L5es - Py av‘éﬁi\igﬂz)r]_l). .
%) ® Jie Ds2 Pows (u]) oy i ?)

Indeed at @ = awRr,Algo, the modulus of all the eigenvalues of the size-4 matrix of the linear
system (32) cross 1.

(32b)

6¢," = 10qL. (32d)

v

C The full recovery transition

In this section, we assume a Gaussian standard prior Py = N3(0, 1) and a noiseless phase retrieval
channel, and we show that information-theoretic full recovery is achieved exactly at &« = apr 1T =
B(1 —v({0})). We can assume without loss of generality that (\),, = c, as this amounts to a simple

rescaling of ®, irrelevant under the noiseless channel. This implies in particular that ), = Qz =1.

C.1 The state evolution equations

Since we assumed a Gaussian prior, we have, with Py (y]2) = d(y — |2|?):

— 2
1 ) ‘fKD/;zzPOHt (y’ﬁ + 1;1_2 )’
0=y |i+ [ [ Dt EVIECLL e
. K Jie Doz Pous (] 75 +/185:¢)
o= —2 (34b)
17(]1
~ qz
q> = 1 — Yz (340)
—qz
Qe = a’Yz(l - (Iz)v (34d)
A
1-q)= 7> : 34
ol -0 = (15, (340)

Comparing these equations to Conjecture 2.1} one can see that we imposed 7y, = 0, a straightforward
consequence of the Gaussian prior (see Section [E| where this calculation is detailed for a different
purpose).

C.2 Noisy phase retrieval with small variance

We wish to show that the free entropy of the full recovery solution is the global maximum of the
free entropy potential for « > «yr, while it is never the case for « < arr. However, under a



173 noiseless channel, the free entropy potential might diverge in this point, which indicates towards a
174  regularization procedure. Therefore we consider a noisy Gaussian channel with noise A > 0:

e { -~ 55— 77}

Pout(y|z) = (35)

We will compute the limit, as A | 0, of the free entropy of the “almost perfect” recovery fixed point.
We look for a solution close to the point which corresponds to the best possible recovery:

{ ¢ =1-v({0}), (36a)
¢ =1 (36b)

Indeed it is easy to see that ¢, < 1 — v({0}) since rk[®T®] ~ n(1 — v({0})). We are thus looking
for a fixed point of the state evolution equations (34) that satisfies:

gz =1 —v({0}) + oa(1), (37a)
q. =1+ o0a(1), (37b)
g, ' =v({0})/(1 = v({0})) + 0a(1), (37¢)
it =oa(1). (37d)

175 Let us now precise the asymptotics of these quantities as A | 0. By eq. (34d), we find easily:

1 ({0
al—q) %)

z

176 Then from eq. (34c), we also have:

i a—1+v({0})
? all—gq,)
177 Note that if & < 1, then necessarily v({0}) > 1 — a, so that the quantity in the numerator is always

178 positive. We now turn to eq. (34a). We assume the scaling ;! = cA+o0a(A). We have by Gaussian
179 integration by parts and using the specific form of Pyy;:

(39)

- 2
’fDﬁzzPout(y’ﬁ—F 1122 )
ayDst eV
J DpzPout (y’ﬁ 1/ T4 f)

4=

2
1 JENN =l
/dyDﬁf Viti. T+q N

(1+4d.) J Doz Pous (y o Vs ) Al )

~ 4e.

180 Gaussian integration by parts and our conventions for derivatives of real functions of complex
181 variables are summarized in Section[F2] This yields that 1 — g. = Ac(1 — 4c) + 0 (1). Combining
182 this result with eq. (39), we have

c(l —4c) = c{%y({o})]

This implies ¢ = (1 —v({0}))/(4«), and we finally obtain the leading order asymptotics of g, ¢, 7.
as A — 0:

4o 1
4. = m + oA (A_ ) , (40a)
| g = (1- V({O})(Zéa; L+v({0}) 5 oa(A), (40b)
4o

=T Ala— 1+ v({0})

+oa(A™h). (40c)
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Let us now compute the asymptotics of the three auxiliary functions Iy, [,y and I, of Conjecture@

IO(qm) = g[qz + ln(l - qz)}a

Tous(a:) = =22 = D14 0+ B 4 [ D (0009 0 0.,
o _ z (jz
J(szyag):/DZPout(y’m"" 1+rjz€>’
Iint(Qra QZ) = g[a(l - QZ)’YZ - <1H(1 + )"Yz»l/ - ln(l - qgc) —qz — Othl(l - QZ) - O‘QZ]~

Using eq. {@0) and the specific form of the channel, we reach:

h@d+LM%ﬂg~_5m_1;WWD)

(B-1) In A.
2

InA,

Iout (q,z) ~

Therefore when considering the total free entropy we have

Io(gs) + Tint (o, 02) + @l (g2) ~ 2= 1 = /3<f; — 1+ v({0})

LB —v{0)) —a)
2

InA,

This implies that the full recovery point has a free entropy of —oo for a < apgr 1T = 8(1 — v({0})),
and +oo for @ > apgr,r. Thus this point is always the global maximum of the free entropy for
o > apgr, 1T, While it is never the case for o < apg 1T, which ends our argument.

D Proof of Theorem 2.2

In all this section, we provide the proof of Theorem [2.2| under [(HO)[(hD](h2)[(h3), and we will
work under these hypotheses. In Section[D.6 we show how the proof can be extended to hypothe-

ses|(HO)(h1)

First, we simplify the conjectured expression of the free entropy of Conjecture|2.1|using the particular
form of the prior Py and of the sensing matrix ®. Finally, using|(h1)li(h2)li(h3)[and a proof similar to
the one of [9,[11]], we give a rigorous derivation of this simplified expression. Note that with respect
to the analysis of [9,|11], there are two main novelties in our setting:

(1) The sensing matrix @ is not i.i.d. but has a well-controlled structure, see

(#4) The variables can be complex numbers. We will argue that the arguments generalize to
this case. The physical reason of this generalization is that even in the complex setting, the
overlap will concentrate on a real positive number, as a consequence of Bayes-optimality.

First, we note that we can simplify the replica conjecture under the considered hypotheses:

Proposition D.1. Under|(HO)(hI)|(h2)l(h3), the replica conjecture [2.1|for the free entropy f, =
LEIn Z,(Y) is equivalent to:

lim f, =sup inf [%(EVB [X]—dq) —

n—00 G>0q€[0,Q:]

OBy (1 4+ 0X) +oVon(a)], @D
with Q, = B, ,[X]/0 and U defined in terms of the auxiliary functions introduced in eq. (7):

\I/out(q) = EE /]R dy Zout(y; \/@5» QZ - C]) ln Zout(y; \/553 Qz - q)

Proposition [D.1]is proven in Section [E] To prove the free entropy statement of Theorem [2.2] we
therefore just need to show:

10
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Lemma D.2. Under the assumptions of Proposition the limit of the free entropy f, =
1EIn Z,(Y) is given by eq. (@I).

The following of this section is dedicated to the proof of Lemma|[D.2] We will conclude the proof
of Theorem [2.2]in Section[D.5]and Section [D.6} dedicated respectively to the proof of the MMSE
statement and the extension of the proof to hypotheses|(HO0)lI(A'1)|

The main idea of our proof is to reduce the problem of Lemma|D.2|to a Generalized Linear Model
with a Gaussian sensing matrix, but a non-i.i.d. prior. We make use of the “SVD” decomposition of
B//n = USV!, with U € Us(p), V € Us(n), and S € RP*" a pseudo-diagonal matrix with positive
elements. Leveraging on the fact that the prior Py is Gaussian, and that W is an i.i.d. Gaussian
matrix independent of B, one can see that our estimation problem is formally equivalent to an usual
Generalized Linear Model with m measurements, a signal of dimension p, and a Gaussian i.i.d.
sensing matrix. This is very close to the setup of [9]], a key difference being that here the prior
distribution on the data Z* € KP? is defined as

o If 5 < 1,forevery k € {1,--- ,p}, Z} is distributed as Sy X} with X; "~"" P,

o If§ > 1, forevery k € {1,--- ,n}, Z} is distributed as Sy X} with X} bd Py, while for
every k € {n+1,---,p}, Z} is almost surely 0.

More precisely, we can define rigorously the prior PO(S) described above by its linear statistics. For
any continuous bounded function g : K — R, one has:

/KP P (dz)g(z) = /Kn { 1;[1 Po(day) bo({11k < n)Syartp_y). (42)

Hypothesis|(h1)|implies that we will consider Py = N(0, 1). In the following of the section, we
give the detailed sketch of the proof of Lemma[D.2] Some facts and lemmas will be a generalization
or a consequence of the works of [9] and [[11], and we will refer to them when necessary.

D.1 Interpolating estimation problem

Recall that Q. = p()), /o = E,,[X]/8, and the definition of W, in Proposition[D.1} We define as
well:

Tmax = Sup  Wour(q), (43)
q€[0,Q:]
\I/(()”) (r) = g[TEUB [X]-E,, In(1+ TX)], 0<7<rpax. (44)

Since vp # dg by hypothesis, we can easily check that \Il(()”) is strictly convex, C? and non-decreasing
on [0, "max] - By Proposition 18 of [9], which directly generalizes to the complex case, we know as
well that ¥, is convex, C2, and non-decreasing on [0, Q.], and thus 7y = Pout(Q~). Let us fix

an arbitrary sequence s,, > 0 that goes to 0 as n goes to infinity. We fix €3 € [s,,,25,], and €; € D5,
with

DP = (A€ Ss(R) : VI € {1,8}, i € (2B5n, (28 + 1)s,), VI 1" € {1, 8}, \r € (5n,250)}

D8 is composed of strictly diagonally dominant matrices with positive entries, which implies that
D, C S;(R). Let g, : [0,1] — [0,Q.], re : [0,1] — [0, 7max] be two continuous “interpolation”
functions. For all € € D2 x [s,,,2s,], and all t € [0, 1] we define:

t t
SE(R) 3> Ri(te) =€ + (/ Te(v)dv) 1g, Ry 3 Ra(t,e) =€ +/ ge(v)dv.  (45)
0 0

We consider the following decoupled observation channels:

- m
{YW ~ Out(- ), /Tt[wz*]# + /Ra(t, )V, + /@t — Ralt, ) + 2snA;) }Hzl (46a)
Yo = (Ri(t,€)/*+ 2" + ¢, (46b)

11
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where V,, A, Ny ~" N3(0,1), and ¢ ~ Np(0,1,). The prior distribution on Z* is given by Pés) in
eq. @2). We assume that {V},}}"_; is known, and the inference problem is to recover both A* € K™

and Z* € K” from the observations (Y¢, {Y;,,.}7i-;). Note that R, € Sg' (R), so its (matrix) square
root is always uniquely defined. Recall finally the definition of the  product in Section [F.1] In the
following we will study the system of eq. (@6). In order to state our results fully rigorously, we need
to add an hypothesis that can easily be relaxed:

(h1*) The prior Py has bounded support.

Under this hypothesis, Pés) is still defined by eq. (@2), and we can study the system of eq. (@6).
Nonetheless, this assumption a priori rules out a Gaussian prior for Py, and thus the correspondence
between the system of eq. (@6) and our original model. However, following the arguments of [9],
hypothesis can very easily be relaxed to the existence of the second moment of P, which is then
consistent with a Gaussian prior. In the following, we will thus work under hypothesis[(hT)] but we will
sometimes as well use hypothesis [(217)] without loss of generality. We define u,(z) = In Poy (y]2),
and

/1
S = WZ* ut+ VRt €)V, + \/Qz — Ry(t,e +25nAZ, 47
St = 1/%[WZ]# + VRa(t,€)V,, + /Q.t — Ra(t,€) + 25,a,,. (48)

The posterior distribution in this model can then be written as:
1 . ~
_ Pés) (dZ)D@a efyt,e(zaasYtaYtswsV). (49)
Zn,t,e (th Yt)

To keep the notations lighter we omitted the conditioning on the variables V, W which are assumed
to be known. We defined the Hamiltonian:

Pn,t,e (Z, a’Yty Yt>dZ da =

p
Ht,e(zva; ththwv V) = - Z’U’Yt,u (8t7M é Z

p=1 2
For any ¢t € (0,1), we define the free entropy (the expectation is over all “quenched” variables,
including S if it is random):

2
Vi — (Ri(t, €)Y 2| . (50)

1 ~
fn’g(t) = H]E ln Zn,t,e(Yta Yt)

The following lemma gives the ¢ = 0 and ¢ = 1 limits of the free entropy:
Lemma D.3. f, .(t) admits the following limit values fort € {0,1}:

Frcl0) = fu 2 1 0,0,

Fre(l) = @5”’(/01 re(t)dt> - g[a +E,, [X] /01 rﬁ(t)dt} + aqfout(/ol qe(t)dt> +on(1).

Proof of Lemma[D.3] Using Lemma 5.1 of [11]], there exists a constant C' > 0 such that for all
€ € DS X [sy,25,], one has | f,, (0) — fn.(0,0)(0)| < Cs,. The proof of the value of f,, (0) is then
stralghtforwardly done by plugging ¢ = 0 into the definition of f,, .. Att¢ = 1, the interpolation
channels of eq. (@6) decouple, and we have:

1 (s) B\ '~ ! 1/2 ‘2
fn,e(l)anln/KpPO (dz)exp{ 2; Vi (61+ 0 Te(t)]lﬁdt) X 2 }

. 1 1/2 1 1/2
+ By, v In Pow (Y1 (62 + / qe(t)dt) v+ (Qz + 25, — €3 — / qe(t)dt) a),
0 0
min(n,p) —Bly—s, 1/2 2
1 P 2 ‘Y St(Rl(lve)) *Xl B 1/2 2
1 — LY —Si(R1(1,6))" *xx]
= Z /dYDﬂX @r 5 1n{/Dﬁ$e 2 }

e gIYI?

cLos o e ) v [ o) +ou)

i=min(n,p)+1

3>—~

12
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Recall that R;(1,¢) fo re(t)dt)15 4+ 0,(1), so that up to 0, (1) terms the Gaussian integration
on X, x can be performed Wthh y1e1ds a Gaussian integration on Y, and we reach in the end:

rnrn(n,p)

1
Fre(1) = f% -2 Z In (1 + 52 / ()d ) + a\Ilout(/O qe(t)dt) + on(1).
Recall that v is defined as the asymptotic eigenvalue distribution of STS. By we have:

Foe(1) = \pgw(/ol re(t)dt) - g[a +E,, [X] /01 re(t)dt] + axrfout(/ol qe(t)dt) +on(1).

which is what we wanted to show. O

D.2 Free entropy variation

Lemma [D.3| gives a way to compute the free entropy fn by the fundamental theorem of analysis:

1)
fn = fae(0 )"‘57"‘071(1) +f"€ / fne (52)
We define the overlap @ and the overlap matrix Q(M ) as
Q= %(Z*)Tz, Q) = ¢ it =1, (53)
1. Re[Z*TRe[z] Re[Z*]TT .
Q= ];(z )z, oM = ( e% }TREE} Irﬂz}qﬂﬂ) if 6 =2. (53b)

Note that Q € K, Q™) € S5(R) for 8 = 1,2, and that Re[Q] = Trz[Q*)]. Finally, the Gibbs
bracket (), .. is defined as the average over the posterior distribution of eq. (49). Recall that
y(2) = In Pous(y|2). We can now state our identity for f, .(t), a counterpart to Proposition 3 of [9]
and Proposition 5.2 of [[L1]:

Lemma D.4 (Free entropy variation). Forallt € (0,1) and € € DS x [sy,,25,]:
1 m

uclt) = —555( (3 3 (S 504 = garn) - (Q-alv))
n B‘”“Tﬁ“mw Q)+ o),

in which 0,,(1) is uniform in t, €, g, 7.

Proof of Lemma|D.4} The proof is done in two steps. First, we show the following:

Bore(t) HZ*H APout (Y2 .| St.00)
5 (Q: . Z [( ) Pout(Yt,;| St,,f)t an] (54)

EE St (Sua)t (s10) — 260 - (alt) — @) )

We will then build on this result by using the concentration of the free entropy of the interpolated
model, cf. Theorem (which is independent of Lemma [D.4). From the definition of f,, .(t), we

have (denoting Z = Z,, ; (Y, Y;) to lighten the notations):

f;z,e(t) = -

n,t,e

n,e

1 - 1 -~
f/ (t) = _ﬁE[ath,é(Z*aA*;ththwv V) ln Z} - ﬁ]E<8th75(z7a; ththwv V)>’n,t,6' (55)

The definition of H in eq. (30) gives, up to 0, (1 termﬂ

Bre(t Z Zg - Ce + Z O0tSt uyt (Se,p).  (56)

2\/f0r6 w)du k=1 p=1

'Our conventions for derivatives of real functions of complex variables are reminded in Section

6th,E(Z*7 A*a Yt7 ?tv W7 V) =

13



280 By Proposition[F.T] (the Nishimori identity), we have:
E(0H1e(2.2; Y0, Yo, W, V) = E[0 M, (2, A% Y, Yy, W, V),

)/t 1.|Sf 1)
—E Out 5 5 n 1) = n 1
[Zatgtvﬂ Pout(Y%u|St M):| +o ( ) o ( )a

281 as can be seen from eq. (36). The first term of eq. (33) can be written (up to 0,,(1) terms) as the sum
282 of four contributions that we will compute successively, using Stein’s lemma (see egs. (87),(88)). We
283 start with the first one:

Bre(t) o Ei7 re(t) P . d
_ P NRzr gz = —2 NTE[zp Sz
Zn\/fot re(u)du ; e Qn\/fot re(u)du ;; [ G }
—Bre(t) -

= — 2 NCEZE - (Rt Y2 % (2 — ) + G,

zn\/mk ]

5715 t - * |2 *
ZE ZE12 = ZF - (zk)me) + On(1)
k=1

— #ﬂ()(@z —E[(@)n,t.e]) + on(1). 57)

284 We used the Nishimori identity Proposition [F-I]in the last equation. We now turn to the second term,
285 and in a similar way we reach, by integration by parts with respect to W (recall the definition of the
286 Laplace operator in eq. (83)):

mZE[WZ*]M uh, , (St) In 2]
= 33 B[ a5 + o (S0 02

+ < [(UIYW(St,#))Tu/Yf,,,ﬁ(Styu)} ' [(Z*)Tz} >n,t,5] ’

p

- ZE[HZ*H AP VenlSia) 1, 7 ([, (500 o] [E]) ]

287 We used in the last equation that A, (x) + |y (2)]? = APoui (y]) / Pout (y|z). Integrating by parts
288 with respect to V), A;, we obtain in a similar way:
m
€ t VL - e ) A
EZ[ ()Y, _|_ (Q: —qe(t)) 14 }'ulYt,u(Suu)an
s \/Rg (t,€) \/ta — Rao(t,€) + 2s,

APy (YiplSe.
=53 Z E[QZ thtt Tgtt ,;) InZ + qe(t){ul, | (Sep) -, | (st,“)>n$t7e} .
Pous (Ye,u St

289 By using the Nishimori identity, we obtain after summing all the previous terms the sought eq. (34):

Bére(t) CZHP N AP (VelSe)
7@ a0 + gy 3 (. - ) el 2

f’;L,e(t) = -
25 n,t,e '
290 To finish the proof, we must therefore just show that lim,, _,, B,, = 0 uniformly in ¢, €, ¢, r¢, wWith

o= 230 (0. - ) S Bl 2]

ul

+558( (5 3 ke (51 (1) — B2orc(t)) - (ac(t) - Q))

14
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First, note that

1Z*1* \ APout (Yiul Se.) 1Z11%\ g [ A Pot (Yiul Stn)
- 1Pt _ml(Q, — E 1L,
p ) Pout(}/t,u|5t,u) :| |:(Q ) [ Pout()/t,u|St,u)

since [ dY'V Py (Y|S) = 0. Using this, we can write

B, = % iE{(Qz _ ||Z*||2) A Pout (Y2, St,) (Inz— fn,e(t))] 58)
=1

£[(e

z*,stH -0,

p Pout(}/t,u‘st,u)

We then follow exactly the lines of Appendix A.5.2 of [9]], let us recall its main steps. Starting from
eq. (38), one uses the Cauchy-Schwarz inequality alongside Theorem [D.5](which is independent of
Lemma , that gives E[(In Z/n — f,, (t))?] — 0 uniformly in ¢. The expectation of the square of
the other terms in eq. (58)) can easily be bounded using hypotheses|(H0)li(A1*)|(h3)| uniformly in .

O

Combining these bounds then shows that B,, — 0 uniformly in ¢, which finishes the proof.

D.3 Concentration of the free entropy and the overlap

We denote the mean over € as:

S S T
Bl = ~voop) /Dﬁ ¢ 1/0 deal]

In [9L [11} [12]], the authors give a quite technical proof of the concentration of the free entropy and the
overlap of an interpolated system close to the one described in Section [D.1] We present here two
results of this type. The first one concerns the concentration of the free entropy of the interpolated
systenﬂ It is very similar to Theorem 6 of [9].

Theorem D.5 (Free entropy concentration). Under the assumptions of Theorem[2.2] there exists a
constant C' > 0 that does not depend on n, t, € and such that for all n,t, €, qe,re:

1 ~ 1 - \2 C
E{(—ln2n7t7€(Yt,Yt) _ fIEanm,e(Yt,Yt)) } <=
n n n

Our second theorem concerns the concentration of the overlap. It will follow as an almost immediate
consequence of a result of [12]. Before stating it, we introduce a regularity notion for our interpolation
functions of eq. {@J):

Definition D.6 (Regularity). The families of functions (q.), (re) for € € DS x [s,, 2s,,] are said to be
regular if there exists -y > 0 such that for all t € [0, 1] the mapping € — R(t,e) = (R1(t,€), Ra(t, €))
is a C! diffeomorphism whose Jacobian J,, .(t) satisfies J,, .(t) >~ forall t € [0,1] and all e.

We can now state our theorem on the concentration of the overlap Q:

Theorem D.7 (Overlap concentration). Under|(HO)(h1* [(h2)(h3)} and if the functions (ge,Te) are
regular (cf. Definition|D.6)), then there exists a sequence s,, going to 0 (arbitrarily slowly) such that

1
E. /0 A E(Q — B(Q)nr.c|?

>n,t,e - On(l)a
with 0,,(1) uniform in the choice of re, g..

The rest of this section is dedicated to the proofs of Theorem [D.5]and Theorem

D.3.1 Proof of Theorem[D.3]
The proof described in Section E.1 of [9] can be adapted verbatim in this setting. It relies on two
concentration inequalities [13], that we recall here in the complex and real settings.

Proposition D.8 (Gaussian Poincaré inequality). Let U € K™ be distributed according to N(0, 1,,),
and g : K" — R a C! function. Recall our conventions for derivatives, see Section Then

E[g(U)*] - Elg(U)]* < ZE[|Vg(D)|]

| =

'Recall the definition of Z,, ¢« in eq. @9).
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Proposition D.9 (Bounded differences inequality). Let B C K, and g : B" — R a function such

that there exists c1, - - , ¢, > 0 that satisfy forall i € {1,--- ,n}:
sup g(ua, -+ ug e un) — glug, - ,uifl,u;uiﬂ,m yun)| < ¢
wp,,un €B™
ujeB

Then if U € K" is a random vector of independent random variables with value in B, we have:
IB n
Elg(U)*] - E[g(U)* < 7> ¢
i=1

Proposition [D.8|is used to show the concentration of (In Z,, ; ¢)/n with respect to the Gaussian
variables ¢, W, A*, V, while Proposmon-ls used to show the concentration with respect to Z*.
Using this strategy, the proof of [9] is directly transposed here, and we do not repeat it.

D.3.2 Proof of Theorem [D.7]

We start with a lemma on the average value of Q(*) under E(-), in the complex case.
Lemma D.10. Assume 3 = 2. Then

M M
{E< BV e = EQS e = 04(1),

M M
E(QU) e — B(Q5 Ve = 04(1),

in which 0,,(1) is uniform in t, €, g, 7.

Proof of Lemma[D.10} By the classical theorems of continuity and derivability under the integral
sign, it is easy to see that E(Q(M)>n7t,e is a continuous function of (R;, Ry), and moreover that
it admits a Lipschitz constant K > 0, independent of ¢,€, g., 7. Indeed, thanks to hypothe-
ses|[(HO i|,|(h1*)L|(h2)|,|(h3)|, the domination hypotheses of these theorems are satisfied, and one can
easily bound the differential of E(()) to obtain the existence of the Lipschitz constant K > 0.
Moreover, for ¢; = 0, €2 = 0, it is easy to check by the Nishimori identity Proposition@that we
have:

M M
{E< O e = E(QS >>n,t,e:o7

M
EQU ) e = E(QS Y te.

Using the Lipschitz constant K > 0 (which does not depend on the parameters ¢, €, g, 7¢) and the
fact that €1, 2 = O(sy,) = 0,(1), this ends the proof. O

Moreover, once averaged over €3 € [s,,, 2s,] and ¢ € (0, 1), and using the concentration of the free
entropy (Theorem [D.5), the results of [12] imply the thermal and total concentration of the overlap
matrix Q™) defined in eq. (53):

Lemma D.11. Assuming that (q.,r.) are regular, there exists a sequence s, — 0 (slowly enough)
and 1, C' > 0 such that (with ||-|| - the Frobenius norm):

C

nn’

1
E. / at EYIQMD — QD) [P <
0

1

]Ee/ di ]E<||Q(M) - ]E<Q(M)>n,t,6|‘%>n,t,€ < g

0 n’

Proof of Lemma[D.T1] We can use the results of [12]], under two conditions: (i) the concentration
of the free entropy, which is given here by Theorem|D.5| and (i¢) the regularity of (g, 7). Indeed,
the results of [9] give the concentration results as integrated over the matrix R;(¢,¢€). Using the
regularity assumption, we can lower bound these integrals by integrals over the perturbation matrix
€1 (up to a multiplicative constant, which is uniform in all the relevant parameters), which then yields
Lemma|[D.TT] This argument was also made in a very close setting in [9} [I1]. O

Using Lemma (if B = 1 this lemma is not needed) alongside Lemma [D.T1]yields Theorem[D.7]
since Q = Trg[QM)].
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D.4 Upper and lower bounds

Proposition D.12 (Fundamental sum rule). Assume that (q.,r.) are regular (cf Definition @ and
that for all € € D8 x [s,,,25,] and t € (0,1) we have q.(t) = Trg[E(QM)),, ; .]. Then:

fo=E [0 /O 1 re(0)d) + 0% /0 1 ac(t)at) - % /0 1 ac(t)re(0)d] + 0,(1),

in which 0,,(1) is uniform in the choice of qc, .

Proof of Proposmonml The proof is based on Lemma [D.3] and Lemma [D.4] Replacing their
results into eq (@) in order to finish the proof, we only need to show that lim, ., I';, = 0
(uniformly in 7, g.), with

P = (B [ am((5 30w, (50 (o) 20re0) - (a0 - @) )
n=1 h

By the Cauchy-Schwarz inequality, we can bound:

1 1 9
r, < EE/O dt E<‘E S b (St (s00) — 526r6(t)‘ >
p=1

n,t,e

1
er/O AL E(Q — qe(8)])mte-

The first term is bounded by a constant C' > 0 by Lemma (recall that r.(t) is bounded as well
bY Tmax)- By Theorem|D.7| the second term is ©,,(1), uniformly in ¢, ., since we assumed that
ge(t) = Trg[E(Q)]. As the vanishing terms are uniform in g, r., this shows that lim,,_,, I';, = 0,
which ends the proof. O

Before obtaining the two bounds from the fundamental sum rule, we need a final preparatory lemma,
that will imply the regularity of the functions (g, 7) that we will chose to derive the bounds.

Lemma D.13 (Regularity). We define F, (t, R(t,¢)) = (F\"(t, R(t,€)), F\? (t, R(t, €))), with:
FIO (. R(1,0) = (5 Vo (TEQ ). )) 15,

EP(t,R(t,€)) = Tra[E(QM), 1o

Then F,, is a continuous function from its domain to R%. Moreover, it admits partial derivatives
with respect to both Ry and Ro on the interior of its domain. We have, uniformly over the choice of

(QEa 7‘6):

it g, 30 2o
626[571725n]l 1
C{)F(Z)
t, R(t 0.
(. R(1,0) >

Proof of Lemma[D.I3] The proof is very close to the arguments of Lemma 5.5 of [11]]. The continuity
and derivability follow from standard theorems of continuity and derivation under the integral sign,
thanks to hypotheses|[(HO)(21*)](h3)l Indeed, under these boundedness assumptions, the domination
hypotheses of these theorems are straightforwardly satisfied. Let us start with the first inequality. We
can easily write:

" o(FM) 20, (7 o ITEE(QUD)
> S~ 35 Ve TEQUI) YRS
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The convexity of W,,; was already derived so that U7/ . > 0. Moreover, since R; is the SNR matrix

of a linear channel, we know that the matrix V z, E(Q(*)) is positive [I1]]. In particular, its trace is
always positive, and by Lemma [D.10

i OTrsE(QM))

S = T VREQM)] +ou ()

>0

=1

with a 0,,(1) uniform in ¢, €, ¢, ge. This shows the first inequality. Let us sketch the argument for the
second inequality. The trace of Q™) is directly related to the MMSE on the complex vector Z* by:

CMMSE(Z Y V2.V, W) = SE(|2° — (2)]7] = Q. — Trs[EQ)].

The fact that the MMSE should decrease as the SNR R» increases, for a channel of the type of
eq. (@6d), is very natural, and it was proven in Proposition 6 of [9], which applies here. This
proposition yields that Trz[E(Q))] is a nondecreasing function of Ry, which ends the proof. []

Finally, we define the replica-symmetric potential, that appears in Proposition [D.T}

frs(a.r) = =200 4 W) + 0¥uo)

D.4.1 Lower bound

Proposition D.14 (Lower bound). Under the assumptions of Theorem the free entropy f,
satisfies:

liminf f, >sup inf frs(q,r).
n—00 r>09€[0,Q:]

Proof of Proposition[D.J4] We fix r > 0 and Ry (t) = €; + rtlz. We then choose Ry(t) as the
unique solution to the ordinary differential equation:

Ry (t) = Tra[E(QM)),, 1.c], (64)

with boundary condition R2(0) = e5. We denote this unique solution as Rs(t) = €2 + fot qe(r;v)dv.
The ODE of eq. (64) can easily be seen to satisfy the hypotheses of the parametric Cauchy-Lipschitz
theorem (as a function of the initial condition €3), and by the Liouville formula (cf Lemma A.3 of
[T1]), the Jacobian J,, ¢(t) of € — R(t,€) = (R1(t,€), Ra(t, €)) verifies:

In,e(t) = exp (/Ot %W(u,]%(u,e))du) >1,

in which the inequality is a consequence of Lemma [D.13] The functions are thus regular in the
sens of Definition and moreover the local inversion theorem implies that € — R(t,¢€) is a
C* diffeomorphism. We can therefore use the fundamental sum rule Proposition as all its
hypotheses are verified. We reach:

fo =B 0) + s [ aritar) - o / a0 + 0,(1),

0
=E., {fRS(/Ol qe(r;t)dt,r)} + 0,(1),

> inf ,7) + 0n(1).
= frs(q,7) (1)

Since this is true for all » > 0 we easily obtain the sought lower bound. O
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D.4.2 Upper bound

We now prove the final upper bound, which will end the proof of Lemma|[D.2]

Proposition D.15 (Upper bound). Under the assumptions of Theorem the free entropy f,
satisfies:

limsup f, <sup inf frs(q,r).
n—oo r>0 qE[O Qz

Proof of Proposition|D.I5] We will choose R(t,e) = (Ri(t,€), Ra(t,€)) as the solution to the
ordinary differential equation:

at}zl (t, 6) = a\Ijout |:TI'5 [E<Q(A{)>n,t,e}:| ]]-,37 atRQ (t7 6) = Trﬁ []E<Q(M)>n,t,e]v (65)

2
o
with initial conditions R(0,€) = (e1,€2). Let us denote this equation as O.R(t) =
(Fna(t, R(t)), Fu2(t, R(t))). Asin Section the parametric Cauchy-Lipschitz theorem implies
the existence, unicity and C! regularity of R(t,€) as a function of (t €). We denote this unique
solutlo as Ri(t,e) = €1 + fo re(v)dv)lg, Ro(t,€) = €2 + fo ge(v)dv. Again, the Liouville
formula yields that the Jacobian J,, (t) of the map e — R(t, €) is given by

B

Jne(t) = exp (/’{Z a( (1;1 0 R(s.0) + 8;;%2 (s, R(s, e))}ds). (66)

=1

Then, by Lemma | we have that lim inf,,_, o, inf; inf. J,, (¢) > 1. In particular, this 1mp11es that
(ge,7e) are regular in the sense of Definition[D.6] We have all that is needed to apply Proposition
and we reach:

fo =, [\p(()”)( /0 1 ré(t)dt> n a\Ilout< /0 1 qé(t)dt) - % /0 1 qé(t)rs(t)dt} +o,(1).

Since ¥, and \If(()l') are convex, Jensen’s inequality implies:

o < B [ Q00 + 0¥ua0) ~ Dar (0] + a0,

smédmmwmum+%m

Note that we have

Trs(ge(t),re(t)) = qe%(?,gz] frs(q,7e(t)).

Indeed, the function ¢ — frs(q, r<(t)) is convex, and its derivative is zero for ¢ = ¢.(¢) by definition
of (7e, gc), cf eq. (63). Therefore, we have:

1
hg&Am W<M@RW+%W>

sz

<sup inf frs(q,r(t)) +on(1),
r>0 9€[0,Q:]

which ends the proof. O
D.5 Proof of the MMSE limit
As mentioned in the main part of this work, the MMSE statement in Conjecture[2.1]is stated informally.

The main reason is that obtaining the MMSE limit generically requires many technicalities, to account
for the possible symmetries of the system, see e.g. Theorem 2 of [9] which performs such an analysis.

"Notice in particular that the first equation of eq. ([63) implies that the derivative 9, Ry (¢, €) is always a
diagonal matrix in Sg(R).
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To simplify the analysis, we “break” this symmetry by adding a side channel with an arbitrarily small
signal-to-noise ratio. Formally, we consider the following inference problem made of two channels:

1 n .
Vo Poue (| = Do ®uXp)  p=1ioom (672)
=1

Y, = VAX* + 7, 7' ~ Nj3(0,1,), (67b)
with A > 0 (arbitrarily small). We can now state our precise statement on the MMSE:
Proposition D.16. Consider the inference problem of eq. ©7), under[(HO)(h1)|(h2)|(h3)| We denote
(-) the average with respect to the posterior distribution of x under the problem of eq. (67). The

minimum mean squared error is achieved by the Bayes-optimal estimator Xopy = (x), and it satisfies
asmn — 0o:

1
lim MMSE = lim EEHX* —X?=1-¢, (68)

n—oo

with g the solution of the extremization problem in eq. (6), taking into account the additional side

information of eq. (67D).

Proof of Proposition|D.16] With the side channel added, this proposition will follow from an appli-
cation of the classical -MMSE theorem [14]]. We denote (-) the mean under the posterior distribution
of x under the channels of eq. (67), and E the average with respect to the “quenched” variables
&, 7', X*. The free entropy f,,(A) is defined as the average of the log-normalization of the posterior
distribution:

D i L v

fu(A) = %Eln Py(dx) {Ml:[l Pout (Yt,u‘ % ; q)uixi)} (2r/B)nB/2

Kn

We can easily replicate the adaptive interpolation analysis of Theorem [2.2] (see Section [D) to this
case, and we reach the following result for the asymptotic free entropy f(A) of eq. (67):

Lemma D.17. Forall A > 0, we have lim,_,o fn(A) = f(A), given by:

f(A) = Sup sup [IO (qu7 A) + alout (QZ) + Iint (Qza q,z)]7 (69)
4:€[0,1] ¢ €[0,Q]

with Ious, Ling given in Conjecture and:
e~ 2P +BVErw-é— 5|5V Aa|?
(2m/B)P/2
o~ 222 +8VGrw-£— 55—V Az |?
(@n/B)P72
Proof of Lemma‘% By Proposition [D.I] one can simply replicate the adaptive interpolation
ion

analysis of Sect to this model, and this will prove the required formula. The precise form of
Iy(gs) is very easy to compute. O

Io(gs, A) = inf {— %JF/KQ D¢ dg/Po(dx)

G20

In / Py(dz)

We can then use the -MMSE formula [14], that yields that for any A,

lim MMSE = —ga[\f (A). (70)

n—o00 I}

Moreover, by Lemma|D.17} ¢}, ¢ is a solution of the equation:

2|

1 ’ fPO(dw) T e*ﬁ%;‘z‘ﬂﬁ\/ﬁzf*%\@ﬂ/ﬂz
4= 7/1) £dg
(2m/B)P/2 ’ fPo(da:)e_%ﬁlg-i-ﬁ\/‘gxf—g\.ﬂ—x/K:cIQ

(71)

From the expression of Iy in Lemma[D.T7]and eq. (71), it is then a straightforward calculation to see
that —(2/8)0a f(A) = 1 — ¢, which ends the proof. O
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D.6 Proof of Theorem the Gaussian matrix case

In this subsection, we place ourselves under [(H0)l[(2'1)|and sketch how the proof performed in the
previous sections directly extends under these hypotheses. Note that here (\), = a, 50 Q, = @, = p.
First, we can state a very similar result to Proposition [D.1] simplifying Conjecture 2.]in this setting:

Proposition D.18. Under the replica conjecture reduces to:

lim lIEln Z,(Y) =sup inf [— baq +Up(¢) + a\Ifout(q)]

n—o0 N G>0 9€[0,p] 2
with q., Vo defined in Proposition and U p, (§) defined for ¢ > 0 by:
Up, () = EeZo(v/G€,4) In Z0(v/G€, 9),

with Zy defined in eq. (7).

Proof of Proposition|D.18] The proof follows similar lines to the proof of Proposition [D.I} see
Section [E] Let us briefly sketch the main steps. Since ® is Gaussian, v is the Marchenko-Pastur
distribution [15]], and one can easily simplify (¢, ¢-) as:

Iint(qélh qz) = —ai/B [M

2 12p(p = qa)

Using then the exact same sup-inf inversion arguments as in Section [E} the supremum and infimum
over ¢, and ¢, are solved by:

+In(p - a:)].

2
4=+ 30— 62)" Woue (42), (72a)
G = 2 . (72b)
p(p = qz)
And finally, we reach that (with the notations of Conjecture[2.1) aZout (g2 )+ Tint (¢, ¢2) = @Wout (¢z)-
Posing ¢ = q,, ¢ = §, finishes the proof. O

We turn now to proving the formula of Proposition The proof goes exactly as in the previous
sections of Section D] by considering instead of eq. the interpolation problem:

m

(Yo~ P (- [y @KL+ VRV, + Vol et T 25,47) ) (O30

pn=1

Y, = (Ri(t,e)/? x X" + ¢, (73b)

where V,, A% A N3(0,1), and ¢ ~ N3(0,1,,). The prior distribution on X* is P. The rest of the
proof is then a trivial verbatim of Sections[D.I|to[D.3]

E Proof of Proposition [D.]]

In this section, we prove Proposition[D.I} we start from Conjecture [2.T]and derive eq. (@I). Note that
by [(h2)|we have (\), = a[E, ;[ X]/d. We begin by recalling some sup-inf formulas, before turning
to the actual proof.

E.1 Some sup-inf formulas

We recall Corollary 8 of [9], stated here as a lemma:

Lemma E.1 ([0]). Let f : R, — R be a C* convex, non-decreasing, Lipschitz function. Define
P = |1flleo- Let g : [0,p] — R be a convex, non-decreasing, Lipschitz function. For (q1,q2) €
Ry x [0, p] we define ¥(q1,q2) = f(q1) + 9(q2) — q1q2. Then:

sup inf (qi,q2) = sup inf ¥ (q1,q2).
q1>092€[0,p] 42€]0,p] 1120

We can state a corollary for functions of two variables.
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453 Corollary E.2. Let f : Ri — R be a C! convex, Lipschitz function which is nondecreasing in each
asa  of its variables. Define py = ||01 f||oos p2 = ||02f||co- Let g : [0, p1] = R, g2 : [0, p2] — R be two
455 convex, non-decreasing, Lipschitz functions. For (x1,22,y1,y2) € R7 x [0, p1] x [0, p2] we define
as6  P(T1,72,Y1,Y2) = f(@1,22) + 91(y1) + 92(y2) — T1y1 — T2y2. Then:

sup inf (w1, T2, Y1,Y2) = sup inf (21, 22,91,2)-
z1,22>0 Y1,92€[0,p1] x[0,p2] y1,y2€[0,p1] % [0,p2] *1,2220

457 Proof of Corollary[E2} The proof is a verbatim of the proof of Corollary 8 in [9]], using that at fixed
a8y, x — f(x,y) is p1-Lipschitz, while at fixed z, y — f(x,y) is p2-Lipschitz. O

459 E.2  Core of the proof

460 'We now turn to the proof of Proposition [D.I] We begin by simplifying the free entropy potential
461 using the Gaussian prior. We start from Conjecture [2.1] Since P, is Gaussian by [(hT)] we can easily
462 simplify the prior term Iy as:

[ﬁéz(l —4¢) B

5 5 In(1+ ﬁz)] = 5% 5

+ —In(1 — ¢).

Iy(g,) = inf )

G==>0

463 We now turn to the term Iin¢(q., g»). We can write it as:

Lnt(sz QZ = lnf |:§ 71: + 2ﬁ (Qz - QZ)'YZ - §<1n(1 + vz + >\’7z)>u:| (74)
Va V2>
- pi- ) - 2 - P Q. -0 - S

a4 So we have, using Corollary that if f = sup, (0.1 5UPy. co,.][l0(¢z) + lous(gz) +
465 Iint(qu, g»)] is the conjectured limit of the free entropy:

f = Ssup sup inf |:Ollout (Qz) + g(l - qgc)%c + %(QZ - QZ)’YZ

4:€[0,1] 4 €[0,Q.] V7= 20 2
B ap aBq.
— =(In(1 T A z)lv — —1 z — Yz) — :|7
5 (Il +7s + M)y — = (@2 — ¢2) 20.
= sp b it [alwle) + D0 g+ Qg (9)
Va2 >0 Qze[onz] qyze[oal] 2 2
o afq,
- gﬂn(l + Ve + )\72)>V - 76 ln(Qz - Qz) - 22(12 }
a6 The infimum on g, is very easily solved, as we have inf,_c(o,1][—5¢272/2] = —B72/2. Note that at

s67  fixed v, > 0, the variables ,, ¢. are completely decoupled in eq. (73], so we have sup,, inf, =
a8 infy sup, . This yields:

af

= su inf alout(q:) + —(Q2 — q2)7-
f W%qze[wth[ t(qz) 2(@ q:)Y

6 O‘B QBQZ

2< n(1L+ 7+ X)) = (@ —a) — G,

6 q-
- f o z Yz ) lz — -~ 1 zu_l z — Yz Iouz~

= s inf [5100@: =g — o — (1 + 202 — (@ = 2)] +alou(a:)|

469 Recall the form of I, in Conjecture and that Qz = 1/@Q.. Using the form of I, we have with
470 the notations of Proposition [D.T}

. .18
= f f = z Yz - — 1 1 )\ )y — 1 —
! 2 4.€0.0.d-20 [2 @z g}z — an (In(1+M2))y — aln(Q: — g2)

—0QxG, — aln(sz + 1/Qz) + O‘Qzéz} + aqjout(\/Q?éz/(l + Qz(jz)) .
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Again, we use that at fixed g, the variables ¢, . are decoupled. So using again Lemma[E.T] we have
schematically sup,,_inf,, infs, = sup,_ infg, inf, = sup,_ inf,, inf, . We can then explicitly
solve the infimum on ¢,, which yields:

= sup inf [21= 0n+ X))+ ala(1 4 52(Q- = 0(d))] + o¥inela(d-)|
with

Q.
14 QG-

Note that ¢ is a strictly increasing smooth function of ¢, with ¢(0) = 0 and ¢(+c0) = Q.. So we
have:

q(q-) (76)

= [ a4 a0 4 aall 400 a)] 4 abta], )

We then state a technical lemma:
Lemma E.3. Under hypothesis one has for every q € [0, Q.]:

Wiznzfo[a In(1+7:(Q- — q)) — (In(1 4+ M.))] = inf [6G(Q. — q) — By, In(1 + ¢X)].

inf
§>0

Using Lemma[E3in eq. (77), and inverting the sup-inf by Lemma [E-T] finishes the proof of Proposi-
tion[DI] In the remaining of the section we prove Lemma [E3)|

E.3 Proof of LemmalE.J|

If ¢ = Q., the equality is trivially satisfied, so let us assume 0 < ¢ < Q.. Let us denote h(y,) =
aln(l+v,(Q. —q)) — (In(1 + My.)),. Recall that Q, = E,,[X]/é. Since o« > 1 — v({0}) and
q < @, one easily checks that h is lower-bounded, so the infimum is always well-defined. We
introduce / the asymptotic measure of @@ /n, and we denote g,,(2) = (A — z)~1),, its Stieltjes
transform. For every function f, one has (f(\)), = a(f(\)), + (1 — «) f(0). This allows to write:

h(v.) = aln(l +79.(Q: — q)) — a{In(1 + Av2)) -
We will use the following equation, valid for every v, > 0 and any positively supported measure p:

V=

(In(y, + ), = inf {yﬂg + [ Ru(—t)dt —InT, — 1}, (78)
7.0

zZ

in which R, is the so-called “ R-transform” of 1., defined as R, (—z) = g,,' (z)+1/2. Itis a classical

result of random matrix theory [16] that if 1 is positively supported, ¢ — R, (—t) is well-defined
on R . We finish the proof of Lemma before proving eq. (78). By a classical result of random
matrix theory [15], we know the R-transform of y as a function of vp:

X } .

0+ atX (79

Ru(_t) =K, [

Combining eq. (78) and eq. (79), we reach:

. . V= V- o,
inf h(v,) = inf su [alnl—i— Q. — +a—a—=+aln—=-E, ln(l—l——X Z)}
Jnf (=) nf, sup, (1+7:(Q: — ) . V. & 5 X7

Using Lemma[E-T]to invert the inf-sup, we have:

. . ’)72 '?z o ~
inf h(v,) = inf su [alnl—l— Q. — +a—a=+aln—=-E, ln(l—i——Xz}.
inf (72) nf, sup, (1+7:(Qx — ) . o 5 5 X7 )

The supremum on -y, is now completely tractable, and we have:

inf h(:) = inf [a(Q: — )7 — By I (14 5X7. ).
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Doing the replacement § = oy, /4 yields Lemma We now prove eq. (78), which will finish the
proof. It follows from a classical result used in random matrix theory, see e.g. [8]] for an application of
these calculations to spherical integrals. Recall that g, is smooth and strictly increasing on (—o0, 0),
as p is positively supported. It is easy to see by differentiation that the infimum in eq. is attained
aty. = g,(—7.). We then use some manipulations:

Y= 9#(772)
jn>f0 [’YZ’YZ + Ru(_t)dt - 111’}74 = VZQM(_'YZ) + / Ru(_t)dt —In gu(_'}/z)a
0 0

zZ

Gu(—7z) €
= 'YZQ/J,(_'YZ) + / g;l(t)dt —Ine+ / RM(—t)dt,
€ 0

this equation being valid for all € > 0 sufficiently small. By regularity of the R-transform around 0
[16], [; Ru(—t)dt = 0(1). Moreover, we can change variables in the other integral, and we reach:

Y= Yz
inf [Wzﬁfz + / Ru(—t)dt — lny}} = 7.9u(—7) + / ugu(—u)du —Ine+ o(1),
7220 0 —9:' ()
(@) . Yz
= —Ine—eg, (€ + ) gu(—u)du + o (1),
—9u " (€)

® 14+ (In(A+72)), + 0c(1),

in which we used integration by parts in (a) and the definition of the Stieltjes transform in (b). Since
€ was taken arbitrarily small, taking the limit ¢ — 0 ends the proof.

F Technical lemmas and definitions

F.1 Some definitions

Let 5 € {1,2}. We denote K = Rif § = 1 and K = Cif 8 = 2. Us(n) denotes the orthogonal (re-
spectively unitary) group, and Sg(R), SZ{ (R) the space of real symmetric (resp. positive symmetric)
matrices of size 5. 14 is the identity matrix of size 3. To improve clarity, we write Trg when taking
the trace of a matrix in the space Sg(R). The standard Gaussian measure is defined on K as:

B \A/2 B\ 2
Por=(57) e (=5l a
57z o exp 5 |z|*) dz (80)
We define three different types of products in K, using the identification K ~ R#,
27 the usual product in K, (81a)
22 = Re[z7] the dot product in R?. (81b)

For 3 =1, and M,z € R, we also denote M x z = Mz. For § = 2, with z = = + iy € C, and
M € S, written as:

b
M =aly + (c _Cb> , (82)
we define M * z as the matrix-vector product in R?:
x N
M*zzM(y) =az+ (b+ic)z. (83)
Note that in the 5 = 1 case, all three products are equivalent.

F.2 Conventions for derivatives

We often consider functions f : K — R. The derivatives for such functions are defined in the usual
sense if K = R, while for K = C we set it in the “function of two variables” sense (with z = x + 7y):

['(2) =0, f +i0,f. (84)
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We will also define its Laplacian if K = C (if K = R then A f(z) = f"(2)):
Af(z)=02f + 0L f. (85)

Importantly, this definition is different from the usual Wirtinger definition of a complex derivative,
because we do not consider holomorphic functions here, but merely differentiable real functions of
two variables. This definition satisfies the following chain rule formula, for h(x) = f(g(x)) and
K2R, g¢g:R—=K:

W(x)=g'(x)- f(g(x)) (86)

As a particular case, we have if f(z) = x - z that f'(z) = z. We then have the Stein lemma (or
Gaussian integration by parts), for any C? function f : K — R:

[ Pz s = 5 [ Doz 1) 87)
/Dgz (z- f(2) = %/D[;z Af(z). (88)

F.3 Nishimori identity

We state here the Nishimori identity, a classical consequence of Bayes optimality.

Proposition F.1 (Nishimori identity). Let (X,Y) be random variables on a Polish space E. Let
ke N*and (X1, -+, Xy) i.i.d. random variables sampled from the conditional distribution P(X|Y).
We denote (-)y the average with respect to P(X|Y'), and E[-] the average with respect to the joint
law of (X,Y). Then, for all f : E**1 — K continuous and bounded:

E[(f(Y, X1, -, Xe))y] = E[((Y, X1, , Xi—1, X))y ] (89)

Proof of Proposition|[FI} The proposition arises as a trivial consequence of Bayes’ formula:
E[(f(Y, X1, -, Xp—1, X))y] = EyExy (f(Y, X1, , X1, X))y,
= EY[<f(Y7 le e 7Xk)>y]'

F.4 Boundedness of an overlap fluctuation

Lemma F.2 (Boundedness of an overlap fluctuation). Under[(HO)| one can find a constant C' > 0
independent of n, t, € such that for any r > 0:

1 — , Ny 2c |2 452, 2
E<‘ﬁ /Lz::luyt"" (St“u) U’Yt,ur (St,,u) - B 5T‘ >n,t,e S 25 5 e C (90)

Proof of Lemma[F2] We directly have:

)
n,t,e

1 2
S 2ﬁ4(52r2 + 2E<‘E Z ulY't,“ (St’p,)TuIY't,“ (St,p,)‘ >
p=1

1 m
E< ‘ n Z u,Y"“ (St’“)Tu/Yt,u (Stu) — 5257"
u=1

n,t,e
We can bound [uy, (s)| forany s € K by using the formulation of the channel described in eq. @,

which allows to formally write:

= lim f PA(da)a“"(pO‘lt(& a’)(Yt,# B 900ut(57 (1))67ﬁ(yt,ufﬁf’out(S,a))2
Ao fPA(da)eiﬁ(yt,u*@out(s,a))?

uy, , () :

in which we used a Gaussian representation of the delta distribution. This amounts to add a small
Gaussian noise to the model of eq. (2)), and effectively write it as:

Yy ~ out (S, Au) + VAZ), 91)
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with Z}, N (0,1), and then take the A — 0 limit. We have |Y; | < [|@out || + \/Z\Z;L

thus taking A — 0 we reach:

, and

|U,Ytyu(5>| < 2 [[@out || oo 195 Poutll o -

The right-hand side of the last inequality is bounded by hypothesis and in the end, we have:
1 2
E<‘g > ub, (S iy, (s0) — 6257"’ >n < 2846212 + 2° || out || 95 out® |
le k) 7€
which ends the proof. O
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