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A Some technical results and proof of Lemma 3.1]

In this Supp. Doc., we provide some useful properties of ¢ in (3) and its smoothed approximation

¢~ defined by @) in Sectlon Then we recall and prove some bounds of variance for Ff, Jt, and vy.
Finally, we prove Lemma[3.1[in the main text.

A.1 Properties of the smoothed function ¢,

Under Assumption ¢o in (@) and ¢, defined by (9) have the following properties.
Lemma A.1. Let ¢ be defined by (3) and ¢., be defined by ). Then, the following statements hold:
(a) dom(v)) is bounded by My, iff ¢ is Mg, -Lipschitz continuous with My, = My|| K||.

dom(v)) is bounded by My, i is Lipschitz continuous with My = My|| K||.
(b) y My iff ¢ is Lip b+ Y

2
(ci ¢~ is convex and Lgy_-smooth with Ly = —Mf}h

(d) It holds that ¢ (u) < ¢o(u) < ¢(u ) + By, for all u € RY, where v > 0 and By, =
sup {b(y) | y € dom(y)}. In addition, we have D, := max,eqom(y) || V0(v)| < +oo.

(¢) We have ¢ (u) < b5 (u) + (3 — 1)b(y5(w)) < b3 (u) + (7 — 7) By for all§ = v > 0.

Proof. The statement (a) can be found in [3, Corollary 17.19].

Since Vo, (u) = Ky} (u) with y*(u) € dom(vp), we have ||V, (u)|| < [|K||[Jy;(u)]] < Myl K|
Applying again [3, Corollary 17.19] we prove (b).

The statement (c) holds due to the well-known Baillon-Haddad theorem [3}, Corollary 18.17].

The proof of the first part of (d) can be found in [24]. Under Assumption [2.2] and the continuous
differentiability of b, we have Dy, := max,edom(y) || V0(v)| < +oo0.

Finally, for any u and y, since s(y;u,y) := (u, Ky) — ¥(y) — vb(y) is linear in ~. Therefore,
¢ (u) := maxycrn 5(7;u,y) is convex in 7 and %qﬁv(u) = —b(y;(u)) < 0. Consequently, we
have (1) + -6, (u) (5 —7) = by (1) — (7 — b (u)) < 65 (u), which implies ¢). O

One common example of ¢ in Assumption[2.2]is 1(z) := dx(x), the indicator of a nonempty, closed,
bounded, and convex set X. For instance, X' := {y € R™ | ||yl < 1} is a unit ball in the dual norm
[Ill, of ||-]|. Then, we have ¢o(u) := ||u||, which is clearly Lipschitz continuous. In particular, if
A= {y € R" | [lyllo <1}, then ¢o(u) := [|ull;.

A.2 Key bounds on the variance of estimators
Next, we provide some useful bounds for the estimators F; and J; defined in (I5). The following

lemma can be found in [35]], where we have used the inequality 2E[(a, b)| < E[[|a]|?] + E[|[b]|?] in
the proof, when a and b are not independent.
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Lemma A.2. Let F; and J; be defined by (13), and F; be defined by (I8). Then
Egss2) [|1Fr — Fz)|?] < B2 1llFio1 — Fz)l? = B [ F(2) — Fla)||?
+ k(1 - 5t71)2E63 [IF (1, G) — F ()%
87—
+ B [[|F (2, €) — Flae—1, )]
B gy g0 (1~ F'@0I?] < Baldos - Fmy)|?
+R(L = Bi1) e [ F (24, &) — F' ()]

R I, €) — P, )]

(33)

Here, = 1 if B} is independent of BZ, and k = 2, otherwise. Similarly, i = 1 if Btl is independent
of Bf, and Kk = 2, otherwise.

Furthermore, we can bound the variance of the estimator v; of V®,, (z¢) defined in (T7) as follows.

Lemma A.3. Let ®, and v, be defined by (11) and (I7), respectively. Then, under Assumptlons@
and2.2] we have

Elllo; — V&, (2,)|*] <2MEL3 E[|F, — F(x)|I°] +2M7 E[||J; — F'(z,)|*]. (34

Proof. First, by the composition rule of derivatives, we can derive
lve = V&, (@)[|* = 1T Vr, (Fr) — F'(20) Vo, (F (1))
= [TV, (Fy) = F'(20) "V, (F) + F'(2:) TV, (F)
2
— F'(2) "V, (F(z)) ||
(2) - - -
< 2/[(Jr = F'(24)) "V, (F)1? + 2] F' () T (Vo (Fr) = Vb, (F (1)) |12
< 2|V, (F)IPI1Je = F' (@) |2 + 2[V o, (Fr) = Voo, (F () |12 F (20|
(i7) - -
< 2Mg | T — ' (z4)]|% + 2L§5 ME||F, — F(z,)]2.

Here, we use ||a + b||* < 2[|a||* 4 2||b]|? in (i) and the M_ -Lipschitz continuity, Ly -smoothness
of ¢.,, and (3) in (ii). Taking expectation over ;41 on both sides the last inequality, we obtain

E[llve — Vs, (20)[?] < 2MELY, E[|F; — F(0)[|*] +2M§ E[|J — F'(z0)|7],
which proves (34). O

A.3 The construction of approximate KKT points for (I)

Recall from (1) that ®.,(z) = ¢, (F(x)) and V&, (z) = F'(z) " V¢, (F(x)), where ¢, is defined
by (9). We define a smoothed approximation problem of (2)) as follows:

min {0, (2) 1= @, (¢) + R(x) = 6,(F(x)) + R(x) ). (35)
Clearly, if v = 0, then (33) reduces to (2). The optimality condition of (33)) becomes
0€ Vo, (a2) + OR(a2) = F'(a2) "V, (F(a)) + OR(a2). (36)

Here, 7 is called a stationary point of (33). Therefore, an e-stationary point 7, is defined as

E[dist (0, V(i) + OR(2)) ]| <e. (37)

Again, the expectation ]E[ : ] is taken over all the randomness generated by the model (33) and the
algorithm for finding z7.
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Alternatively, using the definition of ¢ in (), problem (33) can be written as

min max {R(2) + (F(2). Ky) () ~7b(s) . (38)

Its optimality condition becomes
0 € OR(xy) + F'(a%)Ky% and 0€ K" F(a}) — 0p(y) — vVb(y2). (39)
Using the definition of £ in (8), we have
E(at,y}) o= dist (0,0R(2%) + F'(a2)Ky2) + dist (0, KT F(2%) — 0(y3)) < vDy.  (40)
Here, we use the fact that ||Vb(y2)|| < Dy, as stated in Lemma

Given Z € dom (W), let F'(-) and .J(-) be a stochastic approximation of F'(-) and F'(-), respectively.
We define (773, y3) as follows:

# = prox,p (a: - n%,y(gz)) . where V. (z):= J(z) Ve, (F(z)),
_ _ (41)
7 = (@) = argmin {<KTF(f§),y> —(y) — 'yb(y)} :

*

Note that 27 only depends on z, while g depends on both z and 7. Hence, we first compute 77

and then compute g7

The following lemma provides key estimates to prove Lemma [3.1]in the main text.
Lemma A.4. Under Assumptions@and @ for given T and n > 0, 7% defined by @) satisfies

dist (0, Vb, () + OR(E)) < (14 nLa,) [Ga(@)]| + (2 + 1L, )|V, (2) — T, (2)]. 42)
Let (&%, 7%) be computed by @1), and E(x,y) be defined by (8). Then, we have

E@, %) < (L4 nLa,) Gy (@)l + vDy + || K[| F(35) — F(a2)||

+ (2+nLa,) [I(J(@) = F'(2) "V, (F@)|| + Ly, Mr|| F(z) — F()]], “
where Dy, is defined in Lemma @
Proof. From (@T)), we have T — 776‘1)7 (T) € &3 + nOR(&2), which is equivalent to
- %(:7: S E) + (VO () — V(7)) € VB, (3) + OR(EY). (44)
We can bound r7 in {@4)) as follows:
Izl < Hllz =&+ V2, (&) - Ve, @) + Ve, (2) - Ve, (2)] 45)

< E(l+nle,)|E — 2| + VR, (@) — VO, ()]

Next, from (T4), let us define 7% := & — nG, (Z) = prox,z (¥ — nV®,()). Then, we have

125 =2l < |25 =23l + 175 — =]
= |prox,z (z = nV®,(2)) — prox, (z = nVe,(2))l| + n[|G, (@) (46)
NIV (7) = VO (T)]| + 1l|Gn (T)]]-
Substituting this estimate into (43)), we obtain

Izl < (L4 0L, )Gy ()] + (2 + nLa, )V, (2) — VO, (2)].

Combining this inequality and (@4)), we obtain ([@2).

IA

Now, since 3 = y*(F(Z%)), by the optimality condition of (J), we have

i = Vb(E) + KT (F(35) — F(3%)) € KTF(E%) — 0v(i%). (47)
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Utilizing Lemma [A.T|d), we can bound 7, defined by (@7) as

gl < AIVO@N + K F(F) — F@)I < 1Dy + IK|IF(&5) — F(@)]-

Combining this estimate and [@7), we get
dist (0. KT F(#) ~ 90(3)) < K[| F(#) ~ F(@)] +Dy. 48)
On the other hand, using the definition of 6@7 (+) from @) we can show that

IV, (z) — VO, (@) = [J(2)T Ve, (F(2) — F'(2) Vo, (F(2))]

J(@) = F'(2)) TV, (F(@)| + | F'(2) T (Vo (F(2) — Vo, (F(2))
(@) — F'(2)) TV, (F(2))|| + Vo, (F(2)) = Vor (F(@))|l[|F ()]
1(J (@) = F'(2)) Voo (F@)| + Lo, [|IF' (@) ||| F(2) — F(2)]|
I(J(2) = F'(2)) TV (F(@))l| + Lo, Mp||F(z) — F(2)||
Here, we have used the L_-smoothness of ¢ in (i).
Finally, combining the last estimate, @), and @ and using the definition of £ from (@), we have

E(@,g5) = dist (0, VP, (&) + OR(i2)) + dist (0, KT F(%) — 0v(i))
< (141La) 19, (@) + 2+ nLa,) VO, (2) — VE,(2)]|

+ | KIIF(#3) — F(32)] + 7Dy
(1+nLa,) 1G,(2)| + vDy + | K| F(E5) - F(@3)]]
+ (24 nLa,) [[(J(@) = F'(2) TV, (F(@))|| + Lo, Mp| F(2) - F(@)]]],
which proves ([@3). O

IN

The proof of Lemma[3.1] For notational simplicity, we drop the subscript 7" in this proof. Since
Mgy, = Myl||K|[and Ly, = ”K” , using the conditions in Lemma and (28)), we can derive from
(@3) after taking the full expectatlon that

E[£(a5,95)] < (1+nLe,) E[|G) ()] + (2 +nLa,) E[|(J(2) — F'(2)) Vo, (F(2))]]

+IKIE[IF(#) — F@)[] + (2 +nLe,) WEMER[| F(z) - F@)||] + 4Dy
Now, by the Jensen inequality ]E[HQ,,(’)H] (E [||g,,( )HQ])U2 < e In addition by 28), we
aso e 0 < 7 < exe B[|(J(@) = F'(2) Vo (F@)] | < < B[|F(a ] < e, and

va [||F( F(z)||] < e. By the update rule of 7 in Theoremsnjﬁ and 3 L we have

nle., = 335 < % since 6 € (0, 1]. Substituting these expressions into the last 1nequa11ty, we finally
arrive at

E[£(@,72)] < (1 + 2)e+ coDye + | Klle + (2 + 2)(1 + | K|*Mp)e,
which is exactly (30). O

B Convergence analysis of Algorithm[I]in Section[3]

This Supp. Doc. provides the full analysis of Algorithm I} including convergence rates and oracle
complexity for both strongly convex and non-strongly convex cases of ¢ (or equivalently, the
smoothness and the nonsmoothness of ¢, respectively).
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B.1 Preparing technical results

Let us first recall and prove some technical results to prepare for our convergence analysis.

Lemma B.1. Let {x;} be generated by Algorithm Lg., be defined by (13), and By, be given in
Lemma Then, under Assumptionsand Sorany n, > 0.and 0, € [0, 1], we have
0.(1414, )

E[V,, (z41)] < E[W,,_, (z)] + TE[”V(I)’W (z¢) — ve|?] + (7e—1 — 1) By 49)

Loy, nz 0 t 5
— 2R Gy, ()] — & (n% — Lo, 0 — 2Lq>w) E (|| &1 — 24]?].
Proof. Following the same line of proof of [35, Lemma 5], we can show that

0. (1+L3_ n?
B[ ()] < B[, ()] + 2 g 190 () — ]

L tnt29 t £
LR 1G, (@) ?] — % (2 ~ La,, 00— 2La., ) Ellters — w2,

Finally, since E[U.,, (z;)] < E[W,,_, (2¢)] + (7¢—1 — 7¢) By due to Lemma e), substituting this
expression into the last inequality, we obtain (@9). O

The Lyapunov function: To analyze Algorithm|l] we introduce the following Lyapunov function:
@ ~ o -
Vieor (@) = E[Wq, ()] + S E[IF = F()|°] + SE[IJ - F'@@)l?],  (50)

where a; > 0 and &; > 0 are given parameters, and the expectation is taken over F; 1. Lemma[B.2]
provides a key bound to estimate convergence rates and complexity bounds.

Lemma B.2. Let {x;} be generated by Algorithm and V., be the Lyapunov function defined by
(50). Suppose further that the following conditions hold:

2> Lo 0,+2Lg + KMZB20,as41 i &L}éget&m
ne — Yt vt

b b
iy 1 i A 51)
2MRL3 Qt(T) +a B <op and 2MZ "t(T) + dy g1 B2 < .
Then, for all t > 0, one has
L(u, t29t k(1—Bs) 2 apr102 R(1— At 2644102
Va(wesn) S Vi, (m) = =S EGy, (w)|P] 4 S  Sishpgess -
+ (Ve—1 — 1) By.
Proof. First of all, by combining (34) and (@9), we obtain
E[\Ij% (x“rl)] = E[\P%—l(xt)] - % (% — Lo, 0 — 2L¢"w) E[”i't+1 - xt||2]
La,, 10t 2 353
— =2 =E[lG, (@)lIP] + (ve-1 = 72) By (3)

2 2
1+Lq>w "

+ 0y ( ™) (MRLR, B[IF — F(@)l?) + M3 B[ — F'(z)]1?])

Due to the mini-batch estimators in ([3)), it is well-known that

Ewe [IF(2e,¢) — F@)lP] = E[|& Yeem Flan¢) — Fa)|’] < &
Egs [IF'(20,6) — F@)l?] = E[|l£ e Fland) - F@)|’] < 2.

Substituting these bounds and x¢11 — xy = 0¢(Z411 — ) into @) and taking full expectation the
resulting inequality over F; 1, we obtain

~ ~ 29252 _ 2,2
E[|Fisr — Flzer)lIP] < BPE[IF — F(an)|?] + Lo MEB 2y — 2¢))?] + 220000

~ ~ 2 ~ 262022 R P _At202
E(lJos1 = F'(zes)l?) < By E[IlJs = F'(w)|?] + PLEEE 3041 — 7] + S22,
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Multiplying these inequalities by a;1 > 0 and 641 > 0, respectively, and adding the results to
(33), we can further derive

Vw(@‘tﬂ)@E[‘I’w(l‘tﬂ)]*Fam E[l|Fir1 — F(eer))?] + S2E[| i1 — F'(we11)]1?]

2
+L ‘P’Yt T

< B ] + 223, o (M7 )+“H;Bt]E[||E—F<xt>||2]

1+Lg., & 2 10
+[arz, 0 (M) + 2 (1, - P P] - g )

e (2 _ _ EMZBi0iaeys  RLEBE0:G6u11 . _ 2
z (m L., 0; —2La,, ;! a E[[ld01 — z]|?]

a2 2 f(1_AN2A 2
+ K(1 5t)b2at+1UF _|_’€(1 /Bt%zatJrlUJ +('7t71_7t)B¢~

Let us choose oy > 0 and &; > 0 and impose three conditions as in (31)), i.e.:

l HM;Z;‘ﬁ?GtOLt+1 I%Liwafetdt+1
Nt 2 Lq’w 0 + 2L¢'% + by + by ’

2 2
1+L<I>,yt Nt

+ Tt
2M§’L?¢w9t<T> +at+15t2 < Qg and 2M¢ 9t (%) +at+1ﬁt
Then, by using (50), the last inequality can be further upper bounded as

L te t) Ot o
Vi (weg1) < V%,l(a:t)—‘b”i"‘ [11Gn, () 12] + M

2
A01_7A\24
+ 56 ﬁtg”uam% + (Ve—1 — 7¢) By,

which proves (32). O

B.2 A general key bound for Algorithm |T]

Now, we are ready to prove one key result, Theorem BT} for oracle complexity analysis of Algo-
rithm[T] To simplify our expressions, let us introduce the following notations in advance:

) 0 — T
Wt = Lq)t and ET = tho W,

Yt
o, — MEL7, \/26b1by
b 3(kMAL2 bi+RM2_ L2b )1/2’
FHgqy, Ot by FOL
— 272 2 s 2 54)
M, := \/26b1 by )1/2 (nMFL%OUF n KM%OUJ)

(birMEL2 +b1ALE M2 bo bo ’
3\bikMp, ¢70+ 1RLE 0

= 2 2 a2 2
r L /26b, by KMFL(Mt ,»ch)% o5
t T )1/2 bo + 7 .

3(binMALY +b1RLEM3 b
Theorem B.1. Suppose that Assumptions@and @ hold, and wy, X7, Oy, Iy, and ', are defined
by B4). Let {xt}fzo be generated by Algorithmusing the following step-sizes:

“ 1/2
3La,, [bibi(1— 5)]" ?
0, = By AP and = s (59)
V26(RMREL3 by +AMZ Lbi)'/>2 Ly, (3+6:)
where f3;, Bt € (0,1] are chosen such that 3; = ,@t, 0 <1 <y, and
g ¢ g < 13,
N 56)
kMpELY . RLE M3 . (
Bt>max{01 QLQ ( ot B ”’) .
Let T be randomly chosen between {xg, - - - ,xT} such that Prob (Zr = x;) = g—; and 7T be

corresponding to 0, of 1. Then, the following estimate holds:
E (G, ()] < oo (B[¥0(r0)~ 03] 477 By )+ Z Lol = B 57,
2 Xr Vl_ﬁo \/1—5t+1
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The proof of Theorem|[B.1] First, the conditions in (31 can be simplified as follows:

kM3 a1 RL% Btzét+1 2
Lo, 0i+2Le,, + (FEpEt 4 RS0, < 2

QMIQ,L(QM (1+ L%% n2)6; Lo, (ar — Biagi1), (58)

Lo, (&4 — Bas).

IN

2M£'yt (1 + Lé% 77t2)9t

IN

Let us update 1y := (gr55,— as (53). Since 6; € (0, 1], we have
1 2 13
— < —— and 1<1+1IL3 n?<—.
e, =M 3L, ¢ IEiTRes

Next, let us choose ¢, (s, /B’t, «y, and &; such that

]\42 M¢ M, «
_ 24575 o, T < alt , and 0<ay <oy < -5 (59)
MFL¢W L(b.yﬂrl L¢w Bt

Be =B €(0,1], &

Then, we have

ar — a1 > (11— B) >0,

. M3 M3 M3
N 2 A _ e 2 Vi1 vt 2
and oy — ﬁt at+1 - M2 sz Qp — ﬁt M2L2 at+1 2 M2 LQf (at - ﬁt at+1)
F oy Fo¢y, 40 F oy

M3 R
Z ﬁ(l — ﬁt)at = (1 - ﬁt)at > 0.
Tt

By using the last two inequalities, we can show that the conditions in (38)) hold, if we have

9L, ot (1—Pr) 9La, &t (1—Pr)
0<0 < =gz 0<0 <Gz

F

(60)

2 T2 A —1
and 0<6:<Lg, ("”{)f“* + %) )
g 1

Therefore, the three conditions in hold if we choose

A ~T2 2 2712
at(l — ﬂt) — at(l - ﬁt) and KMIZJ‘ + HLFM(?% ap = 26MFL¢'% )
MELE M2 b MELE b 9oy (1 = By)

Py

These conditions show that we can choose

o M; O, MZLZ_ \/26b1bs
Q1= \/ﬁ and étt = ]\Mitl\/—iﬂ’ where ®t = - oL /3 -
¢ Lo, ¢ 3(kMALY, bi+RM3 L3bi)

Clearly, this ©; is exactly given by (54). With this choice of a; and d, we obtain

0<6,<d,— Lo Ov1=B) 3Lg., \/bibi(1 - Br)
t > U = — _ - '
26MELE V26(RMREL3 by +AMZ Lbi)'/2

We then choose ; := 6; at the upper bound as in (53).

Now, to guarantee that 0 < gt < 1, we impose the following condition as in @), ie.:

M#L? AL2 M2
26 FME ey, F ¢y
B¢ > max {O, 1 57, < 5 + )

Due to the choice of ay, the condition oy < a1 < % in @) is equivalent to

2(1 — _ _
B (1 : Bt) < 1 2/8t+1 < 1 zﬂt’
Ch S Ch
. . .. . - _ K3
which is the first cqndltlon of (56). Moreover, since My, = My|| K I .and Ly, =45 T .due Fo
Lemma the third condition of (]3_9[) reduces to ;41 < -y, which is one of the conditions in

Theorem
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Next, under the choice of o and é&;, and n; > (]3_7[) implies

mL(P E[l1G, (zo)[I?] < Vo, (24) — th (Tt41) + (=1 — 1) By

= 272 2 a2 2
4 /261 by RMFL(MH_lJF n KM¢_H+10'J (1—Bt)2 (61)
N /3 = — /3
3(1)1;@]&1;‘?L§W +b1r€L%JM;W ) ba bo (1—=Bt41)
t+1

Note that since ¥, (z9) < ¥o(z0) due to LemmalA.1} and y_; = 7o by convention, we have
Vyo(20) = B[y (20)] + LE[|IFo — F(x0)lI?] + LE[|lJo — F(w0)|1?]
< E[Wo(x0)] + /26616, <~M2 LG F %M;”Zmo%) - (62)

5 - 1/2 bo b 1—Bo)t/2"
472 2 2 0
6 (meFL%O +hIRLEME )

Moreover, by Lemma[A-T|d), we have
Vo (zri1) > E[Yy, (2r41)] > E[Vo(zr41)] — 0By > V5 — 0 By. (63)
Let us define I'; and IIj as (34), i.e.:
Ft = V 26bll;1 7 <HM12?[;3”H U;ZT + ’%M%’Yt 027>
)1 2 P )

3(binMELE +b1ALEMS b2

272 2 -~ 2 2
I ,_ V/26b1 b1 KMFLd»YOUF "M%OUJ
T ( 472 2 ap2 )1/2 o + bo ’
8(bisMELE by RLEME

Then, summing up (61)) from ¢ := 0 to ¢ := T, and using these expressions, (62), and (63), we get

i1 (1 — By)? L ITp
(1= Bey1) /2 2(1 = Bp)t/?

T

Z 1(;? E[l1Gn, (z)|I’] < E[Wo(zo) — 5] + vrBy _|_Z

Dividing this inequality by Z S&, where X 1= Zt oWt = Zt —0 L , we obtain

o 16
Z E[|G. (x0)I] < ET(E[wo<wo>—ma]+wB¢)+

8T,
Sr(1— o)t/

T
4+ 16 t+1 (1-8)°
E — (1 - Biy1) (1= Ba)' /2

Finally, due to the choice of Z7 and 77, we have Ei S wE[[1Gn, (z)I1?] = E[|1Gar (Z1)]17]-
This relation together with the above estimate prove . O

B.3  The proof of Theorem3.1; The smooth case with constant step-size

Now, we prove our first main result in the main text.
The proof of Theorem [3.1)in the main text. First, since 1, = 1 > 0, we can set 7, := 0 for
all ¢ > 0. That means, we do not need to smooth ¢¢ in (Z). Hence, from (34), ©, = Oy =

MZ Lgy\/ 26b1b .
Lo Sz and $- = =P, where Lg, is defined by (T9).
3(kMAL2 by + kM2 L) T o b

Next, given a batch size b > 0, let us choose the mini-batch sizes by := COBO >0, lA71 = Z;Q =b>0,
and by = by := cob for some ¢y > 0. We also choose a constant step-size 6; := 6 € (0,1] and a
constant weight 3; := 8 € (0, 1] for all ¢ > 0. We also recall P, Q, and Lo, defined by (T9).

With this configuration, the first condition of (]3_3[) and 0 < ;41 < 7y, are automatically satisfied,
while the second one becomes

ﬁ>max{o 1— m(mMFHKH“ + cok|| K|*L7 Mw)} :maX{O 1- 77 b} (64)
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Moreover, we also obtain from (54), (53), and (T9) that

0, = 6= 3L /cob(1-5) @  LebO-p?
¢ VR6(rMA|IK|[* + cor|| K|2M2L2)1/2 P )
r, — = V26(kMZ K| *o7 + coit|| K> M5 o3) ™ Q
- - 1/2 - )
3veab(kMAIK|* + corl| K|2L302) " Pvb
M, — V26b(kMZ || K|[*0F + coil| K||I> M 03) ™ ovs
- o 1/2 - T
3y/@sbo (kMAIK| + corl| K2L2M32)" Pbo
_ T 9 _ (T+D) _ (T+npa-p)t?
Er o= Yoo Loy — Loy = —5 .

Furthermore, with these expressions of I'y, Iy, and X7, (57) reduces to

- 16P 8Q 16Q(1-5)
IE[Hgy]($T)H2} < W]E[‘I’o(l‘o) — \IJS} + b (T+1)(1-5) + b .

: 1 2(1-8) : —1_ bl/2 :
Trading-off the term B (AT E) + ==~ over 3 € (0, 1], we obtain § := 1 [BO(T+1)]1/2,WhICh
_B)14/2 3/4
has shown in (20). In this case, §; = 0 = L%[b(; AT P[(}ifToj-l)]l/‘* as shown in (20).

Now, let us choose 60 = Ab(T + 1)]1/ 3 for some ¢; > 0. Then, the last inequality leads to

_ 16P./c * 24
E[Hgn(xT)Hz] < [b(TJr:\l/)]E/S [\IIO(:CO) - \IJO] + 2cl[b(Tfl)]2/3'

Hence, if we define Ag as in 1)), i.e.:

]+%

A() = 16P\/a[\110($0) - \Ifa )
then we obtain from the last inequality that (ZT)) holds, i.e.:

Ag

E[I6n(@0)I] < Gzt e

Consequently, for a given tolerance € > 0, to obtain E[||G, (Z7)||?] < €%, we need at most T" :=

3/2
L%J iterations. In this case, the total number of function evaluations F(z, £) is at most

2AL/2 3. AB/2
Tr = bo + (T + 1)(2by + ba) = coc2[b(T + 1)]*/3 + 3o (T + 1)b = 291Z0 4 20%0

Alternatively, the total number of Jacobian evaluations F’(x, §) is at most

1/2 3/2
AL +3AJ.

Ty i=bo + (T 4 1)(2by + by) = A [B(T +1)]Y/2 +3(T + 1)b = 5

. . 1/2 . 1/2 2 . .
Finally, since § := 1 — b the condition (64) leads to —-2 < +5—, which is

[f‘)(T‘*‘l)]l/2 i [bo (T+1)]1/2 Ly, b’
) : L .
equivalent to %jl) > —# as shown in Theorem 3.1 O

B.4 The proof of Theorem 3.2 The smooth case with diminishing step-size

The proof of Theorem 3.2]in the main text. Similar to the proof of Theorem 3.1} with s, = 1 > 0,
MZ Ly, \/26b1b1

3(kMAL2 bi+iM2 L2.b1)

(S — 04

we set ; = 0. Hence, we obtain ©; = O = S
t=0 Yt

Next, given a mini-batch size b > 0, let us choose the mini-batch sizes by := COBO, 131 = 132 := b, and
b1 = by := cgb > 0 for some ¢y > 0. With these choices, the condition @) becomes

B7(1=B) <1=Pi41 < 1—f; and B; > max {o, L= go1z (conMpLg, + RL%MQEO)} - (65)

21



Moreover, from (54) and (33), we have

0. - 3Lay+/cob(1—B:) @  LagbO-p)]"?
t V26(sMA| K [|[*+coi|| K2 M3 L%)1/2 P J
I\ — o= V26(rMEIK|'oh + coklKIPMIoT) @ @
¢ B B 4 4 2 ar2 a2) /2 o PVb’
8veob (RMA K4 + cor|K||2L23M2)
M, - V26b(kMZ || K|[*03 + coil| K||> M} 07) ™ ovs
- ~ 1/2 - R
3y/eabo (RMA| K|t + cm%HKHzL%,Mi) Pbo
_ T _ WNT g A
Xr o= Yiowt= Zt =0 LI)O = Pl V1i-—b

Furthermore, with these expressions of I';, Ily, and X, @ reduces to

8
ZT 0; Zt OetE[”gm(xt)H ] #[\PO(Z‘O)_\IJG] + bov/I—Po %:om (66)

_16Q _(1-8)%
TS, vish Zt 0 (1—Bet1) /%
Let us choose 5; := 1 — (t+2)2/3 € (0,1) asin (IZZI) Then, it is easy to check that 8Z(1 — ;) <
1 — Bi41 < 1 — f; after a few elementary calculations.

Loy Vb . .
P(%z\){/g as (22). In addition, one can easily show that

T T+3 gs
Zt:o VI=5 = Zf 0 (t+2 (t+2)173 > Jy S(ii/S = %[(T + 3)2/3 — 22/3],

Yino Vi = Yo (s < Limo iy S 1+ log(T +1).

Moreover, we have 0, :=

Here, we use the fact that [, L

decreasing function r.

(s)ds < r(t) < ft 1 r(s)ds for a nonnegative and monotonically

Substituting these estimates and /T — By = 5175 into (66), we eventually obtain

1 T 2 32P N
mZt:O OE(1G (IF] < 3Vb|(T+3)2/3-22/3 [Wo(wo) — W]
_16Q [2]/3 n w}
s[(r4+8)2/3-22/3] L bo b :

Combining this inequality and ﬁoé’t S0 OE[G, (2)]1?] = E[[|Gar (@7)]|?], we have proved
@3) for T > 0. O

B.5 The proof of Theorem 3.3} The nonsmooth case with constant step-size

The proof of Theorem 3.3)in the main text. Since p,, = 0, let us fix the smoothness parameter
~v¢ = > 0 and the weights 8; = 8, = 8 € (0,1] forall t > 0. By Lemma we have
_IKIP ME|IK|*

v

My, = My||K||, Ly, = ol and Le, = LrMy| K| +

Given batch sizes b > 0 and 30 > 0, for some ¢g > 0, let us also choose the mini-batch sizes as

. b b
by=byi=b, bi=byi= 2 and by:= 22,
Y v
Recall that P, @, and L are defined by (T9). In this case, the quantities in (54) become

0, = 0= MLy, V/26b16: v/26eobME || K | © mp|x|*e!/?
3(RMELZ bi+RMZ L3b:)

72 = 3y (nMEK[ +corl[K [P M2 LT)1/2 P )

Ft = F = - \% 26bli’l Ve ('{M}%‘Zfi'yo-%' _|_ RM;'yai) @ i7
a(meng,7 Fb1RL M‘iw) 2 ba PV

HO = - V 26b1 b, - (KM%(fi’YU% i RM;’YO'3> @ Q\/g
z%(l)mM;;Li7 +b1f%L%,M£H{) 0 bo Phy
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Furthermore, the step-sizes in (33) also become

0 — g— 3Lg. [b1b1(1-B)]"/? © Lo, b(1-5)]"/
t V26(nMELE bi+R M2 L3.b1)1/2 P )
= -2
ot n Ls, (310)"
Therefore, we have wy := 77— and
Py

_ayil/2
By = ST gy = UTEL - TR

Substituting these expressions into (37), we can further derive
E[HQ,,@T)H?] < W (]E [\I/o(xo) - \116} + VB¢)

1 2(1-p)
+8Q[30(1*5)(T+1)+ ; }

(67)

pl/2

From the last term of (67), we can choose Bas =1 — G

In this case, (67) reduces to

16Pby/* 24Q

573 (BL¥olo) —Wi] +9By) + oS

Bl @nIP] < g

(68)
Clearly, from (68), to achieve the best convergence rate, we need to choose bo == Ab(T + 1)]Y/3.
Then, since we choose 0 < v < 1 and E W (zo)] = Wo(wo), (68) can be overestimated as

Ao

E i) € e
which proves (23), where A is defined by (23), i.e.:

Ag = 16P/e1 (Wo(mo) — W + By) + 29,

C1

A3/2

Now, for any tolerance ¢ > 0, to obtain E[||G, (z1)||?] < €2, we require at most 1" := {AZ)ZJ_J
iterations. In this case, the total number of function evaluations 7 is at most

c c c c?Al/z c AB/Z

T o= bo+ (T+1)(2b1 +b2) = GABT + 1]Y/* + L2 [b(T + 1)] = “97e 4 207g
Alternatively, the total number of Jacobian evaluations 7 is at most
~ ~ ~ . 2AL/2 A3/2
Ty o= bo+ (T +1)(2b1 + bo) = ex[b(T + 1)]1/3 4+ 36(T + 1) = 22— 4 220
If we choose 7 := coe for some co > 0, then
T C()C%Aé/Q n 300Ag/2 _0 AS/Z
FrT e c3e5 S

which proves the last statement. O

B.6 The proof of Theorem 3.4 The nonsmooth case with diminishing step-size
The proof of Theorem3.4|in the main text. Using the fact that 1, = 0, from Lemma[A.T} we have

K 2 M2 K 2
Mg, = My| K], L%:”y”, and L<1>w:LFMw|K|+FL|”,
¢ t

where v, > 0, which will be appropriately updated. Moreover, let us choose by := C‘jyéo by = by =,
0

and b} = b} := ‘;’—f > 0, for some b > 0 and ¢o > 0. We also recall P, @, and Ly from (T9).
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With these expressions, the quantities defined by (54) and (33) become

0 3Lg., (b5 (1—6:)]/2 @@ Lo, [bO1-B)]">
b VEB(RMELE bi+RMZL3b)Y? P ’
0, = MLy, V26010 O Mz K|
- PO /2 = P s
3(hMALY bi+aMZ L3.01) e
) \/26b1 b, RMELY of  RMZ o5\ (@) ¢
Iy = — 72 o T = P
3(bisMpLy +0ALLME, ) 5 2
= 2 2 o 2 2
I : \/ 260961 HMFL‘MO =+ NM‘f’wog‘] © ovs
0 -— = 172 = = =
3(bichpLy +W0rLEME ) bo bo Pbo

Let us choose 3; :== 1 — W € (0,1) and 7 : (f+2)1/3 as in (26). Then, it is easy to check that

53(1—ﬁt)<1—ﬂt+1<1—ﬂt_
o7 < oL, - o

In addition, as before, one can show that
T T+3 .
Zt:O m Zt 0 (t+2)1/'§ > s?/S = %[(T + 3)2/3 - 22/3]7

1-8,)2 143)1/3
Zimo \(/% iz Et+2§4/3 < i < 1+ log(T+1).

Using these estimates, we can easily prove

. 2/3 _ 62/3
= Z?:o wt = g ZZ:O V1—0 > 3\/5[(T+3)P ? ]7

ZT iy (1-6e)? Q[1+log(T+1)]
t=0 \/175t+1 PVb

IN

Substituting these inequalities into and using /1 — By = 21%, we further upper bound

. B
E[Hgn( )H } = 3V (T+332)I2D/3 22/3] (\IIO(JTO) - \IIO + W)

16Q 21/3 | 2(1+log(T+1))
+ 3[(T+3)2/3-22/3] ( bo + b )

which proves (27). O

)

C Restarting variant of Algorithm [I]and its convergence and complexity

In this Supp. Doc., we propose a simple restarting variant, Algorithm 2] of Algorithm [T} prove its
convergence, and estimate its oracle complexity bounds for both smooth ¢y and nonsmooth ¢ in 2).
For simplicity of our analysis, we only consider the constant step-size case, and omit the diminishing
step-size analysis.

C.1 Restarting variant

Motivation: Since the constant step-size € in (20) of Theorem[3.T]and (24)) of Theorem [3.3]depends
on the number of iterations 7. Clearly, if T is large, then 6 is small. To avoid using small step-size 6,
we can restart Algorithm [I|by frequently resetting its initial point and parameters after 7 iterations.
This variant is described in Algorithm[2] Algorithm 2Jhas two loops, where each iteration s of the
outer loop is called the s-th stage. Unlike the outer loop in other variance-reduced methods relying
on SVRG or SARAH estimators from the literature, which is mandatory to guarantee convergence,
our outer loop is optional, since without it, Algorithm [2]reduces to Algorithm [T} and it still converges.
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Algorithm 2 (Restarting Variant of Algorithm |T)

. Inputs: An arbitrarily initial point 2° € dom(F'), and a fixed number of iterations 7.
: Fors:=1,---,5do

1
2
3 Run Algorithmfor T iterations starting from xés) =757t

4: Set 2% := zgfil as the last iterate of Algorithm

5: EndFor

6: Output: Choose Zy randomly from {2:{* }3=1=5 such that Prob (gﬁ N =T

C.2 The smooth case ¢, with constant step-size

The smoothness of ¢y is equivalent to the fi,,-strong convexity of ¢ in (I). The following theorem
states convergence rate and estimates oracle complexity of Algorithm 2]

Theorem C.1. Suppose that Assumptionsand hold, 1) is strongly convex (i.e., j1, = 1 > 0),
and P, Q, and Lg, are defined by (19). Let {:cis) }s=3222 be generated by Algorithmusing v =0,

by := cOI;O, b1 = by := ¢pb, by = by = b for some cy > 0 and given batch sizes b > 0 and I;O > 0,
and the parameter configuration 20). Then, the following estimate holds

16PbL/* 24Q
E[|G,(ZN)|?] € =—2——[T((7Y) — U] + —F——, (69)
where T n is uniformly randomly chosen from {xts) s=i=a
Given ¢ > 0, if we choose T := {%J and ZSO = L‘%QJ, then after at most S := L%J outer

iterations, we obtain E[||G,(Zn)||?] < €% Consequently, the total number of function evaluations
Tr and the total number of Jacobian evaluations Ty are at most Tp = Ty := L% VBQJ

Theorem holds for any mini-batch b such that 1 < b < 4582Q , which is different from, e.g., [43]],
where the complexity result holds under large batches. Moreover, the total oracle calls T and 7 are

independent of b. In this case, the weight 3 and the step-size 6 become

be? bLs
—1— 2 and §i= —2%0
p 489 4P/30

Clearly, if b is large, then our step-size 6 is also large.

The proof of Theorem|C.1} Restarting variant. Since v := 0, by = by := band by = by 1= cob,
from (G1)), using the superscript “(*)” for the outer iteration s, and P and @Q from (T9), we have

0 ()12 (s) (), QUL—p)*?
mE[Hgn(% WP < Volay™) = Volas) + iz
Summing up this inequality from ¢ := 0 to ¢t := T, and using the fact that 2°~! := a:és) and
%= ngjrl, we get
T
4 ONE: 1 oy, QT +1)(1 - pB)*2
57, 20 1071 < o) o) + SEE I

Using the choice by := 0030, similar to the proof of (62)), we can show that
V@t = E[Wo(# )] + $E[IFY - F@ %] + $E[IY - F/@ )]

P Qb1/2
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Using this estimate and and V;(2*) > ¥ (Z*) into above inequality, we can further derive

T 16 Lo s ~s 16QLg, (1—8)3/2
(T~1H) Zt 0 [Hgn( )H ] < G(T;LI?) [\Ifo(m 1) - “IJU(x )] + ;321/2 )

n SQLq,qbl/"‘ '
PO(T+1)bo/I—B
Due to the choice of by and by , it follows f that § = 1— — 22 and g = — L2l
ue to the choice of by and by, it follows from (20) that 3 := ~ Ty 0= g
Therefore, the last inequality becomes
16Pby/* 24Q
0 [Wy(5) - Uy (2°)] + ————.
T+1 z; ”gn ] — [b(T+1)]3/4 [ O( ) 0( )} [bob(T+1)]1/2
Summing up this inequality from s := 1 to s := S and multiplying the result by é we get
16PhL/4 24Q
E| < —— 0 [y (3°) — y(z° _—
ST 2 ) )~ e+
Substituting ¥o(2%) > W into the last inequality, and using the fact that E[||G,(zy)|?] =

S T s .
e D DD Drilt o | [ act) 2], we obtain

E[IG, (@012 = s Sy S E[lG, ()2

16Pbhy/*

s 7 [ Yo(2) -

IN

* 24Q
] [bob(T+1)]1/2”

which is exactly (69).

Now, for a given tolerance £ > 0, to obtain E[||G, (Zx)||?] < &%, we need to impose

16Pby* £2 24Q =

ST+ 1)P/* 2 and bob(T +1)]1/2 2

This condition leads to N = S(T' + 1) = % and bob(T + 1) = £2

number of iterations is N := S(T + 1) = 32P[b°blfg;+1)]1/4 = 12855‘3/@.
Clearly, to optimize the oracle complexity, we need to choose 7'+ 1 := ?(3, then by := 4689 and
S = \/T? In this case, the total number of function evaluations is at most
48Q) 8P 16P+/30Q 384P+/3QQ  400P+/3Q
= b bS(T+1)= — — bN = = .
Tr 0S5 +3bS(T + 1) = \/@5+3 =3 + 3 3
This is also the total number of Jacobian evaluations 7. O

C.3 The nonsmooth ¢, with constant step-size

Finally, we prove the convergence of Algorithm 2] when 1) is non-strongly convex (i.e., o in () is
possibly nonsmooth).

Theorem C.2. Assume that Assumptions and hold, 1 in (1)) is non-strongly convex (i.e.,
py = 0), and P, Q, and L., are defined by (19). Let {xts)}fiéjfﬁ be generated by Algorithm
after N := S(T + 1) iterations using:

by=by = 2000 h—hyimp by = AR .o 2B

2 ) 4 2
. b ) ) (70)
= o and [ := ~ 2k
where ¢ > 0 is a given tolerancsﬂ and
Ro :=16[Uo(3°) — U* + By| and Ry :=24Q. (71)

!'The batch sizes and T in this paper must be integer, but for simplicity, we do not write their rounding form.
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Then, if we choose T' := LQROJ then after at most S := L%J outer iterations, we obtain T
£ 0
such that]E[Hgn(jT)H ] < g2

Consequently, the total number of function evaluations Tr and the total number of Jacobian evalua-
tions Ty are respectively at most

1>

85 53

Remark C.1. Note that we do not need to choose the batch sizes and parameters depending on R
as in ({70), which is unknown since ¥ is unknown, but they are proportional to Ry. In this case, the
complexity bounds in Theorem [C.2] will only be shifted by a constant factor.

As we can see from Theorem | the number of outer iterations S is divided by the batch size b.

12v2coRoR2/? 6v2Ro Ry
However, the terms ‘fcos 0Ro"" and 8Y2Ro

bounds in both Tz and T, respectively.

~ are independent of b and dominate the complexity

The proof of Theorem|C.2] Let us first choose by = by :=b, by = by 1= c,y%b, and by := Cgéo. With
the same line as the proof of (67), we can show that

T SB[ @N?] < rrriigys [E[o(al)] — E[Wo(2),)] +vBy]

21-8)
+8Q[b0(1 BT ]

Here, we use the superscript “(*)” to present the outer iteration s. Moreover, instead of W§, we keep

\Ilo(ngjrl) from (63). Now, using the fact that #°~! = z{*) and ° = :c(TSJ)rl, we can further derive
from the above inequality that

7 S BlIG @] € ity [E[To(3°1)] — E[Wo(3°)] +vBy]

21-5)
+8Q[bo(1 BT T ]

Summing up this inequality from s := 1 to s := S, and multiplying the result by % and
then using 0 < v < 1, E[U(3%)] = Wo(2°), ¥o(2%) > ¥ > —o0, and E[||G,(ZN)[*] =

S T
S(T1+1) Zs:l Zt 0 [|

(mt‘;))\\ |, we arrive at

_ s - .
E[IG,@nI?] = s Yoet Do E[IGs(2)11]
16P _
= W [Wo (i) — U* + By]
2(1-p)
+8Q |:bo 1— B)(T+1) =3 } :
Next, let us choose § := 1 — (T+1) and by := (T + 1). Then, the above estimate becomes
16 P 0 . 24Q
E[Hgn( NI ] = m[@@(% )— W —&-Bw} + 71

Let us define Ry and Ry as in (71), i.e.:
Ro = 16P[¥o(i%) — U* + By] and Ry :=24Q.

In this case, for a given tolerance £ > 0, to achieve E [||Q,7(50 N) HQ} < €2, we can impose

R e g o _ €
bS(T +1)1/2 2 (T+1) 2°
These conditions lead to 7'+ 1 = 26@ and S = b(Tff)({/2€2 = b\f/%. Let us also choose

v = . Then, we also obtain the parameters as in (70), i.e.:

Ro

2c0bRo  j — 4coRE 1 2R
b1:b2 = CO U b1:b2 = b, bo = 2407 bo = u

2Rg QRO

7::\/%, and f[:=1-
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The total number T of function evaluations F(acgs)7 &) is at most

\ﬁRO [4COR% QRO 660bR0:| _ 4\/§CoR0R3/2 1 +3
bev/Ro - € g2 g2 ed b '
The total number 7 of Jacobian evaluations F’ (:c,(fs)7 &) is at most

. . V2R, 2R, 6bR 2W2RRY?  6v2RyRY?
Ty = Slbo + (T +1)(2h1 + bo)] = Y= [0 4 0] = V2R Vo
bev/ Ry € € be €

These prove the last statement of Theorem [C.2] O

Tr = S[bo+ (T +1)(2b1 +b2)] =

D Experiment setup and additional experiments

This Supp. Doc. provides the details of configuration for our experiments in Section[d] and presents
more numerical experiments to support our algorithms and theoretical results. As mentioned in the
main text, all the algorithms used in this paper have been implemented in Python 3.6.3., running on a
Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

Let us provide more details of our experiment configuration. We shorten the name of our algorithm,
either Algorithm[I]or Algorithm [2] by Hybrid Stochastic Compositional Gradient, and abbreviate
it by HSCG for both cases. We have implemented CIVR in [44] and ASC-PG in [38]] to compare the
smooth case of ¢(. For the nonsmooth case of ¢y, we have implemented two other algorithms, SCG
in [37], and Prox-Linear in [34,45]]. While SCG only works for smooth ¢¢, we have smoothed it as
in our method, and used the estimator as well as the algorithm in [37]], but update the smoothness
parameter as in our method. We also omit comparison in terms of time since Prox-Linear becomes
slower if p is large due to its expensive subproblem for evaluating the prox-linear operator. We only
compare these algorithms in terms of epoch (i.e., the number of data passes).

Since both CIVR and ASC-PG are double loop, to be fair, we compare them with our restarting
variant, Algorithm 2] To compare with SCG and Prox-Linear, we simply use Algorithm [I]since
SCG has single loop. Since Prox-Linear requires to solve a nonsmooth convex subproblem, we
have implemented a first-order primal-dual method in [5] to solve it. This algorithm has shown its
efficiency in our test.

Note that the batch size b is determined as b := L%J, where N is the number of data points, and ny

is the number of blocks. In our experiments, we have varied the number of blocks n;, to observe the

performance of these algorithms. Since we want to obtain the best performance, instead of using their

theoretical step-sizes, we have carefully tuned the step-size n of three algorithms in a given set of

candidates {1,0.5,0.1,0.05,0.01,0.001,0.0001}. For our algorithms, we have another step-size 6;,

which is also flexibly chosen from {0.1, 0.5, 1}. For the nonsmooth case, we ate our smoothness
3.

parameter as y; 1= which is proportional to the value in Theorems |3.2 and

To further compare our algorithms with their competitors, we provide in the following subsections
additional experiments for the two problems in the main text.

1
2+1)173°

D.1 Risk-averse portfolio optimization: Additional experiments

Figure[T]in the main text has shown the performance of three algorithms on three different datasets
using 8 blocks, i.e., ny = 8. Unfortunately, since ASC-PG does not work well when the number of
blocks is larger than 8, we skip showing it in our comparison. To obverse more performance of HSCG
and CIVR, we have increased the number of blocks n; from 8 to 32, 64, and 128. The convergence of
the two algorithms is shown in Figure[3] As we can observe, HSCG remains slightly better than CIVR
if ny, = 32 or 64. When n;, = 128, CIVR improves its performance and is slightly better than HSCG.

D.2 Stochastic minimax problem: Additional experiments
For the stochastic minimax problem (32)), Figure 2] has shown the progress of the objective values of

three algorithms on three different datasets. Figure ] simultaneously shows both the objective values
and the gradient mapping norms of this experiment.
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Figure 3: Comparison of two algorithms for solving (3I)) on larger blocks.
» revi: N = 20242, p = 47236 (32 blocks) covtype: N = 581012, p = 54 (32 blocks) url: N = 2396130, p = 3231961 (32 blocks)
: 1
" —9—1HSCG 101’ —9—1HSCG 0 8‘ —9—HSCG
09 —8—SCG —8—SCG ) —8—SCG
gos —y— Prox-Linear ] —y— Prox-Linear Sos —y— Prox-Linear
So7 £ g .
Los 2 2
g 8 8
05 = a
o O 402 O o2
0.4
0 50 100 150 200 0 50 100 150 200 0 20 40 60 100
Number of Epochs Number of Epochs Number of Epochs
s rcvi: N = 20242, p = 47236 (32 blocks) covtype: N = 581012, p = 54 (32 blocks) url: N = 2396130, p = 3231961 (32 blocks)
10°
4
=
=)
T g4l [4—HSCG
ot |—e—sca
—w— Prox-Linear

50 150 200

100
Number of Epochs

50 150 200

100
Number of Epochs

40 60
Number of Epochs

20 80 100

Figure 4: Comparison of three algorithms for solving (32) on 3 different datasets in Figure with
both objective values and gradient mapping norms.

Now, let us keep the same configuration as in Figure 2] but run one more case, where the number of
blocks is increased to n, = 64. The results are shown in Figure 3]

We again see that HSCG still highly outperforms the other two methods: SCG and Prox-Linear on
revl. For url, HSCG is still slightly better than Prox-Linear as we have observed in Figure 2] How-
ever, for covtype, again, Prox-Linear shows a better performance than the other two competitors.
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Note that since p = 54 in this dataset, we can solve the subproblem in Prox-Linear up to a high
accuracy without incurring too much computational cost. Therefore, the inexactness of evaluating the
prox-linear operator does not really affect the performance in this example.
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Figure 5: Comparison of three algorithms for solving on 64 blocks.

Finally, we test three algorithms: HSCG, SCG, and Prox-Linear on other three datasets: w8a,
phishing, and mushrooms from LIBSVM [6]. We use the same number of blocks n, = 32, and
the results are reported in Figure [6] Figure [6] shows that HSCG highly outperforms both SCG and
Prox-Linear on w8a and phishing. However, Prox-Linear becomes better than the other two on
the mushrooms dataset.
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Figure 6: Comparison of three algorithms for solving (32) on three more different datasets.

30



