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A Some technical results and proof of Lemma 3.1

In this Supp. Doc., we provide some useful properties of φ0 in (3) and its smoothed approximation
φγ defined by (9) in Section 2. Then we recall and prove some bounds of variance for F̃t, J̃t, and vt.
Finally, we prove Lemma 3.1 in the main text.

A.1 Properties of the smoothed function φγ

Under Assumption 2.2, φ0 in (3) and φγ defined by (9) have the following properties.

Lemma A.1. Let φ0 be defined by (3) and φγ be defined by (9). Then, the following statements hold:

(a) dom(ψ) is bounded by Mψ iff φ0 is Mφ0
-Lipschitz continuous with Mφ0

:= Mψ‖K‖.
(b) dom(ψ) is bounded by Mψ iff φγ is Lipschitz continuous with Mφγ := Mψ‖K‖.
(c) φγ is convex and Lφγ -smooth with Lφγ := ‖K‖2

γ+µψ
.

(d) It holds that φγ(u) ≤ φ0(u) ≤ φγ(u) + γBψ for all u ∈ Rq, where γ > 0 and Bψ :=
sup {b(y) | y ∈ dom(ψ)}. In addition, we have Dψ := maxv∈dom(ψ) ‖∇b(v)‖ < +∞.

(e) We have φγ(u) ≤ φγ̂(u) + (γ̂ − γ)b(y∗γ(u)) ≤ φγ̂(u) + (γ̂ − γ)Bψ for all γ̂ ≥ γ > 0.

Proof. The statement (a) can be found in [3, Corollary 17.19].

Since ∇φγ(u) = Ky∗γ(u) with y∗γ(u) ∈ dom(ψ), we have ‖∇φγ(u)‖ ≤ ‖K‖‖y∗γ(u)‖ ≤ Mψ‖K‖.
Applying again [3, Corollary 17.19] we prove (b).

The statement (c) holds due to the well-known Baillon-Haddad theorem [3, Corollary 18.17].

The proof of the first part of (d) can be found in [24]. Under Assumption 2.2 and the continuous
differentiability of b, we have Dψ := maxv∈dom(ψ) ‖∇b(v)‖ < +∞.

Finally, for any u and y, since s(γ;u, y) := 〈u,Ky〉 − ψ(y) − γb(y) is linear in γ. Therefore,
φγ(u) := maxy∈Rn s(γ;u, y) is convex in γ and d

dγφγ(u) = −b(y∗γ(u)) ≤ 0. Consequently, we
have φγ(u) + d

dγφγ(u)(γ̂ − γ) = φγ(u)− (γ̂ − γ)b(y∗γ(u)) ≤ φγ̂(u), which implies (e).

One common example of ψ in Assumption 2.2 is ψ(x) := δX (x), the indicator of a nonempty, closed,
bounded, and convex set X . For instance, X := {y ∈ Rn | ‖y‖∗ ≤ 1} is a unit ball in the dual norm
‖·‖∗ of ‖·‖. Then, we have φ0(u) := ‖u‖, which is clearly Lipschitz continuous. In particular, if
X := {y ∈ Rn | ‖y‖∞ ≤ 1}, then φ0(u) := ‖u‖1.

A.2 Key bounds on the variance of estimators

Next, we provide some useful bounds for the estimators F̃t and J̃t defined in (15). The following
lemma can be found in [35], where we have used the inequality 2E

[
〈a, b〉

]
≤ E

[
‖a‖2

]
+ E

[
‖b‖2

]
in

the proof, when a and b are not independent.
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Lemma A.2. Let F̃t and J̃t be defined by (15), and Ft be defined by (18). Then

E(B1
t ,B2

t )

[
‖F̃t − F (xt)‖2

]
≤ β2

t−1‖F̃t−1 − F (xt−1)‖2 − β2
t−1‖F (xt)− F (xt−1)‖2

+ κ(1− βt−1)2EB2
t

[
‖F(xt, ζt)− F (xt)‖2

]
+

κβ2
t−1

b1
Eξ
[
‖F(xt, ξ)− F(xt−1, ξ)‖2

]
,

E(B̂1
t ,B̂2

t )

[
‖J̃t − F ′(xt)‖2

]
≤ β̂2

t−1‖J̃t−1 − F ′(xt−1)‖2

+ κ̂(1− β̂t−1)2EB̂2
t

[
‖F′(xt, ζ̂t)− F ′(xt)‖2

]
+

κ̂β̂2
t−1

b̂1
Eξ̂
[
‖F′(xt, ξ̂)− F′(xt−1, ξ̂)‖2

]
.

(33)

Here, κ = 1 if B1
t is independent of B2

t , and κ = 2, otherwise. Similarly, κ̂ = 1 if B̂1
t is independent

of B̂2
t , and κ̂ = 2, otherwise.

Furthermore, we can bound the variance of the estimator vt of ∇Φγt(xt) defined in (17) as follows.

Lemma A.3. Let Φγ and vt be defined by (11) and (17), respectively. Then, under Assumptions 2.1
and 2.2, we have

E
[
‖vt −∇Φγt(xt)‖2

]
≤ 2M2

FL
2
φγt

E
[
‖F̃t − F (xt)‖2

]
+ 2M2

φγt
E
[
‖J̃t − F ′(xt)‖2

]
. (34)

Proof. First, by the composition rule of derivatives, we can derive

‖vt −∇Φγt(xt)‖
2

= ‖J̃>t ∇φγt(F̃t)− F ′(xt)>∇φγt(F (xt))‖2

=
∥∥J̃>t ∇φγt(F̃t)− F ′(xt)>∇φγt(F̃t) + F ′(xt)

>∇φγt(F̃t)

− F ′(xt)>∇φγt(F (xt))
∥∥2

(i)

≤ 2‖(J̃t − F ′(xt))>∇φγt(F̃t)‖2 + 2‖F ′(xt)>
(
∇φγt(F̃t)−∇φγt(F (xt)

)
‖2

≤ 2‖∇φγt(F̃t)‖2‖J̃t − F ′(xt)‖2 + 2‖∇φγt(F̃t)−∇φγt(F (xt))‖2‖F ′(xt)‖2

(ii)

≤ 2M2
φγt
‖J̃t − F ′(xt)‖2 + 2L2

φγt
M2
F ‖F̃t − F (xt)‖2.

Here, we use ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 in (i) and the Mφγt
-Lipschitz continuity, Lφγt -smoothness

of φγt , and (5) in (ii). Taking expectation over Ft+1 on both sides the last inequality, we obtain

E
[
‖vt −∇Φγt(xt)‖2

]
≤ 2M2

FL
2
φγt

E
[
‖F̃t − F (xt)‖2

]
+ 2M2

φγt
E
[
‖J̃t − F ′(xt)‖2

]
,

which proves (34).

A.3 The construction of approximate KKT points for (1)

Recall from (11) that Φγ(x) = φγ(F (x)) and ∇Φγ(x) = F ′(x)>∇φγ(F (x)), where φγ is defined
by (9). We define a smoothed approximation problem of (2) as follows:

min
x∈Rp

{
Ψγ(x) := Φγ(x) +R(x) ≡ φγ(F (x)) +R(x)

}
. (35)

Clearly, if γ = 0, then (35) reduces to (2). The optimality condition of (35) becomes

0 ∈ ∇Φγ(x?γ) + ∂R(x?γ) ≡ F ′(x?γ)>∇φγ(F (x?γ)) + ∂R(x?γ). (36)

Here, x?γ is called a stationary point of (35). Therefore, an ε-stationary point x̃∗γ is defined as

E
[
dist

(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

) ]
≤ ε. (37)

Again, the expectation E
[
·
]

is taken over all the randomness generated by the model (35) and the
algorithm for finding x̃∗γ .
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Alternatively, using the definition of φγ in (9), problem (35) can be written as

min
x∈Rp

max
y∈Rn

{
R(x) + 〈F (x),Ky〉 − ψ(y)− γb(y)

}
. (38)

Its optimality condition becomes

0 ∈ ∂R(x?γ) + F ′(x?γ)Ky?γ and 0 ∈ K>F (x?γ)− ∂ψ(y?γ)− γ∇b(y?γ). (39)

Using the definition of E in (8), we have

E(x?γ , y
?
γ) := dist

(
0, ∂R(x?γ) + F ′(x?γ)Ky?γ

)
+ dist

(
0,K>F (x?γ)− ∂ψ(y?γ)

)
≤ γDψ. (40)

Here, we use the fact that ‖∇b(y?γ)‖ ≤ Dψ as stated in Lemma A.1.

Given x̄ ∈ dom(Ψ0), let F̃ (·) and J̃(·) be a stochastic approximation of F (·) and F ′(·), respectively.
We define (x̃∗γ , y

∗
γ) as follows:

x̃∗γ := proxηR

(
x̄− η∇̃Φγ(x̄)

)
, where ∇̃Φγ(x̄) := J̃(x̄)>∇φγ(F̃ (x̄)),

ỹ∗γ := y∗γ(F̃ (x̃∗γ)) ≡ arg min
y∈Rn

{
〈K>F̃ (x̃∗γ), y〉 − ψ(y)− γb(y)

}
,

(41)

Note that x̃∗γ only depends on x̄, while ỹ∗γ depends on both x̄ and x̃∗γ . Hence, we first compute x̃∗γ
and then compute ỹ∗γ .

The following lemma provides key estimates to prove Lemma 3.1 in the main text.
Lemma A.4. Under Assumptions 2.1 and 2.2, for given x̄ and η > 0, x̃∗γ defined by (41) satisfies

dist
(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

)
≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖. (42)

Let (x̃∗γ , ỹ
∗
γ) be computed by (41), and E(x, y) be defined by (8). Then, we have

E(x̃∗γ , ỹ
∗
γ) ≤

(
1 + ηLΦγ

)
‖Gη(x̄)‖+ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖

+
(
2 + ηLΦγ

) [
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄)‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖

]
,

(43)

where Dψ is defined in Lemma A.1.

Proof. From (41), we have x̄− η∇̃Φγ(x̄) ∈ x̃∗γ + η∂R(x̃∗γ), which is equivalent to

r∗x :=
1

η
(x̄− x̃∗γ) +

(
∇Φγ(x̃∗γ)− ∇̃Φγ(x̄)

)
∈ ∇Φγ(x̃∗γ) + ∂R(x̃∗γ). (44)

We can bound r∗x in (44) as follows:

‖r∗x‖ ≤ 1
η‖x̄− x̃

∗
γ‖+ ‖∇Φγ(x̃∗γ)−∇Φγ(x̄)‖+ ‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖

≤ 1
η

(
1 + ηLΦγ

)
‖x̃∗γ − x̄‖+ ‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖.

(45)

Next, from (14), let us define x̄∗γ := x̄− ηGη(x̄) = proxηR(x̄− η∇Φγ(x̄)). Then, we have

‖x̃∗γ − x̄‖ ≤ ‖x̃∗γ − x̄∗γ‖+ ‖x̄∗γ − x̄‖

= ‖proxηR(x̄− η∇̃Φγ(x̄))− proxηR(x̄− η∇Φγ(x̄))‖+ η‖Gη(x̄)‖

≤ η‖∇̃Φγ(x̄)−∇Φγ(x̄)‖+ η‖Gη(x̄)‖.

(46)

Substituting this estimate into (45), we obtain

‖r∗x‖ ≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖.

Combining this inequality and (44), we obtain (42).

Now, since ỹ∗γ = y∗γ(F̃ (x̃∗γ)), by the optimality condition of (9), we have

r∗y := γ∇b(ỹ∗γ) +K>(F (x̃∗γ)− F̃ (x̃∗γ)) ∈ K>F (x̃∗γ)− ∂ψ(ỹ∗γ). (47)

15



Utilizing Lemma A.1(d), we can bound r∗y defined by (47) as

‖r∗y‖ ≤ γ‖∇b(ỹ∗γ)‖+ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖ ≤ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖.

Combining this estimate and (47), we get

dist
(
0,K>F (x̃∗γ)− ∂ψ(ỹ∗γ)

)
≤ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖+ γDψ. (48)

On the other hand, using the definition of ∇̃Φγ(·) from (41), we can show that

‖∇̃Φγ(x̄)−∇Φγ(x̄)‖ = ‖J̃(x̄)>∇φγ(F̃ (x̄))− F ′(x̄)>∇φγ(F (x̄))‖
≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ ‖F ′(x̄)>

(
∇φγ(F̃ (x̄))−∇φγ(F (x̄)

)
‖

≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ ‖∇φγ(F̃ (x̄))−∇φγ(F (x̄))‖‖F ′(x̄)‖
(i)

≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ Lφγ‖F ′(x̄)‖‖F̃ (x̄)− F (x̄)‖
(5)
≤ ‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖.

Here, we have used the Lφγ -smoothness of φγ in (i).

Finally, combining the last estimate, (42), and (48), and using the definition of E from (8), we have

E(x̃∗γ , ỹ
∗
γ) := dist

(
0,∇Φγ(x̃∗γ) + ∂R(x̃∗γ)

)
+ dist

(
0,K>F (x̃∗γ)− ∂ψ(ỹ∗γ)

)
≤

(
1 + ηLΦγ

)
‖Gη(x̄)‖+ (2 + ηLΦγ )‖∇Φγ(x̄)− ∇̃Φγ(x̄)‖

+ ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖+ γDψ

≤
(
1 + ηLΦγ

)
‖Gη(x̄)‖+ γDψ + ‖K‖‖F (x̃∗γ)− F̃ (x̃∗γ)‖

+
(
2 + ηLΦγ

) [
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖+ LφγMF ‖F̃ (x̄)− F (x̄)‖

]
,

which proves (43).

The proof of Lemma 3.1. For notational simplicity, we drop the subscript T in this proof. Since
Mφγ = Mψ‖K‖ and Lφγ = ‖K‖2

γ+µψ
, using the conditions in Lemma 3.1 and (28), we can derive from

(43) after taking the full expectation that

E
[
E(x̃∗γ , ỹ

∗
γ)
]
≤
(
1 + ηLΦγ

)
E
[
‖Gη(x̄)‖

]
+
(
2 + ηLΦγ

)
E
[
‖(J̃(x̄)− F ′(x̄))>∇φγ(F̃ (x̄))‖

]
+ ‖K‖E

[
‖F (x̃∗γ)− F̃ (x̃∗γ)‖

]
+
(
2 + ηLΦγ

) ‖K‖2MF

µψ+γ E
[
‖F̃ (x̄)− F (x̄)‖

]
+ γDψ.

Now, by the Jensen inequality E
[
‖Gη(x̄)‖

]
≤
(
E
[
‖Gη(x̄)‖2

])1/2 ≤ ε. In addition, by (28), we
also have 0 < γ ≤ c2ε, E

[
‖(J̃(x̄) − F ′(x̄))>∇φγ(F̃ (x̄))‖

]
≤ ε, E

[
‖F (x̃∗γ) − F̃ (x̃∗γ)‖

]
≤ ε, and

1
µψ+γE

[
‖F̃ (x̄)− F (x̄)‖

]
≤ ε. By the update rule of η in Theorems 3.1, 3.2, 3.3, and 3.4, we have

ηLΦγ = 2
3+θ ≤

2
3 since θ ∈ (0, 1]. Substituting these expressions into the last inequality, we finally

arrive at

E
[
E(x̃∗γ , ỹ

∗
γ)
]
≤ (1 + 2

3 )ε+ c2Dψε+ ‖K‖ε+ (2 + 2
3 )(1 + ‖K‖2MF )ε,

which is exactly (30).

B Convergence analysis of Algorithm 1 in Section 3

This Supp. Doc. provides the full analysis of Algorithm 1, including convergence rates and oracle
complexity for both strongly convex and non-strongly convex cases of ψ (or equivalently, the
smoothness and the nonsmoothness of φ0, respectively).
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B.1 Preparing technical results

Let us first recall and prove some technical results to prepare for our convergence analysis.
Lemma B.1. Let {xt} be generated by Algorithm 1, LΦγt

be defined by (13), and Bψ be given in
Lemma A.1. Then, under Assumptions 2.1 and 2.2, for any ηt > 0 and θt ∈ [0, 1], we have

E
[
Ψγt(xt+1)

]
≤ E

[
Ψγt−1

(xt)
]

+
θt
(

1+L2
Φγt

η2
t

)
2LΦγt

E
[
‖∇Φγt(xt)− vt‖2

]
+ (γt−1 − γt)Bψ

− LΦγt
η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
.

(49)

Proof. Following the same line of proof of [35, Lemma 5], we can show that

E
[
Ψγt(xt+1)

]
≤ E

[
Ψγt(xt)

]
+

θt
(

1+L2
Φγt

η2
t

)
2LΦγt

E
[
‖∇Φγt(xt)− vt‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
.

Finally, since E
[
Ψγt(xt)

]
≤ E

[
Ψγt−1

(xt)
]

+ (γt−1− γt)Bψ due to Lemma A.1(e), substituting this
expression into the last inequality, we obtain (49).

The Lyapunov function: To analyze Algorithm 1, we introduce the following Lyapunov function:

Vγt−1(xt) := E
[
Ψγt−1(xt)

]
+
αt
2
E
[
‖F̃t − F (xt)‖2

]
+
α̂t
2
E
[
‖J̃t − F ′(xt)‖2

]
, (50)

where αt > 0 and α̂t > 0 are given parameters, and the expectation is taken over Ft+1. Lemma B.2
provides a key bound to estimate convergence rates and complexity bounds.
Lemma B.2. Let {xt} be generated by Algorithm 1, and Vγt be the Lyapunov function defined by
(50). Suppose further that the following conditions hold:

2
ηt
≥ LΦγt

θt + 2LΦγt
+

κM2
F β

2
t θtαt+1

b1
+

κ̂L2
F β̂

2
t θtα̂t+1

b̂1

2M2
FL

2
φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+ αt+1β

2
t ≤ αt and 2M2

φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+ α̂t+1β̂

2
t ≤ α̂t.

(51)

Then, for all t ≥ 0, one has

Vγt(xt+1) ≤ Vγt−1
(xt)−

LΦγt
η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+

κ(1−βt)2αt+1σ
2
F

b2
+

κ̂(1−β̂t)2α̂t+1σ
2
J

b̂2

+ (γt−1 − γt)Bψ.
(52)

Proof. First of all, by combining (34) and (49), we obtain

E
[
Ψγt(xt+1)

]
≤E

[
Ψγt−1(xt)

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt

)
E
[
‖x̂t+1 − xt‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+ (γt−1 − γt)Bψ

+ θt

(
1+L2

Φγt
η2
t

LΦγt

)(
M2
FL

2
φγt

E
[
‖F̃t − F (xt)‖2

]
+M2

φγt
E
[
‖J̃t − F ′(xt)‖2

])
.

(53)

Due to the mini-batch estimators in (15), it is well-known that

EB2
t

[
‖F(xt, ζt)− F (xt)‖2

]
= E

[∥∥ 1
b2

∑
ζi∈B2

t
F(xt, ζi)− F (xt)

∥∥2] ≤ σ2
F

b2

EB̂2
t

[
‖F′(xt, ζ̂t)− F ′(xt)‖2

]
= E

[∥∥ 1
b̂2

∑
ζ̂i∈B̂2 F′(xt, ζ̂i)− F ′(xt)

∥∥2] ≤ σ2
J

b̂2
.

Substituting these bounds and xt+1 − xt = θt(x̂t+1 − xt) into (33) and taking full expectation the
resulting inequality over Ft+1, we obtain

E
[
‖F̃t+1 − F (xt+1)‖2

]
≤ β2

tE
[
‖F̃t − F (xt)‖2

]
+

κβ2
t θ

2
tM

2
F

b1
E
[
‖x̂t+1 − xt‖2

]
+

κ(1−βt)2σ2
F

b2

E
[
‖J̃t+1 − F ′(xt+1)‖2

]
≤ β̂t

2
E
[
‖J̃t − F ′(xt)‖2

]
+

κ̂β̂2
t θ

2
tL

2
F

b̂1
E
[
‖x̂t+1 − xt‖2

]
+

κ̂(1−β̂t)2σ2
J

b̂2
.
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Multiplying these inequalities by αt+1 > 0 and α̂t+1 > 0, respectively, and adding the results to
(53), we can further derive

Vγt(xt+1)
(50)
:= E

[
Ψγt(xt+1)

]
+ αt+1

2 E
[
‖F̃t+1 − F (xt+1)‖2

]
+ α̂t+1

2 E
[
‖J̃t+1 − F ′(xt+1)‖2

]
≤ E

[
Ψγt−1(xt)

]
+

[
M2
FL

2
φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+

αt+1β
2
t

2

]
E
[
‖F̃t − F (xt)‖2

]
+

[
M2
φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+

α̂t+1β̂
2
t

2

]
E
[
‖J̃t − F ′(xt)‖2

]
− LΦγt

η2
t θt

4 E
[
‖Gηt(xt)‖2

]
− θt

2

(
2
ηt
− LΦγt

θt − 2LΦγt
− κM2

F β
2
t θtαt+1

b1
− κ̂L2

F β̂
2
t θtα̂t+1

b̂1

)
E
[
‖x̂t+1 − xt‖2

]
+

κ(1−βt)2αt+1σ
2
F

b2
+

κ̂(1−β̂t)2α̂t+1σ
2
J

b̂2
+ (γt−1 − γt)Bψ.

Let us choose αt > 0 and α̂t > 0 and impose three conditions as in (51), i.e.:
2
ηt
≥ LΦγt

θt + 2LΦγt
+

κM2
F β

2
t θtαt+1

b1
+

κ̂L2
F β̂

2
t θtα̂t+1

b̂1
,

2M2
FL

2
φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+ αt+1β

2
t ≤ αt, and 2M2

φγt
θt

(
1+L2

Φγt
η2
t

LΦγt

)
+ α̂t+1β̂

2
t ≤ α̂t.

Then, by using (50), the last inequality can be further upper bounded as

Vγt(xt+1) ≤ Vγt−1
(xt)−

LΦγt
η2
t θt

4 E
[
‖Gηt(xt)‖2

]
+

κ(1−βt)2αt+1σ
2
F

b2

+
κ̂(1−β̂t)2α̂t+1σ

2
J

b̂2
+ (γt−1 − γt)Bψ,

which proves (52).

B.2 A general key bound for Algorithm 1

Now, we are ready to prove one key result, Theorem B.1, for oracle complexity analysis of Algo-
rithm 1. To simplify our expressions, let us introduce the following notations in advance:

ωt := θt
LΦγt

and ΣT :=
∑T
t=0 ωt,

Θt :=
M2
FL

2
φγt

√
26b1b̂1

3
(
κM4

FL
2
φγt

b̂1+κ̂M2
φγt

L2
F b1

)1/2 ,

Π0 :=

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγ0

+b1κ̂L2
FM

2
φγ0

)1/2

(
κM2

FL
2
φγ0

σ2
F

b0
+

κ̂M2
φγ0

σ2
J

b̂0

)
,

Γt :=

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγt

+b1κ̂L2
FM

2
φγt

)1/2

(
κM2

FL
2
φγt

σ2
F

b2
+

κ̂M2
φγt

σ2
J

b̂2

)
.

(54)

Theorem B.1. Suppose that Assumptions 2.1 and 2.2 hold, and ωt, ΣT , Θt, Π0, and Γt are defined
by (54). Let {xt}Tt=0 be generated by Algorithm 1 using the following step-sizes:

θt :=
3LΦγt

[
b1b̂1(1− βt)

]1/2
√

26(κM4
FL

2
φγt
b̂1 + κ̂M2

φγt
L2
F b1)1/2

and ηt :=
2

LΦγt
(3 + θt)

, (55)

where βt, β̂t ∈ (0, 1] are chosen such that βt = β̂t, 0 ≤ γt+1 ≤ γt, and
β2
t (1−βt)

Θ2
t
≤ 1−βt+1

Θ2
t+1

≤ 1−βt
Θ2
t
,

βt > max

{
0, 1− 26

9L2
Φγt

(
κM4

FL
2
φγt

b1
+

κ̂L2
FM

2
φγt

b̂1

)}
.

(56)

Let x̄T be randomly chosen between {x0, · · · , xT } such that Prob (x̄T = xt) = ωt
ΣT

, and η̄T be
corresponding to ηt of x̄T . Then, the following estimate holds:

E
[
‖Gη̄T (x̄T )‖2

]
≤ 16

ΣT

(
E
[
Ψ0(x0)−Ψ?

0

]
+γTBψ

)
+

8Π0

ΣT
√

1− β0
+

16

ΣT

T∑
t=0

Γt+1(1− βt)2√
1− βt+1

. (57)
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The proof of Theorem B.1. First, the conditions in (51) can be simplified as follows:
LΦγt

θt + 2LΦγt
+
(κM2

F β
2
tαt+1

b1
+

κ̂L2
F β̂t

2
α̂t+1

b̂1

)
θt ≤ 2

ηt
,

2M2
FL

2
φγt

(1 + L2
Φγt

η2
t )θt ≤ LΦγt

(αt − β2
t αt+1),

2M2
φγt

(1 + L2
Φγt

η2
t )θt ≤ LΦγt

(α̂t − β̂2
t α̂t+1).

(58)

Let us update ηt := 2
(3+θt)LΦγt

as (55). Since θt ∈ (0, 1], we have

1

2LΦγt

≤ ηt <
2

3LΦγt

and 1 ≤ 1 + L2
Φγt

η2
t <

13

9
.

Next, let us choose γt, βt, β̂t, αt, and α̂t such that

β̂t = βt ∈ (0, 1], α̂t =
M2
φγt

M2
FL

2
φγt

αt,
Mφγt+1

Lφγt+1

≤
Mφγt

Lφγt
, and 0 < αt ≤ αt+1 ≤

αt
βt
. (59)

Then, we have

αt − αt+1β
2
t ≥ αt(1− βt) > 0,

and α̂t − β̂2
t α̂t+1 =

M2
φγt

M2
FL

2
φγt

αt − β2
t

M2
φγt+1

M2
FL

2
φγt+1

αt+1 ≥
M2
φγt

M2
FL

2
φγt

(αt − β2
t αt+1)

≥
M2
φγt

M2
FL

2
φγt

(1− βt)αt = (1− βt)α̂t > 0.

By using the last two inequalities, we can show that the conditions in (58) hold, if we have

0 < θt ≤
9LΦγt

αt(1−βt)
26M2

FL
2
φγt

, 0 < θt ≤
9LΦγt

α̂t(1−βt)
26M2

φγt

,

and 0 < θt ≤ LΦγt

(
κM2

Fαt
b1

+
κ̂L2

F α̂t

b̂1

)−1

.

(60)

Therefore, the three conditions in (60) hold if we choose

αt(1− βt)
M2
FL

2
φγt

=
α̂t(1− βt)
M2
φγt

and

(
κM2

F

b1
+
κ̂L2

FM
2
φγt

M2
FL

2
φγt
b̂1

)
αt =

26M2
FL

2
φγt

9αt(1− βt)
.

These conditions show that we can choose

αt := Θt√
1−βt

and α̂t :=
M2
φγt

Θt

M2
FL

2
φγt

√
1−βt

, where Θt :=
M2
FL

2
φγt

√
26b1b̂1

3
(
κM4

FL
2
φγt

b̂1+κ̂M2
φγt

L2
F b1

)1/2 .

Clearly, this Θt is exactly given by (54). With this choice of αt and α̂t, we obtain

0 < θt ≤ θ̄t :=
9LΦγt

Θt

√
(1− βt)

26M2
FL

2
φγt

=
3LΦγt

√
b1b̂1(1− βt)

√
26(κM4

FL
2
φγt
b̂1 + κ̂M2

φγt
L2
F b1)1/2

.

We then choose θt := θ̄t at the upper bound as in (55).

Now, to guarantee that 0 < θ̄t ≤ 1, we impose the following condition as in (56), i.e.:

βt > max

{
0, 1− 26

9L2
Φγt

(
κM4

FL
2
φγt

b1
+

κ̂L2
FM

2
φγt

b̂1

)}
.

Due to the choice of αt, the condition αt ≤ αt+1 ≤ αt
βt

in (59) is equivalent to

β2
t (1− βt)

Θ2
t

≤ 1− βt+1

Θ2
t+1

≤ 1− βt
Θ2
t

,

which is the first condition of (56). Moreover, since Mφγt
= Mψ‖K‖ and Lφγt = ‖K‖2

µψ+γt
due to

Lemma A.1, the third condition of (59) reduces to γt+1 ≤ γt, which is one of the conditions in
Theorem B.1.
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Next, under the choice of αt and α̂t, and ηt ≥ 1
2LΦγt

, (52) implies

θt
16LΦγt

E
[
‖Gηt(xt)‖2

]
≤ Vγt−1(xt)− Vγt(xt+1) + (γt−1 − γt)Bψ

+

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγt+1

+b1κ̂L2
FM

2
φγt+1

)1/2

(
κM2

FL
2
φγt+1

σ2
F

b2
+

κ̂M2
φγt+1

σ2
J

b̂2

)
(1−βt)2

(1−βt+1)1/2 .
(61)

Note that since Ψγ0
(x0) ≤ Ψ0(x0) due to Lemma A.1, and γ−1 = γ0 by convention, we have

Vγ0(x0) = E
[
Ψγ0(x0)

]
+ α0

2 E
[
‖F̃0 − F (x0)‖2

]
+ α̂0

2 E
[
‖J̃0 − F ′(x0)‖2

]
≤ E

[
Ψ0(x0)

]
+

√
26b1b̂1

6
(
b̂1κM4

FL
2
φγ0

+b1κ̂L2
FM

2
φγ0

)1/2

(
κM2

FL
2
φγ0

σ2
F

b0
+

κ̂M2
φγ0

σ2
J

b̂0

)
1

(1−β0)1/2 .
(62)

Moreover, by Lemma A.1(d), we have

VγT (xT+1) ≥ E
[
ΨγT (xT+1)

]
≥ E

[
Ψ0(xT+1)

]
− γTBψ ≥ Ψ?

0 − γTBψ. (63)

Let us define Γt and Π0 as (54), i.e.:
Γt :=

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγt

+b1κ̂L2
FM

2
φγt

)1/2

(
κM2

FL
2
φγt

σ2
F

b2
+

κ̂M2
φγt

σ2
J

b̂2

)
,

Π0 :=

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγ0

+b1κ̂L2
FM

2
φγ0

)1/2

(
κM2

FL
2
φγ0

σ2
F

b0
+

κ̂M2
φγ0

σ2
J

b̂0

)
.

Then, summing up (61) from t := 0 to t := T , and using these expressions, (62), and (63), we get

T∑
t=0

θt
16LΦγt

E
[
‖Gηt(xt)‖2

]
≤ E

[
Ψ0(x0)−Ψ?

0

]
+ γTBψ +

T∑
t=0

Γt+1(1− βt)2

(1− βt+1)1/2
+

Π0

2(1− β0)1/2
.

Dividing this inequality by ΣT
16 , where ΣT :=

∑T
t=0 ωt ≡

∑T
t=0

θt
LΦγt

, we obtain

1

ΣT

T∑
t=0

ωtE
[
‖Gηt(xt)‖2

]
≤ 16

ΣT

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γTBψ

)
+

8Π0

ΣT (1− β0)1/2

+
16

ΣT

T∑
t=0

Γt+1(1− βt)2

(1− βt+1)1/2
.

Finally, due to the choice of x̄T and η̄T , we have 1
ΣT

∑T
t=0 ωtE

[
‖Gηt(xt)‖2

]
= E

[
‖Gη̄T (x̄T )‖2

]
.

This relation together with the above estimate prove (57).

B.3 The proof of Theorem 3.1: The smooth case with constant step-size

Now, we prove our first main result in the main text.

The proof of Theorem 3.1 in the main text. First, since µψ = 1 > 0, we can set γt := 0 for
all t ≥ 0. That means, we do not need to smooth φ0 in (2). Hence, from (54), Θt = Θ0 =

M2
FLφ0

√
26b1b̂1

3
(
κM4

FL
2
φ0
b̂1 + κ̂M2

φ0
L2
F b1

)1/2 and ωt
ΣT

= θt∑T
t=0 θt

, where LΦ0
is defined by (19).

Next, given a batch size b > 0, let us choose the mini-batch sizes b0 := c0b̂0 > 0, b̂1 = b̂2 := b > 0,
and b1 = b2 := c0b for some c0 > 0. We also choose a constant step-size θt := θ ∈ (0, 1] and a
constant weight βt := β ∈ (0, 1] for all t ≥ 0. We also recall P , Q, and LΦ0

defined by (19).

With this configuration, the first condition of (56) and 0 ≤ γt+1 ≤ γt are automatically satisfied,
while the second one becomes

β > max

{
0, 1− 26

9c0L2
Φ0
b

(
κM4

F ‖K‖4 + c0κ̂‖K‖2L2
FM

2
ψ

)}
= max

{
0, 1− P 2

L2
Φ0
b

}
. (64)
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Moreover, we also obtain from (54), (55), and (19) that

θt = θ =
3LΦ0

√
c0b(1−β)√

26(κM4
F ‖K‖4 + c0κ̂‖K‖2M2

ψL
2
F )1/2

(19)
=

LΦ0
[b(1−β)]1/2

P ,

Γt = Γ =
√

26(κM2
F ‖K‖

4σ2
F + c0κ̂‖K‖2M2

ψσ
2
J)

3
√
c0b
(
κM4

F ‖K‖4 + c0κ̂‖K‖2L2
FM

2
ψ

)1/2

(19)
= Q

P
√
b
,

Π0 =
√

26b(κM2
F ‖K‖

4σ2
F + c0κ̂‖K‖2M2

ψσ
2
J)

3
√
c0b̂0

(
κM4

F ‖K‖4 + c0κ̂‖K‖2L2
FM

2
ψ

)1/2

(19)
= Q

√
b

P b̂0
,

ΣT =
∑T
t=0

θ
LΦ0

= θ(T+1)
LΦ0

= (T+1)[b(1−β)]1/2

P .

Furthermore, with these expressions of Γt, Π0, and ΣT , (57) reduces to

E
[
‖Gη(x̄T )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2
E
[
Ψ0(x0)−Ψ?

0

]
+ 8Q

b̂0(T+1)(1−β)
+ 16Q(1−β)

b .

Trading-off the term 1
b̂0(1−β)(T+1)

+ 2(1−β)
b over β ∈ (0, 1], we obtain β := 1− b1/2

[b̂0(T+1)]1/2
, which

has shown in (20). In this case, θt = θ =
LΦ0

[b(1−β)]1/2

P =
LΦ0

b3/4

P [b̂0(T+1)]1/4
as shown in (20).

Now, let us choose b̂0 := c21[b(T + 1)]1/3 for some c1 > 0. Then, the last inequality leads to

E
[
‖Gη(x̄T )‖2

]
≤ 16P

√
c1

[b(T+1)]2/3

[
Ψ0(x0)−Ψ?

0

]
+ 24Q

2c1[b(T+1)]2/3 .

Hence, if we define ∆0 as in (21), i.e.:

∆0 := 16P
√
c1
[
Ψ0(x0)−Ψ?

0

]
+

24Q

c1
,

then we obtain from the last inequality that (21) holds, i.e.:

E
[
‖Gη(x̄T )‖2

]
≤ ∆0

[b(T + 1)]2/3
.

Consequently, for a given tolerance ε > 0, to obtain E
[
‖Gη(x̄T )‖2

]
≤ ε2, we need at most T :=⌊∆

3/2
0

bε3

⌋
iterations. In this case, the total number of function evaluations F(xt, ξ) is at most

TF := b0 + (T + 1)(2b1 + b2) = c0c
2
1[b(T + 1)]1/3 + 3c0(T + 1)b =

c0c
2
1∆

1/2
0

ε
+

3c0∆
3/2
0

ε3
.

Alternatively, the total number of Jacobian evaluations F′(xt, ξ) is at most

TJ := b̂0 + (T + 1)(2b̂1 + b̂2) = c21[b(T + 1)]1/3 + 3(T + 1)b =
c21∆

1/2
0

ε
+

3∆
3/2
0

ε3
.

Finally, since β := 1 − b1/2

[b̂0(T+1)]1/2
, the condition (64) leads to b1/2

[b̂0(T+1)]1/2
< P 2

L2
Φ0
b
, which is

equivalent to b̂0(T+1)
b3 >

L4
Φ0

P 4 as shown in Theorem 3.1.

B.4 The proof of Theorem 3.2: The smooth case with diminishing step-size

The proof of Theorem 3.2 in the main text. Similar to the proof of Theorem 3.1, with µψ = 1 > 0,

we set γt = 0. Hence, we obtain Θt = Θ0 =
M2
FLφ0

√
26b1b̂1

3
(
κM4

FL
2
φ0
b̂1+κ̂M2

φ0
L2
F b1

)1/2 and ωt
ΣT

= θt∑T
t=0 θt

.

Next, given a mini-batch size b > 0, let us choose the mini-batch sizes b0 := c0b̂0, b̂1 = b̂2 := b, and
b1 = b2 := c0b > 0 for some c0 > 0. With these choices, the condition (56) becomes

β2
t (1−βt) ≤ 1−βt+1 ≤ 1−βt and βt > max

{
0, 1− 26

9c0L2
Φ0
b

(
c0κM

4
FL

2
φ0

+ κ̂L2
FM

2
φ0

)}
. (65)
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Moreover, from (54) and (55), we have

θt =
3LΦ0

√
c0b(1−βt)√

26(κM4
F ‖K‖4+c0κ̂‖K‖2M2

ψL
2
F )1/2

(19)
=

LΦ0
[b(1−βt)]1/2

P ,

Γt = Γ =
√

26(κM2
F ‖K‖

4σ2
F + c0κ̂‖K‖2M2

ψσ
2
J)

3
√
c0b
(
κM4

F ‖K‖4 + c0κ̂‖K‖2L2
FM

2
ψ

)1/2

(19)
= Q

P
√
b
,

Π0 =
√

26b(κM2
F ‖K‖

4σ2
F + c0κ̂‖K‖2M2

ψσ
2
J)

3
√
c0b̂0

(
κM4

F ‖K‖4 + c0κ̂‖K‖2L2
FM

2
ψ

)1/2

(19)
= Q

√
b

P b̂0
,

ΣT =
∑T
t=0 ωt =

∑T
t=0

θt
LΦ0

=
√
b
P

∑T
t=0

√
1− βt.

Furthermore, with these expressions of Γt, Π0, and ΣT , (57) reduces to
1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
≤ 16P√

b
∑T
t=0

√
1−βt

[
Ψ0(x0)−Ψ?

0

]
+ 8Q

b̂0
√

1−β0
∑T
t=0

√
1−βt

+ 16Q

b
∑T
t=0

√
1−βt

∑T
t=0

(1−βt)2

(1−βt+1)1/2 .
(66)

Let us choose βt := 1 − 1
(t+2)2/3 ∈ (0, 1) as in (22). Then, it is easy to check that β2

t (1 − βt) ≤
1− βt+1 ≤ 1− βt after a few elementary calculations.

Moreover, we have θt :=
LΦ0

√
b

P (t+2)1/3 as (22). In addition, one can easily show that
∑T
t=0

√
1− βt =

∑T
t=0

1
(t+2)1/3 ≥

∫ T+3

2
ds
s1/3 = 3

2 [(T + 3)2/3 − 22/3],∑T
t=0

(1−βt)2√
1−βt+1

=
∑T
t=0

(t+3)1/3

(t+2)4/3 ≤
∑T
t=0

1
(t+1) ≤ 1 + log(T + 1).

Here, we use the fact that
∫ t+1

t
r(s)ds ≤ r(t) ≤

∫ t
t−1

r(s)ds for a nonnegative and monotonically
decreasing function r.

Substituting these estimates and
√

1− β0 = 1
21/3 into (66), we eventually obtain

1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
≤ 32P

3
√
b
[
(T+3)2/3−22/3

][Ψ0(x0)−Ψ?
0

]
+ 16Q

3
[
(T+3)2/3−22/3

] [ 21/3

b̂0
+ 2(1+log(T+1))

b

]
.

Combining this inequality and 1∑T
t=0 θt

∑T
t=0 θtE

[
‖Gηt(xt)‖2

]
= E

[
‖Gη̄T (x̄T )‖2

]
, we have proved

(23) for T ≥ 0.

B.5 The proof of Theorem 3.3: The nonsmooth case with constant step-size

The proof of Theorem 3.3 in the main text. Since µψ = 0, let us fix the smoothness parameter
γt = γ > 0 and the weights βt = β̂t = β ∈ (0, 1] for all t ≥ 0. By Lemma A.1, we have

Mφγ = Mψ‖K‖, Lφγ =
‖K‖2

γ
, and LΦγ = LFMψ‖K‖+

M2
F ‖K‖2

γ
.

Given batch sizes b > 0 and b̂0 > 0, for some c0 > 0, let us also choose the mini-batch sizes as

b̂1 = b̂2 := b, b1 = b2 :=
c0b

γ2
, and b0 :=

c0b̂0
γ2

.

Recall that P , Q, and LΦγ are defined by (19). In this case, the quantities in (54) become

Θt := Θ =
M2
FLφγ

√
26b1b̂1

3
(
κM4

FL
2
φγ
b̂1+κ̂M2

φγ
L2
F b1

)1/2 =
√

26c0bM
2
F ‖K‖

2

3γ(κM4
F ‖K‖4+c0κ̂‖K‖2M2

ψL
2
F )1/2

(19)
=

M2
F ‖K‖

2b1/2

γP ,

Γt := Γ =

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγ

+b1κ̂L2
FM

2
φγ

)1/2

(
κM2

FL
2
φγ
σ2
F

b2
+

κ̂M2
φγ
σ2
J

b̂2

)
(19)
= Q

P
√
b
,

Π0 :=

√
26b1b̂1

3
(
b̂1κM4

FL
2
φγ

+b1κ̂L2
FM

2
φγ

)1/2

(
κM2

FL
2
φγ
σ2
F

b0
+

κ̂M2
φγ
σ2
J

b̂0

)
(19)
= Q

√
b

P b̂0
.

22



Furthermore, the step-sizes in (55) also become
θt := θ =

3LΦγ [b1b̂1(1−β)]1/2

√
26(κM4

FL
2
φγ
b̂1+κ̂M2

φγ
L2
F b1)1/2

(19)
=

LΦγ [b(1−β)]1/2

P ,

ηt := η = 2
LΦγ (3+θ) .

Therefore, we have ωt := θ
LΦγ

and

ΣT :=
∑T
t=0 ωt = θ(T+1)

LΦγ
= (T+1)[b(1−β)]1/2

P .

Substituting these expressions into (57), we can further derive

E
[
‖Gη(x̄T )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γBψ

)
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

(67)

From the last term of (67), we can choose β as β = 1− b1/2

[b̂0(T+1)]1/2
. In this case, (67) reduces to

E
[
‖Gη(x̄T )‖2

]
≤ 16P b̂

1/4
0

[b(T + 1)]3/4

(
E
[
Ψ0(x0)−Ψ?

0

]
+ γBψ

)
+

24Q

[bb̂0(T + 1)]1/2
. (68)

Clearly, from (68), to achieve the best convergence rate, we need to choose b̂0 := c21[b(T + 1)]1/3.
Then, since we choose 0 < γ ≤ 1 and E

[
Ψ0(x0)

]
= Ψ0(x0), (68) can be overestimated as

E
[
‖Gη(x̄T )‖2

]
≤ ∆̂0

[b(T + 1)]2/3
,

which proves (25), where ∆̂0 is defined by (25), i.e.:

∆̂0 := 16P
√
c1
(
Ψ0(x0)−Ψ?

0 +Bψ
)

+ 24Q
c1
.

Now, for any tolerance ε > 0, to obtain E
[
‖Gη(x̄T )‖2

]
≤ ε2, we require at most T :=

⌊
∆̂

3/2
0

bε3

⌋
iterations. In this case, the total number of function evaluations TF is at most

TF := b0 + (T + 1)(2b1 + b2) = c0
γ2 c

2
1[b(T + 1)]1/3 + 3c0

γ2 [b(T + 1)] =
c0c

2
1∆̂

1/2
0

γ2ε +
3c0∆̂

3/2
0

γ2ε3 .

Alternatively, the total number of Jacobian evaluations TJ is at most

TJ := b̂0 + (T + 1)(2b̂1 + b̂2) = c1[b(T + 1)]1/3 + 3b(T + 1) =
c21∆̂

1/2
0

ε +
3∆̂

3/2
0

ε3 .

If we choose γ := c2ε for some c2 > 0, then

TF :=
c0c

2
1∆̂

1/2
0

c22ε
3

+
3c0∆̂

3/2
0

c22ε
5

= O

(
∆̂

3/2
0

ε5

)
,

which proves the last statement.

B.6 The proof of Theorem 3.4: The nonsmooth case with diminishing step-size

The proof of Theorem 3.4 in the main text. Using the fact that µψ = 0, from Lemma A.1, we have

Mφγt
= Mψ‖K‖, Lφγt =

‖K‖2

γt
, and LΦγt

= LFMψ‖K‖+
M2
F ‖K‖2

γt
,

where γt > 0, which will be appropriately updated. Moreover, let us choose b0 := c0b̂0
γ2

0
, b̂1 = b̂2 := b,

and bt1 = bt2 := c0b
γ2
t
> 0, for some b > 0 and c0 > 0. We also recall P , Q, and LΦγ from (19).
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With these expressions, the quantities defined by (54) and (55) become

θt :=
3LΦγt

[bt1b̂1(1−βt)]1/2

√
26(κM4

FL
2
φγt

b̂1+κ̂M2
φγt

L2
F b
t
1)1/2

(19)
=

LΦγt
[b(1−βt)]1/2

P ,

Θt :=
M2
FLφγt

√
26bt1b̂1

3
(
κM4

FL
2
φγt

b̂1+κ̂M2
φγt

L2
F b
t
1

)1/2

(19)
=

M2
F ‖K‖

2b1/2

γtP
,

Γt :=

√
26bt1b̂1

3
(
b̂1κM4

FL
2
φγt

+bt1κ̂L
2
FM

2
φγt

)1/2

(
κM2

FL
2
φγt

σ2
F

bt2
+

κ̂M2
φγt

σ2
J

b̂2

)
(19)
= Q

P
√
b
,

Π0 :=

√
26b01b̂1

3
(
b̂1κM4

FL
2
φγ0

+b01κ̂L
2
FM

2
φγ0

)1/2

(
κM2

FL
2
φγ0

σ2
F

b0
+

κ̂M2
φγ0

σ2
J

b̂0

)
(19)
= Q

√
b

P b̂0
.

Let us choose βt := 1− 1
(t+2)2/3 ∈ (0, 1) and γt := 1

(t+2)1/3 as in (26). Then, it is easy to check that

β2
t (1− βt)

Θ2
t

≤ 1− βt+1

Θ2
t+1

≤ 1− βt
Θ2
t

.

In addition, as before, one can show that
∑T
t=0

√
1− βt =

∑T
t=0

1
(t+2)1/3 ≥

∫ T+3

2
ds
s1/3 = 3

2 [(T + 3)2/3 − 22/3],∑T
t=0

(1−βt)2√
1−βt+1

=
∑T
t=0

(t+3)1/3

(t+2)4/3 ≤
∑T
t=0

1
(t+1) ≤ 1 + log(T + 1).

Using these estimates, we can easily prove ΣT :=
∑T
t=0 ωt =

√
b
P

∑T
t=0

√
1− βt ≥ 3

√
b[(T+3)2/3−22/3]

2P ,∑T
t=0

Γt+1(1−βt)2

√
1−βt+1

≤ Q[1+log(T+1)]

P
√
b

Substituting these inequalities into (57) and using
√

1− β0 = 1
21/3 , we further upper bound

E
[
‖Gη(x̄T )‖2

]
≤ 32P

3
√
b[(T+3)2/3−22/3]

(
Ψ0(x0)−Ψ?

0 +
Bψ

(T+2)1/3

)
+ 16Q

3[(T+3)2/3−22/3]

(
21/3

b̂0
+ 2(1+log(T+1))

b

)
,

which proves (27).

C Restarting variant of Algorithm 1 and its convergence and complexity

In this Supp. Doc., we propose a simple restarting variant, Algorithm 2, of Algorithm 1, prove its
convergence, and estimate its oracle complexity bounds for both smooth φ0 and nonsmooth φ0 in (2).
For simplicity of our analysis, we only consider the constant step-size case, and omit the diminishing
step-size analysis.

C.1 Restarting variant

Motivation: Since the constant step-size θ in (20) of Theorem 3.1 and (24) of Theorem 3.3 depends
on the number of iterations T . Clearly, if T is large, then θ is small. To avoid using small step-size θ,
we can restart Algorithm 1 by frequently resetting its initial point and parameters after T iterations.
This variant is described in Algorithm 2. Algorithm 2 has two loops, where each iteration s of the
outer loop is called the s-th stage. Unlike the outer loop in other variance-reduced methods relying
on SVRG or SARAH estimators from the literature, which is mandatory to guarantee convergence,
our outer loop is optional, since without it, Algorithm 2 reduces to Algorithm 1, and it still converges.
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Algorithm 2 (Restarting Variant of Algorithm 1)

1: Inputs: An arbitrarily initial point x̃0 ∈ dom(F ), and a fixed number of iterations T .
2: For s := 1, · · · , S do
3: Run Algorithm 1 for T iterations starting from x

(s)
0 := x̃s−1.

4: Set x̃s := x
(s)
T+1 as the last iterate of Algorithm 1.

5: EndFor
6: Output: Choose x̄N randomly from {x(s)

t }s=1→S
t=0→T such that Prob

(
x̄N = x

(s)
t

)
= θt

S
∑T
j=0 θj

.

C.2 The smooth case φ0 with constant step-size

The smoothness of φ0 is equivalent to the µψ-strong convexity of ψ in (1). The following theorem
states convergence rate and estimates oracle complexity of Algorithm 2.

Theorem C.1. Suppose that Assumptions 2.1 and 2.2 hold, ψ is strongly convex (i.e., µψ = 1 > 0),
and P , Q, and LΦ0 are defined by (19). Let {x(s)

t }s=1→S
t=0→T be generated by Algorithm 2 using γ := 0,

b0 := c0b̂0, b1 = b2 := c0b, b̂1 = b̂2 = b for some c0 > 0 and given batch sizes b > 0 and b̂0 > 0,
and the parameter configuration (20). Then, the following estimate holds

E
[
‖Gη(x̄N )‖2

]
≤ 16P b̂

1/4
0

S[b(T + 1)]3/4
[
Ψ0(x̃0)−Ψ?

0

]
+

24Q

[b̂0b(T + 1)]1/2
, (69)

where x̄N is uniformly randomly chosen from {x(s)
t }s=1→S

t=0→T .

Given ε > 0, if we choose T :=
⌊

48Q
bε2

⌋
and b̂0 :=

⌊
48Q
ε2

⌋
, then after at most S :=

⌊
8P
ε
√

3Q

⌋
outer

iterations, we obtain E
[
‖Gη(x̄N )‖2

]
≤ ε2. Consequently, the total number of function evaluations

TF and the total number of Jacobian evaluations TJ are at most TF = TJ :=
⌊

400P
√

3Q
ε3

⌋
.

Theorem C.1 holds for any mini-batch b such that 1 ≤ b ≤ 48Q
ε2 , which is different from, e.g., [43],

where the complexity result holds under large batches. Moreover, the total oracle calls TF and TJ are
independent of b. In this case, the weight β and the step-size θ become

β := 1− bε2

48Q
and θ :=

bLΦ0

4Pε
√

3Q
.

Clearly, if b is large, then our step-size θ is also large.

The proof of Theorem C.1: Restarting variant. Since γ := 0, b̂1 = b̂2 := b and b1 = b2 := c0b,
from (61), using the superscript “(s)” for the outer iteration s, and P and Q from (19), we have

θ

16LΦ0

E
[
‖Gη(x

(s)
t )‖2

]
≤ V0(x

(s)
t )− V0(x

(s)
t+1) +

Q(1− β)3/2

Pb1/2
,

Summing up this inequality from t := 0 to t := T , and using the fact that x̃s−1 := x
(s)
0 and

x̃s := x
(s)
T+1, we get

θ

16LΦ0

T∑
t=0

E
[
‖Gη(x

(s)
t )‖2

]
≤ V0(x̃s−1)− V0(x̃s) +

Q(T + 1)(1− β)3/2

Pb1/2
.

Using the choice b0 := c0b̂0, similar to the proof of (62), we can show that

V0(x̃s−1) = E
[
Ψ0(x̃s−1)

]
+ α

2E
[
‖F̃ (s)

0 − F (x̃s−1)‖2
]

+ α̂
2E
[
‖J̃ (s)

0 − F ′(x̃s−1)‖2
]

≤ E
[
Ψ0(x̃s−1)

]
+ Qb1/2

2P b̂0
√

1−β
.
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Using this estimate and and V0(x̃s) ≥ Ψ0(x̃s) into above inequality, we can further derive

1
(T+1)

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
≤ 16LΦ0

θ(T+1)

[
Ψ0(x̃s−1)−Ψ0(x̃s)

]
+

16QLΦ0 (1−β)3/2

Pθb1/2

+
8QLΦ0

b1/2

Pθ(T+1)b̂0
√

1−β
.

Due to the choice of b1 and b̂1, it follows from (20) that β := 1− b1/2

[b̂0(T+1)]1/2
and θ :=

LΦ0b
3/4

P [b̂0(T+1)]1/4
.

Therefore, the last inequality becomes

1

(T + 1)

T∑
t=0

E
[
‖Gη(x

(s)
t )‖2

]
≤ 16P b̂

1/4
0

[b(T + 1)]3/4
[
Ψ0(x̃s−1)−Ψ0(x̃s)

]
+

24Q

[b̂0b(T + 1)]1/2
.

Summing up this inequality from s := 1 to s := S and multiplying the result by 1
S , we get

1

S(T + 1)

S∑
s=1

T∑
t=0

E
[
‖Gη(x

(s)
t )‖2

]
≤ 16P b̂

1/4
0

S[b(T + 1)]3/4
[
Ψ0(x̃0)−Ψ0(x̃S)

]
+

24Q

[b̂0b(T + 1)]1/2
.

Substituting Ψ0(x̃S) ≥ Ψ?
0 into the last inequality, and using the fact that E

[
‖Gη(x̄N )‖2

]
=

1
S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
, we obtain

E
[
‖Gη(x̄N )‖2

]
= 1

S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
≤ 16P b̂

1/4
0

S[b(T+1)]3/4

[
Ψ0(x̃0)−Ψ?

0

]
+ 24Q

[b̂0b(T+1)]1/2
,

which is exactly (69).

Now, for a given tolerance ε > 0, to obtain E
[
‖Gη(x̄K)‖2

]
≤ ε2, we need to impose

16P b̂
1/4
0

S[b(T + 1)]3/4
=
ε2

2
and

24Q

[b̂0b(T + 1)]1/2
=
ε2

2
.

This condition leads to N = S(T + 1) = 32P [b̂0(T+1)]1/4

b3/4ε2
and b̂0b(T + 1) = 482Q2

ε4 . Hence, the total

number of iterations is N := S(T + 1) = 32P [b̂0b(T+1)]1/4

bε2 = 128P
√

3Q
bε3 .

Clearly, to optimize the oracle complexity, we need to choose T + 1 := 48Q
bε2 , then b̂0 := 48Q

ε2 and
S := 8P√

3Qε
. In this case, the total number of function evaluations is at most

TF := b0S + 3bS(T + 1) =
48Q

ε2
· 8P√

3Qε
+ 3bN =

16P
√

3Q

ε3
+

384P
√

3Q

ε3
=

400P
√

3Q

ε3
.

This is also the total number of Jacobian evaluations TJ .

C.3 The nonsmooth φ0 with constant step-size

Finally, we prove the convergence of Algorithm 2 when ψ is non-strongly convex (i.e., φ0 in (2) is
possibly nonsmooth).
Theorem C.2. Assume that Assumptions 2.1 and 2.2 hold, ψ in (1) is non-strongly convex (i.e.,
µψ = 0), and P , Q, and LΦγ are defined by (19). Let {x(s)

t }s=1→S
t=0→T be generated by Algorithm 2

after N := S(T + 1) iterations using: b1 = b2 := 2c0bR̂0

ε2 , b̂1 = b̂2 := b, b0 :=
4c0R̂

2
0

ε4 , b̂0 := 2R̂0

ε2 ,

γ := ε√
2R̂0

, and β := 1− bε2

2R̂0
.

(70)

where ε > 0 is a given tolerance1, and

R0 := 16
[
Ψ0(x̃0)−Ψ? +Bψ

]
and R̂0 := 24Q. (71)

1The batch sizes and T in this paper must be integer, but for simplicity, we do not write their rounding form.

26



Then, if we choose T :=
⌊

2R̂0

ε2

⌋
, then after at most S :=

⌊ √
2R0

bε
√
R̂0

⌋
outer iterations, we obtain x̄T

such that E
[
‖Gη(x̄T )‖2

]
≤ ε2.

Consequently, the total number of function evaluations TF and the total number of Jacobian evalua-
tions TJ are respectively at most

TF :=
4
√

2c0R0R̂
3/2
0 (3+b−1)
ε5 = O

(
R0R̂

3/2
0

ε5

)
and TJ :=

2
√

2R0R̂
1/2
0 (3+b−1)
ε3 = O

(
R0R̂

1/2
0

ε3

)
.

Remark C.1. Note that we do not need to choose the batch sizes and parameters depending on R0

as in (70), which is unknown since Ψ?
0 is unknown, but they are proportional to R0. In this case, the

complexity bounds in Theorem C.2 will only be shifted by a constant factor.

As we can see from Theorem C.2, the number of outer iterations S is divided by the batch size b.

However, the terms 12
√

2c0R0R̂
3/2
0

ε5 and 6
√

2R0R̂
1/2
0

ε3 are independent of b and dominate the complexity
bounds in both TF and TJ , respectively.

The proof of Theorem C.2. Let us first choose b̂1 = b̂2 := b, b1 = b2 := c0b
γ2 , and b0 := c0b̂0

γ2 . With
the same line as the proof of (67), we can show that

1
(T+1)

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2

[
E
[
Ψ0(x

(s)
0 )
]
− E

[
Ψ0(x

(s)
T+1)

]
+ γBψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Here, we use the superscript “(s)” to present the outer iteration s. Moreover, instead of Ψ∗0, we keep
Ψ0(x

(s)
T+1) from (63). Now, using the fact that x̃s−1 = x

(s)
0 and x̃s = x

(s)
T+1, we can further derive

from the above inequality that
1

(T+1)

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
≤ 16P

(T+1)[b(1−β)]1/2

[
E
[
Ψ0(x̃s−1)

]
− E

[
Ψ0(x̃s)

]
+ γBψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Summing up this inequality from s := 1 to s := S, and multiplying the result by 1
S , and

then using 0 < γ ≤ 1, E
[
Ψ0(x̃0)

]
= Ψ0(x̃0), Ψ0(x̃S) ≥ Ψ?

0 > −∞, and E
[
‖Gη(x̄N )‖2

]
=

1
S(T+1)

∑S
s=1

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
, we arrive at

E
[
‖Gη(x̄N )‖2

]
= 1

(T+1)S

∑S
s=1

∑T
t=0 E

[
‖Gη(x

(s)
t )‖2

]
≤ 16P

S(T+1)[b(1−β)]1/2

[
Ψ0(x̃0)−Ψ? +Bψ

]
+ 8Q

[
1

b̂0(1−β)(T+1)
+ 2(1−β)

b

]
.

Next, let us choose β := 1− b
(T+1) and b̂0 := (T + 1). Then, the above estimate becomes

E
[
‖Gη(x̄N )‖2

]
≤ 16P

bS(T + 1)1/2

[
Ψ0(x̃0)−Ψ? +Bψ

]
+

24Q

T + 1
.

Let us define R0 and R̂0 as in (71), i.e.:

R0 := 16P
[
Ψ0(x̃0)−Ψ? +Bψ

]
and R̂0 := 24Q.

In this case, for a given tolerance ε > 0, to achieve E
[
‖Gη(x̄N )‖2

]
≤ ε2, we can impose

R0

bS(T + 1)1/2
=
ε2

2
and

R̂0

(T + 1)
=
ε2

2
.

These conditions lead to T + 1 = 2R̂0

ε2 and S := 2R0

b(T+1)1/2ε2
=

√
2R0

bε
√
R̂0

. Let us also choose

γ := ε√
2R̂0

. Then, we also obtain the parameters as in (70), i.e.: b1 = b2 := 2c0bR̂0

ε2 , b̂1 = b̂2 := b, b0 :=
4c0R̂

2
0

ε4 , b̂0 := 2R̂0

ε2 ,

γ := ε√
2R̂0

, and β := 1− bε2

2R̂0
.
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The total number TF of function evaluations F(x
(s)
t , ξt) is at most

TF := S[b0 +(T +1)(2b1 +b2)] =

√
2R0

bε
√
R̂0

[4c0R̂
2
0

ε4
+

2R̂0

ε2

6c0bR̂0

ε2

]
=

4
√

2c0R0R̂
3/2
0

ε5

(
1

b
+ 3

)
.

The total number TJ of Jacobian evaluations F′(x(s)
t , ξt) is at most

TJ := S[b̂0 + (T + 1)(2b̂1 + b̂2)] =

√
2R0

bε
√
R̂0

[2R̂0

ε2
+

6bR̂0

ε2

]
=

2
√

2R0R̂
1/2
0

bε3
+

6
√

2R0R̂
1/2
0

ε3
.

These prove the last statement of Theorem C.2.

D Experiment setup and additional experiments

This Supp. Doc. provides the details of configuration for our experiments in Section 4, and presents
more numerical experiments to support our algorithms and theoretical results. As mentioned in the
main text, all the algorithms used in this paper have been implemented in Python 3.6.3., running on a
Linux desktop (3.6GHz Intel Core i7 and 16Gb memory).

Let us provide more details of our experiment configuration. We shorten the name of our algorithm,
either Algorithm 1 or Algorithm 2, by Hybrid Stochastic Compositional Gradient, and abbreviate
it by HSCG for both cases. We have implemented CIVR in [44] and ASC-PG in [38] to compare the
smooth case of φ0. For the nonsmooth case of φ0, we have implemented two other algorithms, SCG
in [37], and Prox-Linear in [34, 45]. While SCG only works for smooth φ0, we have smoothed it as
in our method, and used the estimator as well as the algorithm in [37], but update the smoothness
parameter as in our method. We also omit comparison in terms of time since Prox-Linear becomes
slower if p is large due to its expensive subproblem for evaluating the prox-linear operator. We only
compare these algorithms in terms of epoch (i.e., the number of data passes).

Since both CIVR and ASC-PG are double loop, to be fair, we compare them with our restarting
variant, Algorithm 2. To compare with SCG and Prox-Linear, we simply use Algorithm 1 since
SCG has single loop. Since Prox-Linear requires to solve a nonsmooth convex subproblem, we
have implemented a first-order primal-dual method in [5] to solve it. This algorithm has shown its
efficiency in our test.

Note that the batch size b is determined as b :=
⌊
N
nb

⌋
, where N is the number of data points, and nb

is the number of blocks. In our experiments, we have varied the number of blocks nb to observe the
performance of these algorithms. Since we want to obtain the best performance, instead of using their
theoretical step-sizes, we have carefully tuned the step-size η of three algorithms in a given set of
candidates {1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}. For our algorithms, we have another step-size θt,
which is also flexibly chosen from {0.1, 0.5, 1}. For the nonsmooth case, we update our smoothness
parameter as γt := 1

2(t+1)1/3 , which is proportional to the value in Theorems 3.2 and 3.4.

To further compare our algorithms with their competitors, we provide in the following subsections
additional experiments for the two problems in the main text.

D.1 Risk-averse portfolio optimization: Additional experiments

Figure 1 in the main text has shown the performance of three algorithms on three different datasets
using 8 blocks, i.e., nb = 8. Unfortunately, since ASC-PG does not work well when the number of
blocks is larger than 8, we skip showing it in our comparison. To obverse more performance of HSCG
and CIVR, we have increased the number of blocks nb from 8 to 32, 64, and 128. The convergence of
the two algorithms is shown in Figure 3. As we can observe, HSCG remains slightly better than CIVR
if nb = 32 or 64. When nb = 128, CIVR improves its performance and is slightly better than HSCG.

D.2 Stochastic minimax problem: Additional experiments

For the stochastic minimax problem (32), Figure 2 has shown the progress of the objective values of
three algorithms on three different datasets. Figure 4 simultaneously shows both the objective values
and the gradient mapping norms of this experiment.
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Figure 3: Comparison of two algorithms for solving (31) on larger blocks.
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Figure 4: Comparison of three algorithms for solving (32) on 3 different datasets in Figure 2 with
both objective values and gradient mapping norms.

Now, let us keep the same configuration as in Figure 2, but run one more case, where the number of
blocks is increased to nb = 64. The results are shown in Figure 5.

We again see that HSCG still highly outperforms the other two methods: SCG and Prox-Linear on
rcv1. For url, HSCG is still slightly better than Prox-Linear as we have observed in Figure 2. How-
ever, for covtype, again, Prox-Linear shows a better performance than the other two competitors.
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Note that since p = 54 in this dataset, we can solve the subproblem in Prox-Linear up to a high
accuracy without incurring too much computational cost. Therefore, the inexactness of evaluating the
prox-linear operator does not really affect the performance in this example.
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Figure 5: Comparison of three algorithms for solving (32) on 64 blocks.

Finally, we test three algorithms: HSCG, SCG, and Prox-Linear on other three datasets: w8a,
phishing, and mushrooms from LIBSVM [6]. We use the same number of blocks nb = 32, and
the results are reported in Figure 6. Figure 6 shows that HSCG highly outperforms both SCG and
Prox-Linear on w8a and phishing. However, Prox-Linear becomes better than the other two on
the mushrooms dataset.
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Figure 6: Comparison of three algorithms for solving (32) on three more different datasets.
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