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Abstract

By searching for shared inductive biases across tasks, meta-learning promises to
accelerate learning on novel tasks, but with the cost of solving a complex bilevel
optimization problem. We introduce and rigorously define the trade-off between
accurate modeling and optimization ease in meta-learning. At one end, classic
meta-learning algorithms account for the structure of meta-learning but solve a
complex optimization problem, while at the other end domain randomized search
(otherwise known as joint training) ignores the structure of meta-learning and
solves a single level optimization problem. Taking MAML as the representative
meta-learning algorithm, we theoretically characterize the trade-off for general non-
convex risk functions as well as linear regression, for which we are able to provide
explicit bounds on the errors associated with modeling and optimization. We also
empirically study this trade-off for meta-reinforcement learning benchmarks.

1 Introduction

Arguably, the major bottleneck of applying machine learning to many practical problems is the cost
associated with data and/or labeling. While the cost of labeling and data makes supervised learning
problems expensive, the high sample complexity of reinforcement learning makes it downright
inapplicable for many practical settings. Meta-learning (or in general multi-task learning) is designed
to ease the sample complexity of these methods. It has had success stories on a wide range of
problems including image recognition and reinforcement learning [14].

In the classical risk minimization setting, for a task �, the learner solves the problem

min
✓

R(✓; �) , E⇠

h
R̂(✓, ⇠; �)

i
(1)

where R(✓; �) is the risk function which the learner can only access via noisy evaluations R̂(✓, ⇠; �).
Meta-learning, or ‘learning to learn’ [24], makes the observation that if the learner has access to
a collection of tasks sampled from a distribution p(�), it can utilize an offline meta-training stage
to search for shared inductive biases that assist in learning future tasks from p(�). Under the PAC
framework, Baxter [2] shows that given sufficiently many tasks and data per task during meta-training,
there are guarantees on the generalization of learned biases to novel tasks.

Specifically, consider an optimization algorithm OPT(�,✓meta) which solves the problem of meta-
test task � using the meta solution ✓meta. This meta solution is typically a policy initialization for
reinforcement learning or shared features for supervised learning. However, it can be any useful
knowledge which can be learned in the meta-training stage. The family of meta-learning methods
solve, where in practice OPT is approximated by ˆOPT that uses N calls to an oracle 1;

min
✓

R
meta(✓meta) , E�⇠p(�),⇠

h
R̂(OPT(�,✓meta), ⇠; �)

i
(2)

1For example, if OPT(�,✓meta) is gradient descent on the task risk function R(✓; �), ˆOPT(�,✓meta, N)
would be SGD on the usual empirical risk minimization function (4).
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This setting is intuitive and theoretically sound. However, it corresponds to a complicated bilevel
optimization problem. Bilevel optimization is a notoriously hard problem and even the case of a
well-behaved inner problem (e.g. linear program as OPT) can be NP-hard [15] in the general case.
Hence, one can rightfully ask, is it feasible to solve the meta problem in (2)? This question is rather
more important for the case of reinforcement learning as even solving the empirical-risk minimization
in (1) has prohibitively high sample complexity.

Meta-learning proposes to accurately use the structure of the problem by introducing a very costly
optimization problem. One obvious question is, can we trade off modeling accuracy for computational
ease? Unfortunately, there is no general principled approach for controlling this trade-off as it requires
understanding domain specific properties of the meta problem. Instead, we focus on the case of
meta-information ✓meta as the initialization of an iterative optimizer for meta-test task �, ✓meta = ✓0

�

and drop the subscript meta as it is clear from the context. This covers many existing algorithms,
including MAML [9], which is able to approximate any learning algorithm when combined with
deep networks [8]. For this case of meta-learning the initialization, a simple and direct alternative
would be solving the pseudo-meta problem

min
✓

R
drs(✓) , E�⇠p(�),⇠

h
R̂(✓, ⇠; �)

i
(3)

We call this domain randomized search (DRS) since it corresponds to the domain randomization
method from Tobin et al. [26] and it does direct search over a distribution of domains (tasks). 2

It might not be clear to the reader how DRS solves meta-learning. It is important to reiterate that this is
only the case if the meta-learned information is an initialization. However, we believe an approximate
form of meta-learning without bilevel structure can be found in other cases with the help of domain
knowledge. In this paper, we rigorously prove that DRS is an effective meta-learning algorithm for
learning an initialization by showing DRS decreases sample complexity during meta-testing.

These two approaches correspond to the two extremes of the modeling and optimization trade-off.
Meta-learning corresponds to an accurate modeling and a computationally harder optimization,
whereas DRS corresponds to a less accurate modeling and computationally easier optimization.
In this paper, we try to understand this trade-off and specifically attempt to answer the following
question; Given a fixed and finite budget for meta-training and meta-testing, which algorithm is more
desirable? In order to answer this question, we provide a collection of theoretical and empirical
answers. Taking MAML to be the representative meta-learning algorithm;

• We empirically study this trade-off in meta-reinforcement learning (Section 2).
• We analyze the sample complexity of DRS and MAML for a general non-convex function,

and illustrate the interplay of the modeling error and optimization error (Section 3).
• We theoretically analyze the meta-linear regression case, which is fully tractable, and

explicitly characterize the trade-off with simulations that confirm our results (Section 4).

1.1 Formulation, Background and Summary of Results

We are interested in a distribution p(�) of problems with risk functions R(✓, �) for the task ids �.
Given a specific task, we assume we have access to 2N i.i.d. samples from the risk function. This
corresponds to sampling data-points and labels for the supervised learning problem, and sampling
episodes with their corresponding reward values for reinforcement learning3. Classical empirical risk
minimization separately solves for each �

min
✓

R̃(✓; �) , 1

2N

2NX

i=1

R̂(✓, ⇠i; �) (4)

where ⇠i are datapoints for supervised learning and episodes for RL. Empirical risk minimization for
MAML can be defined over M meta-training tasks sampled from p(�) as;

min
✓

R̃
maml(✓) , 1

M

MX

j=1

1

N

NX

i=1

R̂( ˆOPT(�j ,✓, N), ⇠i,j ; �j) (5)

2It has also been referred to as joint training in the literature [10].
3Risk can be seen as the chosen loss function for supervised learning and negative of reward for RL.
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Meta-learning needs samples for both the inner optimization and outer meta problem; usually half of
the samples are used for each. Empirical risk minimization for DRS is

min
✓

R̃
drs(✓) , 1

M

MX

i=1

1

2N

2NX

i=1

R̂(✓, ⇠i,j ; �j) (6)

Denote the solutions of problems (2) and (3) by ✓?

maml
and ✓?

drs
, which are the minimum population

risk solutions. We call the risk of these solutions Rdrs(✓?

drs
) and Rmaml(✓?

maml
) the modeling error

as they are the best each method can get with the best optimizer and infinite data and computation.
However, we only have access to empirical risk in (5) and (6), as well as a finite computation budget
for meta-training, T tr. Hence, instead of optimal solutions, we have solutions ✓T

tr

maml
and ✓T

tr

drs
. We

call the difference between these empirical solutions and ✓?

maml
and ✓?

drs
the optimization error.

We expect the optimization error of MAML to be significantly higher as bilevel optimization is much
harder. More specifically, for general non-convex risk functions, in order for stochastic gradient
descent (SGD) to reach an ✏-stationary point, DRS needs O(1/✏4) samples [12] while MAML needs
O(1/✏6) [6]. Moreover, MAML uses half of its samples for the inner optimization; hence, the effective
number of samples is reduced resulting in additional optimization error. The optimization error
strongly depends on the sample budget (N and M ) which can be afforded. As more samples will
decrease optimization errors for both methods but with different rates. On the other hand, we know
MAML has lower modeling error as it explicitly uses the problem geometry.

The key question is the trade-off of the modeling error versus the optimization error as a function of
N and M since it characterizes which algorithm is better for a given problem and budget. We look at
this trade-off in two different settings.

• General Non-Convex Case: We study this trade-off empirically for meta-reinforcement
learning (Section 2) and theoretically for general non-convex risk functions (Section 3). Our
empirical results suggest that this trade-off is rather nuanced and problem dependent. Our
theoretical results shed light on these peculiarities and describe the trade-off.

• Meta-linear regression: (Section 4). Empirical risk can be minimized analytically, enabling
us to directly compare optimization error and modeling error. Results suggest that there are
cut-off values for N and M that determine when the different methods are desirable.

2 Trade-offs in Meta-Reinforcement Learning

We study the trade-off empirically in meta-reinforcement learning in this section. We compare DRS
and MAML on on a wide range of meta-RL benchmarks used in the literature. We consider 1) four
robotic locomotion environments introduced by Finn et al. [9] and Rothfuss et al. [21], with varying
reward functions (Half Cheetah Rand Vel, Walker2D Rand Vel) or varying system dynamics (Hopper
Rand Params, Walker2D Rand Params) and 2) four manipulation environments from MetaWorld [33]
with varying reward functions (ML1-Push, ML1-Reach) or changing manipulation tasks and varying
reward functions (ML10, ML45). 4 All environments utilize the Mujoco simulator [27].

We make two comparisons: 1) ProMP [21], which combines MAML with PPO [23], vs. DRS
combined with PPO (DRS+PPO) 2) TRPO-MAML [9, 21], which combines MAML with TRPO [22],
vs. DRS combined with TRPO (DRS+TRPO). Meta-training is controlled such that all algorithms
utilize an equal number of steps generated from the simulator for each environment.

During evaluation, we first sample a set of meta-test tasks. For each meta-test task, starting at a trained
policy, we repeat the following five times: generate a small number of episodes from the current
policy and update the policy using the policy gradient algorithm from the inner optimization of ProMP
and TRPO-MAML. We compute the average episodic reward after t updates, for t = 0, 1, . . . , 5.
These statistics are then averaged over all sampled tasks. We evaluate the policies learned by all
algorithms at various checkpoints during meta-training, in total five evaluations with different random
seeds. For each checkpoint and test update, we compute the probability of DRS being better than
MAML using the one-sided Welch t-test. We plot the filled contour plot of the probabilities with
respect to the meta-training checkpoint and number of test updates in Figures 1 and 2. We include
details of the experimental protocol, Welch t-test, and additional plots of the reward in Appendix A.

4We do not include ML1-Pick-and-Place because training was unsuccessful for all algorithms of interest.
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(a) Hopper Rand Params (b) Walker-2D Rand Params (c) Half Cheetah Rand Vel (d) Walker-2D Rand Vel

(e) ML1 - Push (f) ML1 - Reach (g) ML10 (h) ML45

Meta-Learning is Better Domain Randomization is Better

Figure 1: DRS+PPO vs. ProMP: Probability that the first method is better than the second.
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Figure 2: DRS+TRPO vs. TRPO-MAML: Probability that the first method is better than the second.

For the majority of environments, DRS is either better than or comparable to MAML, (see Figure 1-
(a,b,d,e,f) and Figure 2-(a,b,d,e,f)). For two environments, specifically Half Cheetah Rand Vel and
ML10 in Figure 1-(c,g)&2-(c,g), MAML outperforms DRS for larger sample sizes and at least one
test update. This confirms our thesis as the higher optimization error of MAML requires a larger
sample size for successful learning, dominating its trade-off with modeling error for smaller sample
sizes. Another surprising result is the case of ML45 (in Figure 1-(h)& 2-(h)) where as the sample size
increases it alternates between the cases where DRS is better and MAML is better. We conjecture
that this is because of the greater variance in meta training arising from the higher diversity in tasks.

Another interesting observation is that in the majority of environments, MAML fares better when
combined with TRPO than when combined with PPO. This validates the importance of optimization
as both TRPO and PPO use exactly the same model and are expected to behave similarly from a
statistical perspective. We suspect that this behavior is due to the difference in how the trust region is
used for optimization. In TRPO-MAML the constraint on the KL divergence between the current
policy and updated policy is strictly enforced, while in ProMP it is transformed into a Lagrangian
penalty and thus may not actually be satisfied. Satisfaction of the constraint is more helpful for
MAML, whose empirical gradients generally have greater variance than those of DRS.

In conclusion, when the sample complexity is high and available sample size budget is low, DRS is the
preferred method. MAML is only effective for large data sets, only in some problems. It is important
for practitioners to understand the sample complexity of their problems before choosing which
method to apply. In the next section, we provide theoretical analysis to clarify this phenomenon.

3 Trade-off through the Lens of Optimization Behavior

In this section, we analyze the sample complexity of meta-training and meta-test of MAML and DRS.
In particular, we consider the interplay of meta-training and meta-testing for a complete analysis.
Specifically, for MAML OPT(�,✓) is one step of gradient descent on the task risk function R(✓; �)
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starting at ✓ with learning rate ↵. The objectives of DRS and MAML are

R
drs(✓) , E� [R(✓; �)], R

maml(✓;↵) , E� [R(✓ � ↵r✓R(✓; �); �)]. (7)

We analyze the trade-off between optimization error and modeling error of DRS and MAML for
smooth non-convex risk functions from a sample complexity perspective. We denote the modeling
errors by ⇤ and, as in Section 1, define them as the expected risks at the globally optimal values of the
corresponding objectives. Specifically, ⇤drs = R

drs(✓?

drs
) and ⇤maml(↵) = R

maml(✓?

maml
;↵).

Suppose that we have access to task stochastic gradient oracles and task stochastic Hessian oracles.
During meta-training, DRS and MAML optimize R

drs(✓) and R
maml(✓;↵) using SGD for T tr

steps. During meta-testing for a task �, both carry out classical risk minimization (1) using SGD for
T te steps, with the meta-training results ✓T

tr

drs
and ✓T

tr

maml
(↵) as warm starts. The metric we use is the

Euclidean norm of the gradient at meta-testing since the best we can hope for a non-convex function
is first-order stationarity.

Before we proceed with our analysis we set the notation and make some mild regularity assump-
tions. Consider task stochastic gradient oracles g(·, ⇠; �) such that E⇠[g(✓, ⇠; �)] = r✓R(✓; �),
and task stochastic Hessian oracles h(·, ⇠; �) such that E⇠[h(✓, ⇠; �)] = r

2
✓R(✓; �). We as-

sume B1: The risk functions are nonnegative and bounded, 0  R(✓; �)  � for all ✓ and
�. B2: The risk functions are uniformly Lipschitz and smooth kR(✓1;�)�R(✓2;�)k/k✓1

�✓2
k  L

and kr✓R(✓1;�)�r✓R(✓2;�)k/k✓1
�✓2

k  µ for all �. B3: The task stochastic gradient oracles have
bounded variance, tr(Var⇠(g(·, ⇠; �)))  V d for all �, and the gradients of the risk functions have
bounded variance, tr(Var�(r✓R(✓; �)))  V t. B4: the Hessians of the risk functions are Lipschitz
kr

2
✓R(✓1;�)�r

2
✓R(✓2;�)k/k✓1

�✓2
k  µH for all �. B5: The task stochastic Hessian oracles have

bounded variance E⇠

⇥ ��h(✓, ⇠; �)�r
2
✓R(✓; �)

��2 ⇤  V h.

We state the sample complexity of DRS and MAML in Theorems 1 and 2, respectively. Proofs can
be found in Appendix B.
Theorem 1. Suppose that during each iteration of meta-training DRS, M tasks are sampled each
with 2N calls to their gradient oracles, and during each iteration of meta-testing, N calls are made
to the gradient oracle. Assume B1-3. Then, in expectation over the meta-test task �,
T

tr
�1X

t=0

��r✓R
drs(✓t)

��2 +
T

te
�1X

t=0

kr✓R(✓t+T
tr

; �)k2 

q
0.5
�
�+ ⇤drs

��
Cdrs

tr
T tr + Cdrs

te
T te
�

where Cdrs

tr
= µ

⇣
L2 + V

t

M
+ V

d

2NM

⌘
and Cdrs

te
= µ

⇣
L2 + V

d

N

⌘
.

Before we continue with the analysis of MAML, we first discuss the implications of Theorem 1. Let
us examine the bound when T te increases by one and T tr, as well as all other variables, are fixed. The
change in the left side is the meta-testing gradient after T te iterations, whereas that in the right side is
approximated by its gradient wrt T te, behaving approximately as O(

p
�+⇤drs/

p
C

drs
tr T tr+C

drs
te T te).

Hence, with more meta-training, we get closer to the stationary point of the meta-test task � with
the same number of meta-test iterations. In other words our result shows that DRS, although it
ignores the meta-learning problem structure as discussed in Section 1, provably solves the problem
of meta-learning the initialization of an iterative optimization problem under sensible assumptions.
Theorem 2. Following Algorithm 1 of Fallah et al. [6], suppose that during each iteration of meta-
training MAML, M tasks are sampled each with 2N calls to their gradient oracles, half of which
are used in the inner optimization, and D calls to their Hessian oracles. During each iteration of
meta-testing, N calls are made to the gradient oracle. Assume B1-5, ↵ 2 [0, 1/6µ], and D � 2↵2V h.
Then, in expectation over the meta-test task �,

T
tr
�1X

t=0

��r✓R
maml(✓t;↵)

��2 +
T

te
�1X

t=0

kr✓R(✓t+T
tr

; �)k22

 T tr↵µ(1 + ↵µ)2L
q
V d/N +

q
0.5
�
�+ ⇤maml(↵) + ↵L2

��
Cmaml

tr
T tr + Cmaml

te
T te
�

where Cmaml

tr
= (4µ+2µH↵L)

⇣�
2 + 40

M

�
(1 + ↵µ)2L2 + 14V t

M
+ 3V d(1+↵

2
µ
2
M)

MN

⌘
and Cmaml

te
=

Cdrs

te
.
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We keep the ↵ as a free parameter since it makes the role of modeling error explicit. First consider a
similar argument to discussion of Theorem 1; the meta-testing gradient after T te iterations behaves
approximately as O(

p
�+⇤maml/

p
C

maml
tr T tr+C

maml
te T te). Hence, unsurprisingly meta-training of

MAML also provably improves the sample complexity in meta-testing. Next, if we ignore the
modeling error by assuming ⇤maml(↵) = ⇤drs, the bound in Theorem 1 is lower than in Theorem 2
for all ↵ > 0. In other words, if the problem has no specific geometric structure that MAML
can utilize, DRS will perform better. On the other hand, if the modeling error is dominant, i.e.
⇤maml(↵) ⌧ ⇤drs, MAML will perform better. For most practical cases, ⇤maml(↵) will be less
than ⇤drs, but not significantly. In these cases, the trade-off is governed by the values of N and M .

Another important observation is the strong dependence of the sample complexity on oracle variances
as well as smoothness constants. This partially explains the problem dependent behavior of DRS and
MAML in Section 2. Choosing the right algorithm requires, in addition to the budget for N and M ,
these problem and domain specific information that are often not practical to compute (or estimate).
Hence, translating these results to practically relevant decision rules needs future work.

4 Trade-offs in Meta-Linear Regression

In this section, we study the linear regression case where we can explicitly characterize the trade-off of
optimization error and modeling error. Since the empirical risk minimization problems corresponding
to MAML and DRS in linear regression are analytically solvable, the optimization errors only
consist of the statistical errors arising from using empirical risk minimization. We first analyze the
optimization errors and then discuss the modeling errors of the two approaches. All proofs can be
found in Appendix C.

4.1 Formal Setup and Preliminaries

For each task �, we assume the following data model:

y� = ✓|
�
x� + ✏� , ✏� ⇠ (0,�2

�
), Q� = E[x�x

|
�
| �]. (8)

where ✏� and x� are independent and x� 2 Rp. We assume the squared error loss;

R(✓; �) =
1

2
E[(y� � ✓|x�)

2
| �] =

1

2
✓|Q�✓ � ✓|

�
Q�✓ +

1

2
✓|
�
Q�✓� +

1

2
�2
�
. (9)

The globally optimal (minimum risk) solutions for the DRS and MAML objectives (7) are (see C.2
for derivations);

✓⇤

drs
= E� [Q� ]

�1E� [Q�✓� ]

✓⇤

maml
(↵) = E� [(I� ↵Q�)Q�(I� ↵Q�)]

�1E� [(I� ↵Q�)Q�(I� ↵Q�)✓� ].
(10)

Both solutions can be viewed as weightings of the task parameters ✓� . Since the Hessian of R(✓; �)
is Q� , the DRS solution gives greater weight to the tasks whose risk functions have higher curvature,
i.e. are more sensitive to perturbations in ✓. Compared to the DRS solution, the MAML solution puts
more weight on the tasks with lower curvature. As the gradient of R(✓; �) is Q�(✓ � ✓�), for tasks
with lower curvature one gradient step on the task risk function takes us a smaller fraction of the
distance from the current point ✓ to the stationary point ✓� ; thus, starting from the MAML solution
enables faster task adaptation overall if the risks are known exactly.

4.2 Bounds on Optimization Error

We consider a finite-sample setting where M tasks, independently sampled from p(�) and 2N
observations per task, sampled according to the model in (8) are given. We denote the resulting
dataset as D ⌘ (xj,i, yj,i), j = 1, . . . ,M, i = 1, . . . , 2N .

During meta-training, from (6), DRS minimizes the average squared error over all data:

✓̂drs , argmin
✓

MX

j=1

2NX

i=1

(yj,i � ✓|xj,i)
2. (11)
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From (5), MAML optimizes for parameters such that, when optimized for each task using SGD on
the average squared error over N observations with learning rate ↵, minimizes the average squared
error over the remaining N observations of all tasks:

✓̂maml(↵) , argmin
✓

MX

j=1

2NX

i=N+1

(yj,i � ✓̃j(↵)
|xj,i)

2, ✓̃j(↵) = ✓ �
↵

N

NX

i=1

(xj,ix
|
j,i
✓ � xj,iyj,i)

(12)

As a sub-optimality metric, we characterize the distances between the empirical solution and globally
optimal solution,

���✓̂drs � ✓⇤

drs

��� and
���✓̂maml(↵)� ✓⇤

maml
(↵)
���, in terms of the finite sample sizes

M and N in Theorem 3&4. This is the error arising from using empirical samples instead of the
population statistics, that is, the statistical error.

Before we state the theorems, we summarize the assumptions. A1: Bounded Hessian of the
task loss, kQ�k  �. A2: Bounded parameter, feature, and error space, k✓� � ✓⇤

drs
k  ⌧ ,

k✓� � ✓⇤

maml
(↵)k  ⌧ 0 and k✓�k, kx�,ik, and |✏�,i| are finite. A3: The distribution of x�,i condi-

tional on � is sub-Gaussian with parameter K. In this setting, the following theorems characterize
the statistical error for meta linear-regression.
Theorem 3. Suppose that with probability 1, A1-3 holds. Let ! be logarithmic in ��1, M , and p,
and define the functions

c1(�, r, s, ✓) = k✓k
p

2r�+
p

2s�, c2(�) = �CK2
p

p+�, c3(�) =
q
tr(E� [�2

�
Q� ])�,

where C is a constant. If �min(E� [Q� ])� õ(1) > 0, with probability at least 1� �, ignoring higher
order terms,

���✓̂drs � ✓⇤

drs

��� is bounded above by 5

(�min(E� [Q� ])� õ(1))�1

 
c1(!, kVar� [Q� ]k , tr(Var� [Q�✓� ]),✓⇤

drs
)

p
M

+
⌧c2(!)/

p
2 + c3(!)

p
N

!

Theorem 4. With the same assumptions as Theorem 3, let S�(↵) = (I � ↵Q�)Q�(I � ↵Q�).
If �min(E� [S�(↵)]) � õ(1) > 0, with probability at least 1 � �, ignoring higher order terms,���✓̂maml(↵)� ✓⇤

maml
(↵)
��� is bounded above by

(�min(E� [S�(↵)])� õ(1))�1

✓
c1(!, kVar� [S�(↵)]k , tr(Var� [S�(↵)✓� ]),✓⇤

maml
(↵))

p
M

+
(1 + 3↵�)2⌧ 0c2(!) +

p
2(1 + ↵�)2c3(!)

p
N

◆
.

Theorems 3&4 show the statistical errors for MAML and DRS scale similarly in terms of rates with
respect to N and M . However, the constants are significantly different. Compare the coefficients
of 1/

p
N. The coefficient of c2(!) for DRS is ⌧

p
2
�1

�min(E� [Q� ])�1 and for MAML it is ⌧ 0(1 +
3↵�)2�min(E� [S�(↵)])�1. When ↵� / 1, the latter is larger than the former, since we expect that
⌧ ⇡ ⌧ 0 and the eigenvalues of E� [S�(↵)] to be shrunken compared to those of E� [Q� ]. A similar
observation holds for the coefficient of c3(!). In other words, the convergence behavior of the
MAML estimate has a worse dependence on N , indicating that the statistical error for DRS has more
favorable behavior.

4.3 Modeling Error

Modeling error affects the meta-testing performance of the globally optimal solutions. We expect
MAML to perform better as it directly models the meta-learning problem whereas DRS does not.
Modeling error by definition depends on the correct model of the world and thus is difficult to
characterize without domain knowledge. We study this error in the following theorem assuming that
the distribution of tasks is the same for meta-training and meta-testing and discuss its implications
for practitioners.

5Here we abuse notation somewhat by defining the variance of a matrix B to be Var(B) = E(B� E(B)2).
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Theorem 5. For meta-test task � and arbitrary ✓, let ✓̃�(↵) be the parameters optimized by one
step of SGD using N data points O� and learning rate ↵, as in (12). Let A�(↵) = S�(↵) +
↵2(E[x�,ix

|
�,i

Q�x�,ix
|
�,i

] � Q3
�
)/N , where S�(↵) is defined in Theorem 4. The expected losses

before and after optimization, as functions of ✓, are

R
drs(✓) ⌘ E�

h
k✓ � ✓�k

2
Q�

i
and E� [EO� [R(✓̃�(↵); �)]] ⌘ E�

h
k✓ � ✓�k

2
A�(↵)

i
,

where we have ignored constants and terms that do not include ✓. The former is minimized by ✓⇤

drs
.

As N ! 1, the latter approaches Rmaml(✓;↵), is minimized by ✓⇤

maml
(↵) and, for 0 < ↵  1/�,

is at most Rdrs(✓⇤

drs
), the minimum expected loss possible before meta-testing optimization.

Theorem 5 shows that the smaller modeling error of meta-learning indeed translates to improved
performance. Meta-learning can utilize the geometry implied by the distribution of the tasks to reduce
the expected loss given the ability to optimize at meta-testing.

Combining the results of all theorems, the optimization error is worse for MAML when ↵� / 1 from
Theorem 3&4. DRS does not model the meta structure, hence it has worse modeling error/greater
expected loss by Theorem 5. As expected, there is no clear winner in practice as the choice depends
on the trade-off between optimization error and modeling error. Next, we show this empirically.

4.4 Empirical Results

We carried out simulations to empirically study the trade-off in the linear regression case. We chose
the following specific distribution of tasks and data model:

y� = ✓|
�
x� + ✏� ✏� ⇠ N (0,�2

�
) x� ⇠ N (0,Q�)

✓� ⇠ U([0, 2]p) �2
�
⇠ U([0, 2]) Q� = V diag(✓�)V

T V ⇠ U(SO(p))
(13)

We present the case for p = 1; larger p lead to similar qualitative results. We compute approx-
imations of R

drs(✓) (expected loss before meta-testing optimization) as a function of ✓ and
E� [EO� [R(�; ✓̃�(↵))] (expected loss after meta-testing optimization) as a function of ✓ and ↵.
For various M and N , we generate a collection of datasets D; for each D, over a grid of values for
↵ 2 [0, 1], we compute the corresponding DRS and MAML estimates and, using the aforementioned
functions, calculate whether the MAML estimate has lower expected loss than the DRS estimate
before and after meta-testing optimization. Figure 3 shows contour plots of the fraction of the datasets
for which the MAML estimate has lower expected loss before meta-testing optimization (left three
figures) and after (right three figures), for several values of ↵. The axes are the number of tasks (M )
and the data set size for meta-testing optimization (N ).
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Meta-Learning is Better Domain Randomization is Better

Figure 3: p = 1: Contour plots of the probability that the MAML estimate has lower expected loss
than the DR estimate before meta-testing optimization (pre) and after (post). The axes are the number
of tasks (M ) and the number of data points used for meta-testing optimization (N ), and ↵ is fixed.

From Figure 3, for very high M and N , the DRS estimate has lower expected loss before meta-testing
optimization and the MAML estimate has lower expected loss after meta-testing optimization with
very high certainty. This is expected as asymptotically meta-learning is expected to work well by
Theorem 5; the practical question of interest is the finite sample case.

From Figure 3-post, we observe that for small M and N , the probability that the MAML estimate
has lower expected loss after meta-testing optimization can be substantially lower than 0.5, i.e. the
DRS estimate is superior. We conclude that in this case the increased optimization error from MAML
dominates the decreased modeling error. Hence, unless the geometry is strongly skewed, DRS is
desirable for smaller datasets in meta-linear regression.
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5 Related Work

Recent work on few-shot image classification has shown that features from learning a deep network
classifier on a large training set combined with a simple classifier at meta-testing may outperform
many meta-learning algorithms [32, 4, 25]; a similar observation has been made for few-shot object
detection [31]. Packer et al. [17] show that DRS outperforms RL2 [5] on simple reinforcement learn-
ing environments where tasks correspond to different system dynamics. Our meta-RL experiments
complement these works and theoretical studies partially explain them. We argue that there is a larger
picture to be considered; the trade-off between modeling accuracy and optimization ease depend on
characteristics of the dataset, model, and optimization, and should be studied on a case-by-case basis.

Previous theoretical studies of MAML have primarily focused on the meta-training stage. Finn et al.
[10] prove that the MAML objective is smooth and convex if the task risk functions are smooth and
convex and derive the DRS and MAML estimates if those functions are known for linear regression.
Fallah et al. [6] characterize the meta-training sample complexity of SGD for MAML in supervised
learning; Fallah et al. [7] provide analogous results for reinforcement learning. For regression
with overparameterized neural networks, Wang et al. [29] show that gradient descent leads to the
global optimum of the empirical MAML objective (5). Franceschi et al. [11] study the meta-learning
problem (5) when OPT(�,✓) is a minimization operator instead of an iterative optimization procedure,
proposing an algorithm with convergence guarantees. Rajeswaran et al. [20] propose implicit MAML
with analysis of its training sample complexity, providing an alternative method to estimate the
gradient of the MAML objective; Grazzi et al. [13] compare the quality of the estimate to that of the
original MAML algorithm.

As a counterpart to Fallah et al. [6] and Fallah et al. [7], Wang et al. [30] provides bounds on the
meta-testing performance of an ✏-stationary point of the MAML objective, assuming that the same set
of tasks is used for meta-training and meta-testing. In contrast to these previous works, we analyze
the meta-testing performance and overall optimization behavior of MAML when the meta-training
and meta-testing tasks are not identical, merely drawn from the same distribution, and compare them
to those of DRS.

6 Conclusion

This paper introduces an important trade-off in meta-learning, that of accurately modeling the meta-
learning problem and complexity of the optimization problem. Classic meta-learning algorithms
account for the structure of the problem space but define complex optimization objectives. Domain
randomized search (DRS) does not account for the structure of the meta-learning problem and solves
a single level optimization objective.

Taking MAML to be the representative meta-learning algorithm, we study this trade-off empirically
and theoretically. On meta-reinforcement learning benchmarks, the optimization complexity appears
to be more important; DRS is competitive with and often outperforms MAML, especially for fewer
environment steps. Through an analysis of the sample complexity for smooth nonconvex risk
functions, we show that DRS and MAML both solve the meta-learning problem and delineate the
roles of optimization complexity and modeling accuracy. For meta-linear regression, we prove
theoretically and verify in simulations that while MAML can utilize the geometry of the distribution
of task losses to improve performance through meta-testing optimization, this modeling gain can
be counterbalanced by its greater optimization error for small sample sizes. All three studies show
that the balance of the trade-off is not only determined by the sample sizes but characteristics of the
meta-learning problem, such as the smoothness of the task risk functions.

There are several interesting directions for future work. What is the trade-off exhibited by other
algorithms, such as Reptile [16] or ANIL [19], that were designed to be more computationally efficient
than MAML? Our theory may also be extended to more complex scenarios such as supervised learning
with deep networks, the Linear Quadratic Regulator, more than one inner optimization step in MAML,
or the use of part of the data to select hyperparameters.
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Broader Impact

The massive progress made by machine learning in artificial intelligence has been partly driven by
massive amounts of data and compute [1]. By sharing inductive biases across tasks, meta-learning
aims to speed up learning on novel tasks, thereby reducing their data and computational burden.
In this paper, we have argued that the data and computational cost of the meta-training procedure
matters in addition to that of the meta-test procedure. We have shown that domain randomized search,
a computationally cheaper approach compared to classic meta-learning methods such as MAML,
solves the meta-learning problem and is competitive with MAML when the budget of meta-training
data/compute is small. Thus, it can be an effective meta-learning approach in practice when obtaining
data is expensive and/or one would like to reduce the carbon footprint of meta-training, with some
cost in performance at meta-test.
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