
A Datasets

OpenML. The OpenML datasets are identified by their unique ID and can be downloaded pro-
grammatically using the OpenML API (openml.datasets.get_dataset(ID)). The IDs of
the 10 datasets used in this work, as well as the number of examples and features, are pro-
vided in Table 1 in the main manuscript. Categorical features are encoded using scikit-learn’s
label encoder (sklearn.preprocessing.LabelEncoder). All of the datasets correspond to
binary classification problems, with varying degrees of class imbalance. Stratified sampling
(sklearn.cross_validation.StratifiedKFold) is used to construct the outer and inner folds
for the nested cross-validation. The loss function used for training and evaluation is sample-weighted
logistic loss (sklearn.metrics.log_loss).

Rossmann Store Sales. We download the raw data programmatically using the Kaggle API, which
produces two files: train.csv and store.csv. Both files are read into pandas data frames and the
missing values are replaced with zeros. We then follow several preprocessing steps inspired by an
existing Kaggle kernel5.

Firstly, we merge the train data frame with the store data frame, on the Store column. The resulting
data frame is then sorted in ascending order by date. We then filter the data to exclude any stores
that are not open, or have 0 sales. Next, we perform label encoding of the three categorical variables
StoreType, Assortment and StateHoliday. We then extract four numeric features (month, year,
day, and week of year) from the date feature. We create a feature corresponding to the number of
months since the competition was open, and a similar feature corresponding to how many months a
promotion has been running. We create one additional binary feature indicating whether the month is
in the promotion interval. We then extract the Sales column as the labels and apply a logarithmic
transformation. After all the pre-processing steps described above, the data matrix has 20 features.

While the prediction is always performed in the logarithmic domain, when evaluating the mod-
els we transform both the labels and the model predictions back into their original domain.
The loss function used for training and evaluation is the standard root mean-squared error
(sklearn.metrics.mean_squared_error). To create the train/validation/test split, we first ex-
tract all rows corresponding to the month of July. The extracted rows are then split 50/50 to form the
validation and test set using the train_test_split function from scikit-learn with seed 42. The
remaining rows are used for training only. The number of examples used for training, validation and
test are 758762, 42788, and 42788, respectively.

Mercari Price Suggestion. We download the raw data programmatically using the Kaggle API,
which produces the file train.tsv. We then follow several preprocessing steps inspired by an
existing Kaggle kernel6.

Firstly, we remove the products with price 0. Next, we replace missing values in the name,
category_name and item_description columns with a constant string. We then clean
these 3 columns, by 1) removing non-alpha characters, 2) converting to lower-case, and 3)
applying scikit-learn’s CountVectorizer with English stop-words and the maximum num-
ber of features set to 30. Next, we perform target encoding on the brand_name feature
(data‘brand_name’].map(data.groupby(‘brand_name’)[‘price’].mean())) and we en-
code the shipping column using one-hot encoding (pandas.get_dummies). After all the pre-
processing steps described above, the data matrix has 98 features.

Then, we extract the price column as the labels and apply a logarithmic transformation. The root
mean squared error loss function is used for training and evaluation, with labels and predictions
transformed back to the original domain. We then run L1-normalization on the rows and perform
an 80/20 trainval/test split (with seed 42). The trainval set is then split 70/30 to generate the train
and validation sets (with seed 42). The number of examples used for training, validation and test are
829729, 355599, and 296333 respectively.

Credit Card Fraud. We download the raw data programatically using the Kaggle API, which
produces the file creditcard.csv. We extract the 31-st column as the binary labels and remove the
first column Time. With the remaining columns we apply scikit-learn’s StandardScaler followed

5https://www.kaggle.com/cast42/xgboost-in-python-with-rmspe-v2
6https://www.kaggle.com/tsaustin/mercari-price-recommendation

13

by L1-normalization of the rows. After all the pre-processing steps described above, the data matrix
has 31 features.

We then perform a stratified 75/25 trainval/test split (seed 42), followed by a 70/30 train/val split (seed
42). The number of examples used for training, validation and test are 149523, 64082, and 71202
respectively. Since the data is highly imbalanced, for training and evaluation we use the sample-
weighted logistic loss. The sample weights are computed using the compute_sample_weight
function from scikit-learn (sklearn.utils.class_weight), using the balanced option.

B Hyper-Parameters of SnapBoost

In the following we list the hyper-parameters of the SnapBoost algorithm. We highlight in bold the
hyper-parameters that typically require tuning when performing hyper-parameter optimization.

• num_round (int): the number of boosting iterations.

• objective (’mse’, ’logloss’): the loss function optimized by the boosting algorithm.

• learning_rate (float): the learning rate of the boosting algorithm.

• random_state (int): the random seed used at training time.

• colsample (float): the fraction of features to be subsampled at each boosting iteration.

• subsample (float): the fraction of examples to be subsampled at each boosting iteration.

• lambda_l2 (float): L2-regularization parameter applied to the tree leaf values.

• early_stopping_rounds (int): the number of boosting iterations used by early stopping.

• base_score (float): the initial prediction of all examples.

• tree_probability (float): the probability of selecting a tree at a boosting iteration.

• min_max_depth (int) : the minimum max_depth of a tree in the ensemble.

• max_max_depth (int): the maximum max_depth of a tree in the ensemble.

• use_histograms (bool): whether the tree uses histogram statistics or not.

• hist_nbins (int): number of histogram bins if use_histograms is True.

• tree_n_threads (int): the number of threads used to train the trees.

• alpha (float): the regularizer of the ridge regressor.

• fit_intercept (bool): whether to fit the intercept of the ridge regressor or not.

• ridge_n_threads (int): the number of threads used to train the ridge regressor.

• gamma (float): the gamma value of the Gaussian radial basis kernel.

• n_components (c) (int): the dimension of the randomized feature space.

• kernel_n_threads (int): the number of threads used to compute the dataset projection onto
the new randomized feature space.

C Hyper-Parameter Optimization Method: Successive Halving

To perform hyper-parameter tuning we use the successive halving (SH) method from [30]. SH begins
by training and evaluating a large number of hyper-parameter configurations using only a small
fraction of the training examples (otherwise referred to as resource). The configurations are then
ranked according to their validation loss and only the best-performing configurations are carried
forward into the next stage, in which they are trained using a larger resource. This process repeats until
the final stage, where all remaining configurations are trained using the maximal resource (i.e., the full
train set). The general idea is that bad configurations can be eliminated in the earlier stages, without
consuming a significant number of CPU cycles. Our implementation of SH is massively parallel and

14

Algorithm 2 Successive Halving [30] with process-level and thread-level parallelism.
1: Input: initial number of configurations n0

2: Input: elimination rate η
3: Input: minimum resource rmin
4: Input: number of processor cores num_cores
5: Determine number of stages smax = b− logη(rmin)c
6: Assert: n0 ≥ ηsmax

7: Initialize set C by sampling n0 configurations at random
8: for i = 0, 1, . . . , smax do
9: Set number of configurations in this stage: ni = bn0η

−ic
10: Set resource in this stage: ri = ηi−smax

11: Set number of processes in this stage: pi = min (num_cores, |C|)
12: Set number of threads in this stage: ti = bnum_cores/pic
13: Populate input queue Qin with all configurations c ∈ C
14: parfor p = 0, 1, . . . , pi do
15: Start new process with ti threads
16: while Qin is not empty do
17: Pull configuration c from Qin
18: Train using fraction ri of training examples and compute validation loss l
19: Push (c, l) pair into output queue Qout
20: end while
21: end parfor
22: Sort output queue Qout by validation loss
23: Update set C to comprise the ni/η configurations with lowest validation loss
24: end for
25: Output: Configuration in C with lowest validation loss

leverages both process-level parallelism (across configurations) and thread-level parallelism (within
configurations). The implementation is described in full in Algorithm 2.

For the OpenML benchmark we used Algorithm 2 with n0 = 512, η = 4 and rmin = 1/4. Since 3x3
nested cross-validation was used in this benchmark, the SH method was performed independently for
each of the 3 outer folds. For each outer fold, we perform a cross-validated variant of Algorithm 2 in
which Step 18 is performed across the 3 inner folds. Specifically, each configuration is trained and
evaluated for every inner fold, and the validation loss used to rank the configurations is given as the
mean across the 3 inner folds. For the Kaggle benchmark we used Algorithm 2 with n0 = 256, η = 4
and rmin = 1/16. Additionally, we also leveraged the early-stopping functionality of the boosting
frameworks, so that the training of each configuration may terminate early, if it is detected that the
validation loss has not improved in the last 10 boosting iterations. Identical hyper-parameter ranges
were used in both benchmarks, and are given in full in the next section.

D Hyper-Parameter Search Space

In Tables 3, 4, 5, 6 and 7 we list the hyper-parameter ranges for XGBoost, LightGBM, CatBoost,
KTBoost and SnapBoost, respectively.

Maximum depth. LightGBM enforces a constraint on the maximum number of leaves that corre-
sponds to a constraint on the maximum (complete) tree depth of 16. Furthermore, in our setup we had
to further limit the maximum depth to 15 in order to avoid out-of-memory errors. For CatBoost, we
had to limit the maximum depth to 16, for the same reason. The other three frameworks (XGBoost,
SnapBoost and KTBoost) were able to use trees of depth up to 19 without any memory issues.

Ordered boosting. CatBoost offers both ordered boosting (boosting_type=Ordered) as well as
standard boosting (boosting_type=Plain). All CatBoost experiments presented in the paper were
performed using the default setting of ordered boosting. Since CatBoost seems to be slower than
the other frameworks, afterwards we re-ran the experiments using boosting_type=Plain but were
only able to see around a 20% improvement in runtime.

15

KTBoost. For KTBoost, we were unable to use the early stopping functionality as the library
generated errors. In the main manuscript, we report the KTBoost results obtained for the Credit
Card Fraud dataset. In the meantime, we additionally collected the KTBoost results for the Rossman
Store Sales dataset: 54 hours (total tuning and evaluation time) vs. less than 30 minutes (SnapBoost),
average test score (root mean squared error) 659.73 vs. 627.50 (SnapBoost).

Table 3: XGBoost hyper-parameter ranges.

Hyper-parameter Min Max Scale
max_depth 1 19 Linear
num_round 10 1000 Linear
learning_rate -2.5 -1 Log10
colsample_bytree 0.5 1.0 Linear
subsample 0.5 1.0 Linear
lambda -2 -2 Log10
tree_method hist
max_bin 256

Table 4: LightGBM hyper-parameter ranges.

Hyper-parameter Min Max Scale
max_depth 1 15 Linear
num_round 10 1000 Linear
learning_rate -2.5 -1 Log10
feature_fraction 0.5 1.0 Linear
bagging_fraction 0.5 1.0 Linear
lambda_l2 -2 -2 Log10
max_bin 256

Table 5: CatBoost hyper-parameter ranges.

Hyper-parameter Min Max Scale
max_depth 1 16 Linear
n_estimators 10 1000 Linear
learning_rate -2.5 -1 Log10
subsample 0.5 1.0 Linear
l2_leaf_reg -2 -2 Log10
max_bin 256
boosting_type Ordered
bootstrap_type MVS
sampling_frequency PerTree
grow_policy SymmetricTree

Table 6: KTBoost hyper-parameter ranges.

Hyper-parameter Min Max Scale
max_depth 1 19 Linear
n_estimators 10 1000 Linear
learning_rate -2.5 -1 Log10
subsample 0.5 1.0 Linear
max_features 0.5 1.0 Linear
theta -1.5 1.5 Log10
alphaReg -6 3 Log10
n_components 1 100 Linear
update_step newton
nystroem True
base_learner combined

Table 7: SnapBoost hyper-parameter ranges

Hyper-parameter Min Max Scale
num_round 10 1000 Linear
min_max_depth 1 19 Linear
max_max_depth 1 19 Linear
learning_rate -2.5 -1 Log10
subsample 0.5 1.0 Linear
colsample 0.5 1.0 Linear
lambda_l2 -2 -2 Log10
tree_probability 0.9 1.0 Linear
fit_intercept 0 (False) 1 (True) Linear
alpha -6 -3 Log10
gamma -3 3 Log10
n_components 1 100 Linear
hist_nbins 256

E Tuned SnapBoost Hyper-parameter Values

In this section, the tuned hyper-parameter values (for the Kaggle benchmark) are provided for
XGBoost, LightGBM, SnapBoost, CatBoost and KTBoost in Table 8, Table 9, Table 10, Table 11 and
Table 12 respectively.

16

Table 8: Tuned hyper-parameter values for XGBoost

Hyper-parameter Credit Card Fraud Rossmann Store Sales Mercari Price Suggestion
max_depth 1 16 19
num_round 303 923 804
learning_rate 0.037 0.018 0.035
colsample_bytree 0.568 0.552 0.679
subsample 0.866 0.906 0.548
lambda 0.283 2.124 6.102

Table 9: Tuned hyper-parameter values for LightGBM

Hyper-parameter Credit Card Fraud Rossmann Store Sales Mercari Price Suggestion
max_depth 1 13 13
num_round 973 668 905
learning_rate 0.033 0.081 0.091
feature_fraction 0.631 0.631 0.846
bagging_fraction 0.857 0.965 0.680
lambda_l2 0.057 0.014 6.719

Table 10: Tuned hyper-parameter values for SnapBoost.

Hyper-parameter Credit Card Fraud Rossmann Store Sales Mercari Price Suggestion
num_round 593 878 800
learning_rate 0.027 0.046 0.045
colsample 0.644 0.693 0.845
subsample 0.650 0.667 0.764
lambda_l2 1.558 33.409 2.001
min_max_depth 1 18 17
max_max_depth 1 19 17
tree_probability 0.912 0.925 0.934
alpha 0.004 0.011 0.016
fit_intercept false true true
gamma 0.617 11.088 602.772
n_components 59 58 79

F NODE versus SnapBoost Benchmark

In this section, we compare SnapBoost with Neural Oblivious Decision Ensembles (NODE) [38].
NODE constructs deep networks of soft decision trees that can be trained using end-to-end back-
propagation.

Datasets. For this benchmark we used 6 regression datasets as shown in Table 15. These datasets
have approximately 10K examples and 20 features on average. We chose to use these relatively small
datasets since, as we will see, training NODE is fairly slow. Firstly, we manually downloaded the
data using the links provided in Table 15. For some datasets, we concatenated the provided train and
test data files (ailerons, elevators, puma32H, and bank8FM). We used the concatenated matrices as
input to the train/validation/test splitting during hyper-parameter optimization. As labels, we used
column 41 for ailerons, column 20 for parkinsons, column 17 for navalT, column 19 for elevators,
column 33 for puma32h, and column 9 for bank8FM (column indices being 1-based). We do not
perform additional data preprocessing.

Infrastructure. The results in this section were obtained using a single-socket server with
an 8-core Intel(R)Xeon(R) CPU E5-2630 v3 CPU, @2.40GHz, 2 threads per core, 64 GiB
RAM, 2 NVIDIA GTX 1080 TI GPUs, running Ubuntu 16.04. We use NODE commit
3bae6a8a63f0205683270b6d566d9cfa659403e4 and PyTorch 1.4.0.

Hyper-parameter optimization method. To tune the hyper-parameters of NODE and SnapBoost,
we used the optimization method described in Algorithm 2 with n0 = 1000, η = 4 and rmin = 1/20.
We tuned SnapBoost on the CPU using 16 single-threaded processes in parallel (num_cores=16).

17

Table 11: Tuned hyper-parameter values for CatBoost

Hyper-parameter Credit Card Fraud Rossmann Store Sales
max_depth 1 16
n_estimators 483 827
learning_rate 0.019 0.036
subsample 0.760 0.640
l2_leaf_ref 43.550 0.199

Table 12: Tuned hyper-parameter values for KTBoost

Hyper-parameter Credit Card Fraud
max_depth 1
n_estimators 427
learning_rate 0.027
subsample 0.809
max_features 0.735
theta 0.125
alphaReg 0.139
n_components 56

NODE was tuned sequentially, one hyper-parameter configuration at a time, using both available
GPUs. It was necessary to both GPUs since NODE crashed with out-of-memory errors when using
only one.

In this benchmark, we used 2x2 nested cross-validation. The SH method was performed independently
for each of the 2 outer folds. For each outer fold, we performed a cross-validated variant of Algorithm
2 in which Step 18 was performed across the 2 inner folds. Specifically, each configuration was
trained and evaluated for every inner fold, and the validation loss used to rank the configurations was
given as the mean across the 2 inner folds. The training and evaluation loss used in this benchmark
was the root mean squared error (RMSE).

Hyper-parameter search space. Tables 13 and 14 show the hyper-parameter ranges used in this
benchmark. NODE’s layer dimension is computed as layer_dim = dtotal_trees/num_layerse.
Other NODE parameter settings: nus=(0.7,1.0, betas=(0.95, 0.998), optimizer=QHAdam,
epochs=100, and batch_size=min(int(dataset.shape[0]/2), 512).

Table 13: SnapBoost hyper-parameter ranges.

Hyper-parameter Min Max Scale
num_round 64 2048 Linear
min_max_depth 1 8 Linear
max_max_depth 1 8 Linear
learning_rate -3 0 Log10
subsample 0.5 1.0 Linear
colsample 0.5 1.0 Linear
lambda_l2 -2 -2 Log10
tree_probability 0.9 1.0 Linear
fit_intercept 0 (False) 1 (True) Linear
alpha -6 3 Log10
gamma -3 3 Log10
n_components 1 100 Linear
hist_nbins 256

Table 14: NODE hyper-parameter ranges.

Hyper-parameter Min Max Scale
num_layers 1 8 Linear
total_trees 64 2048 Linear
depth 1 8 Linear
tree_dim 2 3 Linear

Experimental results. Table 15 shows the result of the benchmark. The table includes information
about the datasets’ characteristics, as well as the test RMSE (averaged over the 2 outer folds), and
total experimental time for both NODE and SnapBoost. The time is reported in hours. SnapBoost
achieves a lower test RMSE than NODE on 4 datasets, whereas NODE wins on the remaining 2
datasets. In terms of experimental time, SnapBoost is on average approximately 160 times faster than
NODE.

18

Table 15: NODE vs. SnapBoost Benchmark.

RMSE (Test) Time (hours)
Name Rows Features NODE SnapBoost NODE SnapBoost Speed-up
ailerons [1] 13750 40 0.000204 0.000157 38.25 0.34 112.5
parkinsons7 [9, 35] 5875 19 0.001718 0.000868 22.30 0.15 150
navalT [3, 15] 11934 16 0.006941 0.000631 55.19 0.20 275.9
elevators [6] 16599 18 0.005099 0.002074 32.83 0.24 136.7
bank8FM [2] 8192 8 0.028717 0.031298 27.45 0.11 249.5
puma32h [10] 8192 32 0.006424 0.007629 23.70 0.39 60.7

G Reformulation of Algorithm 1 as Coordinate Descent

The definition of the F given in (2) dictates that any function f ∈ F can be expressed a weighted
sum over functions belong to the base hypothesis class H. Furthermore, by Assumption 3, every
function inH can be expressed as a scalar multiplied by one of the functions belonging to finite set
H̄. Thus, every f ∈ F has an equivalent representation as a weighted sum over the functions bj ∈ H̄:

f(xi) =

|H̄|∑
j=1

βjbj(xi),

where β ∈ R|H̄| and typically the vast majority of the coefficients βj are zero. Next, we introduce
the matrix B ∈ Rn×|H̄|, with entries given by Bi,j = bj(xi). Given this definition, a given function
f ∈ F evaluated at xi can be expressed:

f(xi) =

|H̄|∑
j=1

βjBi,j = Biβ,

where Bi ∈ R1×|H̄| denotes the i-th row of B. Thus minimization (1) over domain (2) is equivalent
to minimizing the following objective function over β ∈ R|H̄|:

L(β) =

n∑
i=1

l(yi, Biβ)

The optimal coordinate to update at the m-th iteration, given randomly chosen subclass index um, is
given by:

jm = arg min
j∈I(um)

[
min
σ∈R

L(βm−1 + σej)

]

= arg min
j∈I(um)

[
min
σ∈R

n∑
i=1

l(yi, Biβ
m−1 + σBi,j)

]

≈ arg min
j∈I(um)

[
min
σ∈R

n∑
i=1

(
l(yi, Biβ

m−1) + giσBi,j +
hi
2
σ2B2

i,j

)]

= arg min
j∈I(um)

[
min
σ∈R

n∑
i=1

hi

(
− gi
hi
− σBi,j

)2
]
, (13)

where the approximation is obtained by taking the second-order Taylor expansion of l(yi, Biβm−1 +
σBi,j) around l(yi, Biβm−1), with expansion coefficients given by gi = l′(yi, Biβ

m−1) and hi =
l′′(yi, Biβ

m−1). Note that this optimization problem is directly equivalent to (3) in the original
formulation of Algorithm 1. For a fixed coordinate j, the inner minimization over σ has a closed-form
solution:

σ∗j = −
∑
i giBi,j∑
i hiB

2
i,j

= −∇jL(βm−1)

∇2
jL(βm−1)

, (14)

7https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

19

where we have used two identities that link the first and second-order derivatives of L(β) to the
coefficients gi and hi as follows:

∇jL(βm−1) =
∂

∂βm−1
j

(
n∑
i=1

l(yi, Biβ
m−1)

)
=

n∑
i=1

giBi,j (15)

∇2
jL(βm−1) =

∂2

∂(βm−1
j)2

(
n∑
i=1

l(yi, Biβ
m−1)

)
=

n∑
i=1

hiB
2
i,j . (16)

Now, by plugging (14) into (13) we have:

jm = arg min
j∈I(um)

 n∑
i=1

hi

(
− gi
hi

+
∇jL(βm−1)

∇2
jL(βm−1)

Bi,j

)2


= arg min
j∈I(um)

−2
∇jL(βm−1)

∇2
jL(βm−1)

n∑
i=1

giBi,j +

(
∇jL(βm−1)

∇2
jL(βm−1)

)2 n∑
i=1

hiB
2
i,j


= arg min

j∈I(um)

[
−
(
∇jL(βm−1)

)2
∇2
jL(βm−1)

]
= arg max

j∈I(um)

∣∣∣∣∣∣ ∇jL(βm−1)√
∇2
jL(βm−1)

∣∣∣∣∣∣
 ,

where in the third equality we have again used (15) and (16).

H Proof of Lemma 1

This proof is analogous to Proposition 4.3 in [36], adapted to use the norm induced by Φ, as well
as the second-derivative information. From the statement of the Lemma, we have the following
definition of Γ(β) for j ∈

[
|H̄|
]
:

Γj(β) =
∇jL(β)√
∇2
jL(β)

Now, given the definition of jm in (6), we have:

Em
[
Γjm(βm−1)2

]
=

K∑
k=1

φk max
j∈I(k)

Γj(β
m−1)2 =

|H̄|∑
j=1

λjΓj(β
m−1)2,

where λj is defined as follows:

λj =



φ1, if j = arg maxj∈I(1) Γj(β
m−1)2

φ2, if j = arg maxj∈I(2) Γj(β
m−1)2

...
φK , if j = arg maxj∈I(K) Γj(β

m−1)2

0, otherwise.

Now, by noting that
∑
j λj = 1 and λj ≥ 0 and applying the Cauchy-Schwarz inequality:

Em
[
Γjm(βm−1)2

]
=

∑
j

λj

∑
j

λjΓj(β
m−1)2


≥

∑
j

λj |Γj(βm−1)|

2

= ||Γ(βm−1)||2Φ,

where the last equality uses the definition of the Φ-norm from Definition 1.

20

I Proof of Theorem 2

From the update rule (4) and equations (5) and (6) we have:

L(βm) =

n∑
i=1

l

(
yi, Biβ

m−1 − ε

(
∇jmL(βm−1)

∇2
jm
L(βm−1)

)
Bi,jm

)

≤
n∑
i=1

l(yi, Biβ
m−1)− ε

(
∇jmL(βm−1)

∇2
jm
L(βm−1)

)
Bi,jmgi

+
ε2

2

(
∇jmL(βm−1)

∇2
jm
L(βm−1)

)2

B2
i,jm l

′′(yi, zi), (17)

where the existence of the sequence zi are guaranteed by the Mean Value Theorem. Now, applying
Assumption 1 and Assumption 2 we have for all i ∈ [n]:

l′′(yi, zi)

l′′(yi, Biβm−1)
≤ S

µ
=⇒ l′′(yi, zi) ≤

S

µ
hi, (18)

where we recall that l′′(y,Biβm−1) = hi. Plugging into (17) we have:

L(βm) ≤ L(βm−1)− ε

(
∇jmL(βm−1)

∇2
jm
L(βm−1)

)
n∑
i=1

Bi,jmgi +
ε2

2

S

µ

(
∇jmL(βm−1)

∇2
jm
L(βm−1)

)2 n∑
i=1

B2
i,jmhi

= L(βm−1)− Γjm(βm−1)2

(
ε− ε2

2

S

µ

)
= L(βm−1)− µ

2S
Γjm(βm−1)2, (19)

where Γj(β) is defined as in Lemma 1 and in the final step we have set the learning rate to be ε = µ
S .

Now we take the expectation of both sides of (19) with respect to the m-th iteration to attain:

Em [L(βm)] ≤ L(βm−1)− µ

2S
Em

[
Γjm(βm−1)2

]
≤ L(βm−1)− µ

2S

∥∥Γ(βm−1)
∥∥2

Φ

= L(βm−1)− µ

2S

 K∑
k=1

φk max
j∈I(k)

∣∣∣∣∣∣ ∇jL(βm−1)√∑n
i=1 hiB

2
i,j

∣∣∣∣∣∣
2

≤ L(βm−1)− µ

2S2

 K∑
k=1

φk max
j∈I(k)

∣∣∣∣∣∣∇jL(βm−1)√∑n
i=1B

2
i,j

∣∣∣∣∣∣
2

= L(βm−1)− µ

2S2

(
K∑
k=1

φk max
j∈I(k)

∣∣∇jL(βm−1)
∣∣)2

= L(βm−1)− µ

2S2
||∇L(βm−1)||2Φ (20)

where the second inequality follows from Lemma 1, the third inequality follows from Assumption 2,
and the penultimate equality follows due to Assumption 3.

We then apply directly apply Proposition 4.4 and 4.5 from [36] (which in turn rely on Assumption 1)
to obtain the following lower bound:∥∥∇L(βm−1)

∥∥2

Φ
≥ 2µΘ2

(
L(βm−1)− L(β∗)

)
, (21)

where β∗ is the vector that minimizes L(β). Now subtracting L(β∗) from both sides of (20) and
applying (21) we have:

Em [L(βm)− L(β∗)] ≤ L(βm−1)− L(β∗)− µ

2S2
||∇L(βm−1)||2Φ

≤
(
L(βm−1)− L(β∗)

) µ2

S2
Θ2

The proof is furnished by following a telescopic argument.

21

