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We thank the reviewers for their constructive feedback and their valuable time.1

Reviewer 1: First, we respond to the reviewer’s questions/suggestions regard-2

ing the experimental results. Regarding comparisons to the safe-LUCB of [16],3

we present SCLUCB2 in App. H as a modified version of our main SCLUCB4

algorithm tailored for the exact safe bandit setting studied in [16]. Importantly,5

SCLUCB2 comes with a theoretical regret bound, which matches the proposed6

problem-dependent upper bound in [16]. We now confirm this numerically in the7

displayed figure, which plots the cumulative regret of the two algorithms averaged8

over 100 realizations. We will include this new numerical study in the final version.9

The reason that we only plot regret curves and not the number of times the safety constraint is violated, is because this10

number is zero for almost all realizations. This is expected since all our algorithms guarantee the model’s requirement11

that the safety constraints are not violated for any time step, with high-probability 1 − δ. Second, regarding the12

parameters (R,S, L) of Ass. 1-3, assuming knowledge of them is standard in the literature of linear bandits (see13

[5,11,10,13-15]). Their specific values are, of course, highly application-dependent, but the underlying hypothesis is14

that they can be accurately determined based on domain-knowledge/physics, or, estimated from historic data. Even15

if accurate approximations are not possible, rather loose bounds suffice to run the algorithms. Of course, the quality16

of these bounds affects the performance, but, the accompanying regret-bounds quantify the effect. Regarding the17

parameters (rl, rh, κl, κh) in Ass. 4 that are associated with the baseline policy, it can be reasonably assumed that they18

can be estimated accurately from data. This is because we think of the baseline policy as “past strategy", implemented19

before bandit-optimization, thus producing large amount of data (see also [1-3]). If no knowledge is available however,20

κh and rh can always be set to equal 1 (since for simplicity we assume that the mean rewards are in [0, 1]). Similarly, κl21

can be set equal to zero. On a related note, we address the question on tuning the hyper-parameters δ, λ, ρ, α. The22

tuning of δ, λ is standard and is same as in all linear-bandit algorithms [5,11,10,13-15]: 1− δ ∈ (0, 1) is the desired23

confidence (e.g., 0.95) on the algorithm’s realizations to satisfy the regret bounds (here, also the safety constraints); the24

regularization parameter λ can be set equal to one. The parameter ρ, controlling the exploration level of conservative25

actions can take any value in the interval specified in Lemma 2.2. The parameter α ∈ (0, 1), controlling the conservatism26

level of the learning process, is assumed known to the learner similar to [1,2,3]. We will clarify the above in the27

revision. Finally, the assumption 〈x, θ?〉 ≤ 1 is not essential and is rather only meant for simplicity. Specifically, the28

assumptions ‖x‖2 ≤ L and ‖θ?‖2 ≤ S suffice, as they guarantee the constant bound LS for 〈x, θ?〉; thus, nothing29

fundamental changes in our analysis. For example, without this assumption, ρ3 in Eq. (18) of Theorem 4.1. simply30

changes to ρ3 = αrl
S+LS . Contrary to our intention, this assumption appears to be confusing and will be removed in the31

final version. Minor: The parameter ρ in Algo. 1 appears in the definition of xcb
t in Eq. (11). We will clarify this.32

Reviewer 2: First, please refer to lines 18-22 above on how the parameters ( rl, rh, κl, κh) are chosen. We further33

clarify the following. Regarding κl: Indeed, there is a typo in line 228 and the related factor in the sample complexity34

should rather be κl + αrl as specified explicitly in Thm. 3.3. What this bound suggests is that while setting κl = 035

is possible, a higher value is preferable (provided that it lower bounds κbt in (4)), since it results in smaller regret.36

Regarding the requirement rl > 0: Indeed, this is necessary for the algorithms to perform well and is critically37

used in the proofs (e.g. Eq. (23)). That said, this is expected to be met in practice since the baseline policy is the38

system’s current strategy and should have been associated with at least a positive reward. Second, let us clarify the39

assumption that the action set contains the unit ball, eqv. L ≥ 1. This goes hand-in-hand with our assumption40

‖ζ‖2 = 1 ( line 199), since together they guarantee that the convex combination x cb
t in (11) is feasible, i.e., satisfies41

‖xcb
t ‖2 ≤ L. However, this requirement remains true as long as ‖ζ‖2 = ε and L ≥ ε for any ε > 0. To see this, note42

that ‖xcbt ‖2 ≤ (1− ρ)L+ ρε ≤ L− ρ(L− ε) ≤ L. In particular, ε > 0 can be chosen small enough for “thin sets".43

Changing ‖ζ‖2 = ε, we simply adjust h1 = 2ρ1(1− ρ1)Lε+ 2ρ21ε
2 and ρ1 = αrl

Sε+rh
in Thm. 3.3. Minor: Thank you44

for the comment about LUCB. Also, we agree and will modify line 59 to clarify that the learner Knows xbt .45

Reviewer 3: Thank you for the suggestion on numerically verifying the number of46

times that baseline is played. The figure on the right plots the cumulative number47

of baseline actions played by SCLTS until time t, for t = 1, . . . , 1000. The solid line48

depicts average over 100 realizations and the shaded regions show standard deviation.49

The figure confirms the logarithmic trend predicted by theory. We will upload our code50

as suggested. We finish with a brief proof-sketch of Thm. 3.3, which we will include51

in the paper. The first idea is based on the intuition that if a baseline action is played at52

round t, then the algorithm does not yet have a good estimate of the unknown parameter53

θ? and the safe actions played thus far have not yet expanded properly in all directions.54

Formally, this translates to small λmin(Vt) and the upper bound O(log τ) ≥ λmin(Vτ ) (Eq. (43)). The second key idea55

is to exploit the randomized nature of the conservative actions (cf. (11)) to lower bound λmin(Vτ ) by the number |N c
τ |56

of times that SCLTS plays the baseline actions up to that round (cf. Lemma D.1). Putting these together leads to the57

advertised upper bound O(log T ) on the total number |N c
T | of times the algorithm plays the baseline actions.58


