Appendices

A Dataset information

Table 4: Distribution of 10 recognized reaction types.

Reaction type Reaction type name # Examples
1 Heteroatom alkylation and arylation 15204
2 Acylation and related processes 11972
3 C-C bond formation 5667
4 Heterocycle formation 909
5 Protections 672
6 Deprotections 8405
7 Reductions 4642
8 Oxidations 822
9 Functional group interconversion (FGI) 1858
10 Functional group addition (FGA) 231

# Disconnection bonds 0 1 2 >3
# Reactions 11296 27851 849 12
Accumulative percent  28.23% 97.85% 99.97% 100.00%

The USPTO-50K dataset is annotated with 10 reaction types, the distribution of reaction types is
displayed in Table 4. The distribution is extremely unbalanced. We also report the statistics of the
number of disconnection bonds for training reactions in Tables 5 and 6.

Table 5: Statistics of the number of disconnection bonds for the USPTO-50K training reactions.

Table 6: Statistics of the number of disconnection bonds for the USPTO-full training reactions.

# Disconnection bonds 0 1 2 3 4 5 >6
# Reactions 161500 485449 88146 19303 5687 2032 1000
Accumulative percent  21.16% 84.77% 96.33% 98.86% 99.60% 99.87% 100.00%

feature following [

B Atom and bond features

Feature Description Size
Atom type Type of atom (ex. C, N, O), by atomic number. 100
# Bonds Number of bonds the atom is involved in. 6
Formal charge Integer electronic charge assigned to atom. 5
Chirality Unspecified, tetrahedral CW/CCW, or other. 4

# Hs Number of bonded Hydrogen atom. 5
Hybridization sp, sp2, sp3, sp3d, or sp3d2. 5
Aromaticity Whether this atom is part of an aromatic system. 1
Atomic mass Mass of the atom, divided by 100. 1
Semi-templates Semi-templates that the atom is within. 654
Reaction type The specified reaction type if it exists. 10

12

Table 7: Atom Features used in EGAT. All features are one-hot encoding, except the atomic mass
is a real number scaled to be on the same order of magnitude. The upper part is general atom
], the lower part is specifically extended for the retrosynthesis prediction.
Semi-templates size is 654 for the USPTO-50K dataset.



Table 8: Bond features used in EGAT. All features are one-hot encoding.

Feature Description Size
Bond type  Single, double, triple, or aromatic. 4
Conjugation ~ Whether the bond is conjugated. 1
In ring Whether the bond is part of a ring. 1
Stereo None, any, E/Z or cis/trans. 6

C Transformer

The transformer [27] is an autoregressive encoder-decoder model built with multi-head attention
layers and position-wise feed-forward layers. As illustrated in Figure 6, the encoder is composed
of stacked multi-head self-attention layers and position-wise feed-forward layers. The encoder self-
attention layers attend the full input sequence and iteratively transform it into a latent representation
with the self-attention mechanism. The decoder is similar to the encoder. In addition to multi-head
self-attention layers and position-wise feed-forward layers, the multi-head encoder-decoder attention
layers are inserted to perform cross attention over the encoder output. Different from the encoder self-
attention layers, the decoder adopts the masked self-attention which prevents the decoder positions
from attending future positions. The encoder-decoder attention and masked self-attention layers
enable the decoder to combine the information from the source sequence and the target sequence
that has been produced to make the output prediction. We refer readers to [27] and The Illustrated
Transformer for comprehensive details about the Transformer.
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Figure 6: Transformer model architecture. The residual connection and layer normalization layer are
omitted in the illustration for simplification.

The transformer removes all recurrent units and introduces a positional encoding to account for the
order information of the sequence. Positional encoding adds a position-dependent signal to the token
embedding of size d.,,; to discriminate the position of different tokens in the sequence:

n—Pr° __ pp o —cos P95
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where pos is the token position and ¢ is the dimension of the positional encoding.

PE(pOSQi) =si (5)

13



The transformer adopts a scale dot-product attention as the attention formulation, which compute the
attention weighted output by taking as input the matrix represented keys K, values V, and queries Q:

T

K
Attention(Q, K, V) = Softmax( @

N W (6)

where the dj, is the dimension of Q and K.

C.1 Parameters setting

We compose both the encoder and decoder of four layers of size 256. The label smoothing parameter
is set to 0 since a nonzero label smoothing parameter will deteriorate the model’s discrimination [28].
We adopt eight attention heads as suggested. We set the batch size to 4096 tokens and accumulate
gradients over four batches.

D More experimental results

D.1 Per category performance
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Figure 7: Top-10 retrosynthesis accuracy per reaction category with given reaction type.
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Figure 8: Top-10 retrosynthesis accuracy per reaction category with unknown reaction type.

We investigate the retrosynthesis accuracy per reaction category on USPTO-50K to have a better
understanding of our model’s capability in different types of reaction. We report Top-10 accuracy
for a fair comparison following baseline methods, though our method is not designed for diverse
predictions. Although the reaction types are highly imbalanced as shown in Table 4, our method
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performs well in all reaction categories as displayed in Figure 7, which indicates our method is not
that sensitive to the number of samples of the same reaction type. Particularly, our method achieves
comparable or better performance in 9 out 10 reaction categories compared with the template-based
methods RetroSim and GLN. For rare categories like class 4 and 10, our methods is much better
than the GLN. Similar conclusion also applies to the unknown reaction type scenario as illustrated
in Figure 8. Note that for the most common type 1 and 2, the type prior does not help much to
our method’s performance, which suggests that our method may exploit training reactions to the
maximum extent given enough reaction data.

D.2 Ablation study of atom features

Our method can also work without semi-templates. When removing semi-templates, the EGAT
performance drops slightly as listed in Table 9. The semi-templates feature is not a must component
of our method, but it is definitely helpful for finding the reaction center.

Table 9: Results of atom features ablation study. Aux is the short for auxiliary. EGAT consists of both
main and auxiliary tasks. The prediction is binarized with a threshold of 0.5 if the main task alone.

Accuracy (%)
Main Aux EGAT

70.0 99.2 84.0
744 99.2 86.0

433 838 599
515 864 649

Type Semi-templates

x x| N\
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D.3 Ablation study of augmentation in RGN

Table 10: Retrosynthesis results of augmentation ablation study.

Top-n accuracy (%)
1 3 5 10 20 50
Reaction type given as prior on USPTO-50K

Training Aug Test Aug

X X 63.5 752 7677 77.6 783 793
X v 64.0 757 775 783 79.2 80.2
v X 63.8 751 765 774 784 793
v v 704 834 853 86.8 88.1 893
Reaction type unknown on USPTO-50K
X X 48.1 563 573 58.0 587 59.1
X v 484 569 579 588 59.6 60.2
v X 476 56.1 570 579 585 592
v v 65.6 787 808 833 84.6 86.0

We robustify the RGN by including unsuccessfully predicted synthons by EGAT as the RGN training
data augmentation (Training Aug). When evaluating the retrosynthesis on test data, we also gather
predicted synthons from the EGAT to form the RGN input sequences without considering if the
reaction center identification successful or not, and we denote this evaluation strategy as the test
augmentation (Test Aug) with a little abused use of augmentation. Without the test augmentation,
we must first evaluate reaction center identification results, and only try to predict reactants for
the product whose reaction center is successfully identified. In this case, the overall retrosynthesis
performance will be capped by the EGAT. The ablation study results are listed in Table 10.

Generally, applying only training or test augmentation makes only tiny influence on the retrosynthesis
performance in both cases (w/ or wo/ reaction type). While the retrosynthesis performance will be
boosted significantly if both training and test augmentation are adopted. This is not unexpected.
Exploiting training data augmentation makes the RGN robust and also assigns a correction ability to
the RGN. The correction ability will take effect only if the test augmentation is also employed.
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E Top-1 and Top-2 predictions

About 10% Top-1 predictions by our model have been considered as wrong predictions while the
associated Top-2 predictions are the same to the ground-truth. However, 9 in 10 of these Top-1
predictions are re-considered as reasonable and valid predictions checked by experienced chemists
from the synthetic chemistry perspective. As Figure 9 shows, the major retro-predictions that both
Top-1 and Top-2 can be thought correct, are among metal-catalyzed cross-coupling reactions, N-
and O-alkylation reactions, saponification of ethyl esters and methyl esters, different sources of
reactants, esterification of alcohol with acyl chlorides or carboxylic acid, and deprotection of different
protecting groups to same alcohols.

There are some deprotection reactions with different protecting groups, such as deprotecting O-THP
ether and O-Bn ether to free alcohol in Figure 9(a). They are prevalent strategies in chemistry utilizing
different protecting groups. In Figure 9(b), both bromoarenes and iodoarenes are reactive enough to
initiate Suzuki coupling reactions, similar to N- and O-alkylation of propargyl like or benzyl chloride
and bromide in Figure 9(c). In Figure 9(d), hydrolysis of ethyl ester and methyl ester to corresponding
carboxylic acid can both occur under certain conditions, although saponification of methyl ester is
faster than ethyl ester. Real reactants that participated in the reactions are predicted in our Top-1
predictions, such as allyl Grignard reagent and acyl chloride in cases shown in Figure 9(e). Last but
not least, in Figure 9(f), methyl boronic acid or its trimer form and trimethyl borate are very common
reagents used by chemists in Suzuki coupling reaction to introduce methyl group.
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Figure 9: Top-1 and Top-2 predictions are both reasonable reactants.
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