
We thank the reviewers for their comments and insightful reviews. We will integrate all the useful suggestions in1

the revised version of the paper.2

[R1] Comparison with reward-free exploration [23]. On a high level, both approaches build accurate estimates3

of the transitions on a specific (unknown) state space of interest: “significant” states within H steps for [23] and4

incrementally L-controllable states S→L for DISCO. While the two concepts are somewhat related (H ≡ L are the5

horizons of interest), [23] focuses on finite-horizon problems and we consider the more general goal-conditioned setting.6

Resetting after every L steps (as in finite-horizon) would not allow identifying the states in S→L . This explains the7

distinct technical tools used: while [23] deploys finite-horizon no-regret algorithms, DISCO leverages SSP tools. The8

bound-wise comparison is also interesting. While ε, A and H ≡ L dependencies match, [23]’s dependency on the9

global state space S is polynomial, whereas DISCO’s is only logarithmic as the main dependency is w.r.t. |S→L+ε|. This10

shows that DISCO effectively adapts to the state space of interest and it ignores all other states.11

[R1] Computational complexity. The overall complexity can be expressed as
∑K
k=1 |Wk| · C(OVISSP), with12

C(OVISSP) the complexity of an OVISSP procedure. Note that K ≤ |S→L+ε| and |Wk| ≤ 2LA|Kk| ≤ 2LA|S→L+ε|. The13

VI algorithm for SSP was proved in [37] to converge in time quadratic w.r.t. the size of the considered state space14

(here, Kk) and ‖V ?‖∞/cmin. Here cmin = 1, and we can prove that in all SSPs considered by DISCO, the optimal15

value function V ? verifies ‖V ?‖∞ = O(L2) due to the restriction of the goal inWk. Putting everything together gives16

DISCO’s complexity. Interestingly, it only depends on |S→L+ε| and is independent from the global state space size S.17

[R1, R3] Motivation/limitations of the incremental framework. We believe this setting effectively captures the18

intuition that an agent progressively expands its knowledge of the environment by leveraging closer well-controlled19

states to achieve further states that are more difficult to reach. Interestingly, recent goal-conditioned algorithms20

for unsupervised RL or learning with sparse reward (see e.g., [21,22,33]) make the implicit assumption that the21

environment’s states satisfy the incremental controllability condition of Def. 4, in the sense that they strive to train a22

policy to reach closer states before moving forward in exploring and controlling other states. Nonetheless, the definition23

of S→L may be too restrictive as it excludes states that are L-controllable but may require passing through states that are24

not. While considering all L-controllable states in SL would inevitably hit the impossibility result proved by [1], we25

believe it is possible to relax the strict incrementality condition of S→L without affecting the learnability of the problem.26

[R1] On L. In DISCO we can gradually increase the value of L without restarting the algorithm from scratch, unlike in27

UcbExplore. This allows tuning the parameter online according to the desired behavior. In particular, in the case of28

communicating MDPs, one may perform a sort of doubling trick: L = 2, 4, 8, . . . , 2n, where the unknown n satisfies29

2n−1 ≤ D ≤ 2n. Once 2n the algorithm would indeed discover all states in the MDP and we can stop it. Crucially, the30

total sample complexity would be (up to logarithmic factors) the same of DISCO run with the final value of L.31

[R1] Upper limit on ε. We had set ε ≤ 1 for ease of analysis, as assumed in e.g., [35]. If it may larger (ε ≤ εmax), then32

the definition ofWk would indeed have to be modified accordingly (replacing 1− ε/2 by 1− ε/(2εmax)).33

[R2] Proof sketch. A sketch of the proof of Thm. 1 is currently available in App. B. In case of acceptance we will use34

the extra page to bring it to the main text so that it indeed contains proof intuition (likewise for Cor. 1).35

[R2] Additional experiments. Since [1] did not report any numerical study of UcbExplore, in our paper we focused on36

two simple environments where it is still relatively easy to interpret the behavior of the algorithms and their performance.37

We will include additional experiments for varying L in the final version.38

[R3] Bound dependencies, comparison. In the condition on line 224, the number of states SL+ε := |S→L+ε| directly39

depends on L and ε (more precisely it increases with both). As such, all parameters are connected to each other and it40

may not be trivial to determine values for which the condition holds. In the environments considered in our experiments,41

the condition holds for the chosen values of ε and L. We agree an interesting direction for future investigation is to42

identify families of MDPs where SL+ε is an explicit function of L (e.g., constant, linear, polynomial, exponential).43

[R3] DISCO for cost-sensitive tasks. We agree the current discussion is poorly phrased. DISCO indeed does not44

perform any additional learning. In fact, DISCO returns an estimated model (on which OVI is run) that is sufficiently45

accurate w.r.t. the true model restricted to S→L . This property guarantees that the SSP policy returned by OVI is46

near-optimal for any cost function. Interestingly, it may also be used to compute accurate policies for e.g., finite-horizon47

RL tasks restricted on S→L (by leveraging the simulation lemma of Lem. 8). We will clarify this part.48

[R4] Complete bound. We can retrace the exact terms from the analysis to provide a sample complexity bound49

with constants and logs. This will indeed allow to evaluate the bound w.r.t. the performance. We note that while50

the performance is partially tied to the bound via the choice of allocation φ, samples are in practice shared between51

sample-collection attempts, and in addition the O(L) cost to collect each sample is often loose for states close to s0.52

[R4] “L-reachability” and “L-controllability” are indeed the same concept, we will unify the terminology.53


