
We thank all reviewers for valuable comments. We commit to improving clarity of definitions/approximations/algorithm1

details and add more discussions on related works in the camera-ready version.2

Usage of entropy: Entropy is used to measure sufficiency, compactness and uniqueness. Sufficiency is measured by3

H(ri|si, a) in def.1, where the sufficient sub-state set Mi represents all sub-states ŝi that are as informative as the4

whole state s in terms of inferring ri. Compactness is measured by H(si) in def.1&2, where C represents all sets5

of sub-rewards(and corresponding sub-states) that is non-trivial. Uniqueness(/diversity) is measured by H(si|sj),6

and H(ri|sj , a) as an alternative. One may argue that, it is easier to use feature number to capture compactness and7

uniqueness, for example using |si − si ∩ sj | to capture diversity(/uniqueness). This is a good and simple formulation8

under factored MDP in Section 3 when all features are independent. However, for features learnt by networks,9

independence is not guaranteed and even when mi and mj does not overlap, the mutual information between si and10

sj could still be high. The usage of entropy (H(si|sj) and H(ri|sj , a)) allows us to discourage such case while11

|si − si ∩ sj | cannot.12

Explanation of Ldiv1: Ldiv1 computes the sum of H(ŝi|ŝj), which can be interpreted as randomness of sub-state ŝi13

given sub-state ŝj . To further explain the intuition behind, consider a factored MDP where a factor is either chosen or not14

chosen for each sub-states. Note that a factor xk will only contribute to H(ŝi|ŝj) if xk is chosen by ŝi and not chosen15

by ŝj , i.e. mi,k = 1 and mj,k = 0. A simple way to extend this boolean expression is to use ReLU(mi,k −mj,k). We16

admit that the approximation Ldiv1 for H(si|sj) does not deal with the correlated case of si and sj as well as Ldiv2,17

which may explain the good performance of Ldiv2 over Ldiv1 in Atari Games where the feature could be correlated18

rather than independent as in well-defined factored MDP (e.g. our toy case).19

Explanation of Ldiv2: The usage of variance to approximate entropy was discussed in L203. Note the definition20

of variance V ar(ri|ŝj , a) = E [ri − E(ri|ŝj , a)]2. To obtain an estimation for E(ri|ŝj , a), we use a network r̂i =21

gθij (ŝj , a) and minimize MSE(ri, r̂i) over parameter θij . Then we can use r̂i as an estimation for E(ri|ŝj , a) and22

MSE(ri, r̂i) as a surrogate for V ar(ri|ŝj , a) and maximize MSE(ri, r̂i) over ŝj to increase variance/entropy. We23

apologize for the ambiguity and will refine it in the camera-ready version.24

Downstream sub-Q learning: The detailed version of RD2 algorithm can be found in Appendix A. In brief, sub-Q25

functions are trained with both full reward TD and sub-reward TD. The usage of global action at+1 instead of local26

actions (i.e. at+1,i = argmaxaQi(st+1, a)) assures invariant optimal Q-function Q∗.27

Figure 1: Ablation study.

Ablation study for each loss term: To investigate the contribution of each loss term, we28

show that ablative performance. Specifically, we compare three variants of RD2: (1) RD229

without Lsum in Eq.4; (2) RD2 without Lmini in Eq.5; (3) RD2 without Ldiv2 in Eq.7. As30

shown in Figure 1, when we drop the Lsum term, RD2 is equivalent to learn with randomly31

decomposed reward. Therefore, the performance deteriorates dramatically. When we drop32

the diversity encouraging term Ldiv2, we get the half-half reward decomposition, which33

is not helpful to accelerate the training process. Finally, we find that the minimal sufficient34

regularization term Lmini mainly contributes to the later training process.35

To Reviewer 1: Q1: Dynamics blind. A1: Decomposing dynamics is also an interesting topic that we would love to36

look into, however it may require stricter assumptions on the environment. Q2: How were the games for Atari chosen?37

A2: We follow prior work [Lin et al.’19] and test our algorithm on the Atari games that have multiple sources of reward.38

We will run our algorithm in more environments and provide the results in Appendix.39

To Reviewer 2: Q1: Beyond K=2. A1: We found that in environments with more than two reward sources, using K>240

will achieve better performance. Moving beyond prior info about K, self-tuning K would be an interesting future work.41

To Reviewer 3: Q1: About the runtime of estimation of approximating loss. A1: Despite the estimation of approximat-42

ing loss, our efficient implementation can train at roughly 80% of Rainbow’s speed. Q2: Sensitivity to hyperparameters.43

A2: We provide the hyperparameter search range in appendix B. In practice, we found that our algorithm can work well44

if the value of hyperparameters are in a reasonable range. For example, on one hand, since the sub-Q loss and Lmini45

serve as regularization terms, we set their corresponding learning rate to a relatively small value; on the other hand, we46

keep the learning rate of Lsum and Ldiv2 in the same scale of original Rainbow. Overall, our algorithm is not sensitive47

to the hyperparameters.48

To Reviewer 4: Q1: The use of the property H(cX)=H(X)+log(|c|). A1: We are aware that this does not apply when c is49

dependent on X . The cause of this gap is that we let mi (i.e. chosen factors) be dependent on s, while in section 3 si is50

fixed. If we dig deeper, the root of this gap is that features can not be viewed as factors. A factor could be x coordinate51

of the agent, but without additional supervision it is impossible for networks to extract such compact information. One52

way to view features is to see them as index-varying factors. E.g., at timestep t a feature could be {x1, x2, x3} but at53

timestep t+ 1 it could be {x3, x1, x2}. Then we can let mi be fixed and introduce a permutation matrix P (s) that is54

dependent on s and let sub-state si = miP (s)� f(s). It is easy to show that H(miP (X)�X) = H(X) + log(|c|).55

However, we did not implement the permutation form in our paper, mainly due to that there are still flaws in the56

index-varying factor perspective of features and that current RD2 has already achieved significant performance.57


