We thank all reviewers for valuable comments. We commit to improving clarity of definitions/approximations/algorithm details and add more discussions on related works in the camera-ready version.

Usage of entropy: Entropy is used to measure *sufficiency*, *compactness* and *uniqueness*. *Sufficiency* is measured by 3 $H(r_i|s_i,a)$ in def.1, where the sufficient sub-state set M_i represents all sub-states \hat{s}_i that are as informative as the 4 whole state s in terms of inferring r_i . Compactness is measured by $H(s_i)$ in def.1&2, where C represents all sets of sub-rewards(and corresponding sub-states) that is non-trivial. Uniqueness(diversity) is measured by $H(s_i|s_j)$. and $H(r_i|s_i,a)$ as an alternative. One may argue that, it is easier to use feature number to capture *compactness* and uniqueness, for example using $|s_i - s_i \cap s_i|$ to capture diversity (/uniqueness). This is a good and simple formulation under factored MDP in Section 3 when all features are independent. However, for features learnt by networks, 9 independence is not guaranteed and even when m_i and m_j does not overlap, the mutual information between s_i and 10 s_i could still be high. The usage of entropy $(H(s_i|s_i)$ and $H(r_i|s_i,a))$ allows us to discourage such case while 11 $|s_i - s_i \cap s_j|$ cannot. 12

Explanation of L_{div1} : L_{div1} computes the sum of $H(\hat{s}_i|\hat{s}_j)$, which can be interpreted as randomness of sub-state \hat{s}_i 13 given sub-state \hat{s}_i . To further explain the intuition behind, consider a factored MDP where a factor is either chosen or not 14 chosen for each sub-states. Note that a factor x_k will **only** contribute to $H(\hat{s}_i|\hat{s}_j)$ if x_k is chosen by \hat{s}_i and not chosen 15 by \hat{s}_j , i.e. $m_{i,k} = 1$ and $m_{j,k} = 0$. A simple way to extend this boolean expression is to use $ReLU(m_{i,k} - m_{j,k})$. We 16 admit that the approximation L_{div_1} for $H(s_i|s_j)$ does not deal with the correlated case of s_i and s_j as well as L_{div_2} , which may explain the good performance of L_{div2} over L_{div1} in Atari Games where the feature could be correlated 18 rather than independent as in well-defined factored MDP (e.g. our toy case). 19

Explanation of L_{div2} : The usage of variance to approximate entropy was discussed in L203. Note the definition 20 of variance $Var(r_i|\hat{s}_j,a) = \mathbb{E}\left[r_i - \mathbb{E}(r_i|\hat{s}_j,a)\right]^2$. To obtain an estimation for $\mathbb{E}(r_i|\hat{s}_j,a)$, we use a network $\hat{r}_i = g_{\theta_{ij}}(\hat{s}_j,a)$ and minimize $MSE(r_i,\hat{r}_i)$ over parameter θ_{ij} . Then we can use \hat{r}_i as an estimation for $\mathbb{E}(r_i|\hat{s}_j,a)$ and 21 22 $\widehat{MSE}(r_i, \hat{r}_i)$ as a surrogate for $Var(r_i | \hat{s}_i, a)$ and maximize $\widehat{MSE}(r_i, \hat{r}_i)$ over \hat{s}_i to increase variance/entropy. We 23 apologize for the ambiguity and will refine it in the camera-ready version. 24

Downstream sub-Q learning: The detailed version of RD² algorithm can be found in Appendix A. In brief, sub-Q functions are trained with both full reward TD and sub-reward TD. The usage of global action a_{t+1} instead of local actions (i.e. $a_{t+1,i} = argmax_a Q_i(s_{t+1}, a)$) assures invariant optimal Q-function Q^* .

Ablation study for each loss term: To investigate the contribution of each loss term, we show that ablative performance. Specifically, we compare three variants of RD²: (1) RD² without \mathcal{L}_{sum} in Eq.4; (2) RD² without \mathcal{L}_{mini} in Eq.5; (3) RD² without \mathcal{L}_{div2} in Eq.7. As shown in Figure 1, when we drop the \mathcal{L}_{sum} term, RD² is equivalent to learn with randomly decomposed reward. Therefore, the performance deteriorates dramatically. When we drop the diversity encouraging term \mathcal{L}_{div2} , we get the half-half reward decomposition, which is not helpful to accelerate the training process. Finally, we find that the minimal sufficient regularization term \mathcal{L}_{mini} mainly contributes to the later training process.

17

25

26

27

28

29

31

32

33

34

35

36

37

38

49

50

51

52

53

55

56

Figure 1: Ablation study.

To Reviewer 1: Q1: Dynamics blind. A1: Decomposing dynamics is also an interesting topic that we would love to look into, however it may require stricter assumptions on the environment. Q2: How were the games for Atari chosen? A2: We follow prior work [Lin et al.'19] and test our algorithm on the Atari games that have multiple sources of reward. We will run our algorithm in more environments and provide the results in Appendix.

To Reviewer 2: Q1: Beyond K=2. A1: We found that in environments with more than two reward sources, using K>2 40 will achieve better performance. Moving beyond prior info about K, self-tuning K would be an interesting future work. 41 To Reviewer 3: Q1: About the runtime of estimation of approximating loss. A1: Despite the estimation of approximat-42 43

ing loss, our efficient implementation can train at roughly 80% of Rainbow's speed. Q2: Sensitivity to hyperparameters. **A2**: We provide the hyperparameter search range in appendix B. In practice, we found that our algorithm can work well if the value of hyperparameters are in a reasonable range. For example, on one hand, since the sub-Q loss and \mathcal{L}_{min} 45 serve as regularization terms, we set their corresponding learning rate to a relatively small value; on the other hand, we 46 keep the learning rate of \mathcal{L}_{sum} and \mathcal{L}_{div2} in the same scale of original Rainbow. Overall, our algorithm is not sensitive 47 to the hyperparameters. 48

To Reviewer 4: Q1: The use of the property H(cX)=H(X)+log(|c|). A1: We are aware that this does not apply when c is dependent on X. The cause of this gap is that we let m_i (i.e. chosen factors) be dependent on s, while in section 3 s_i is fixed. If we dig deeper, the root of this gap is that features can not be viewed as factors. A factor could be x coordinate of the agent, but without additional supervision it is impossible for networks to extract such compact information. One way to view features is to see them as index-varying factors. E.g., at timestep t a feature could be $\{x_1, x_2, x_3\}$ but at timestep t+1 it could be $\{x_3, x_1, x_2\}$. Then we can let m_i be fixed and introduce a permutation matrix P(s) that is dependent on s and let sub-state $s_i = m_i P(s) \odot f(s)$. It is easy to show that $H(m_i P(X) \odot X) = H(X) + log(|c|)$. However, we did not implement the permutation form in our paper, mainly due to that there are still flaws in the index-varying factor perspective of features and that current RD² has already achieved significant performance.